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Abstract: This study explored how the Lombard effect, a natural or artificial increase in speech
loudness in noisy environments, can improve speech-in-noise communication. This study consisted of
several experiments that measured the impact of different types of noise on synthesizing the Lombard
effect. The main steps were as follows: first, a dataset of speech samples with and without the
Lombard effect was collected in a controlled setting; then, the frequency changes in the speech signals
were detected using the McAulay and Quartieri algorithm based on a 2D speech representation; next,
an average formant track error was computed as a metric to evaluate the quality of the speech signals
in noise. Three image assessment methods, namely the SSIM (Structural SIMilarity) index, RMSE
(Root Mean Square Error), and dHash (Difference Hash) were used for this purpose. Furthermore,
this study analyzed various spectral features of the speech signals in relation to the Lombard effect
and the noise types. Finally, this study proposed a method for automatic noise profiling and applied
pitch modifications to neutral speech signals according to the profile and the frequency change
patterns. This study used an overlap-add synthesis in the STRAIGHT vocoder to generate the
synthesized speech.

Keywords: Lombard effect; noise background; Structural SIMilarity (SSIM) index; RMSE (Root Mean
Square Error); dHash (Difference Hash)

1. Introduction

This study aims to improve speech-in-noise communication using the Lombard effect
(LE), which is a natural or synthesized adaptation of speech loudness and style in response
to noise [1]. The Lombard effect is a phenomenon that occurs when people speak more
loudly and change their speech style to be heard and understood in noisy situations [2]. The
Lombard effect is named after Étienne Lombard, a French doctor who first described it in
1909 [3]. LE involves not only increasing the volume of the voice but also other adjustments,
such as raising the pitch, lengthening the syllables, and shifting the energy of the speech
to higher frequencies [2,3]. These changes help to improve the clarity and intelligibility
of the speech in noise. It should be noted that LE is involuntary and reflexive, meaning
that people do not consciously control it. It is influenced by both the level and the type of
noise, as well as the speaker’s hearing feedback [4]. The Lombard effect has implications in
various fields and applications, such as speech recognition, hearing aids, voice synthesis,
and acoustic design [4–6].

Recent research further supports the benefits of the Lombard effect in improving
speech intelligibility. Hansen et al. [7] investigated how the artificially induced Lom-
bard effect, created by incorporating three alternative modification techniques based on
(i) durational modification, (ii) temporal amplification of highly intelligible segments, and
(iii) spectral mismatch filtering, significantly improved speech intelligibility for cochlear
implant users in noisy environments. Similarly, Vlaj and Kacic [8] investigated the impact
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of the Lombard effect on speech recognition, highlighting its potential to improve commu-
nication in challenging acoustic environments. Kang et al. [9] took a different approach by
optimizing a real-time wavelet-based algorithm that adjusts the sub-band increments of
speech frequencies. Their work has demonstrated a significant improvement in speech in-
telligibility even in the presence of background noise, confirming the practical applicability
of methods inspired by the Lombard effect.

This study has two main objectives: first, to understand how noise affects the speech
features that are related to LE; and second, to train a noise recognition model that can
automatically generate LE speech when noise is detected and identified. So, to build a
human-centric system with ambient intelligence to generate LE speech for better intelligi-
bility, first, it needs to learn about noise interference on speech characteristics. Second, to
enable the system to generate Lombard speech automatically when noise is detected and
correctly labeled, the interference sound recognition model should be trained on speech
with this phenomenon present; however, this task is challenging because there is a lack of
data on LE speech, which is needed for deep-learning models [10]. Therefore, this study
proposes to use a text-to-speech (TTS) system with a suitable vocoder to synthesize LE
speech, which can perform better than conventional methods in low SNR (signal-to-noise
ratio) conditions. This approach is based on the studies by [10,11], which confirmed the
effectiveness of TTS and vocoders for LE speech synthesis.

LE is a phenomenon that has attracted a lot of attention from various researchers who
are aiming to enhance the performance of automatic speech recognition systems in noisy en-
vironments [12] and improve speech intelligibility, by transforming the speaking style from
normal (neutral) to Lombard speech [13,14], or increase speech intelligibility in cochlear
implant patients [10]. Another potential application of LE is to enable speech synthesizers
to adapt to noisy conditions, which positively impacts intelligibility gain [15–19]. Despite
this, when one refers to the recognition of real-life speech in noise, and especially when
noise profiling is a necessary step to process the speech signal correctly, the progress in this
area is below expectation, even though some preliminary studies have shown promising
results in this direction [20–22]. It should, however, be remembered that while humans are
good at understanding speech in noisy conditions, including cocktail-party environments,
one would expect that an algorithmic approach can reproduce such a possibility to some
extent and produce substantial improvements in speech-in-noise intelligibility. However,
this is not free from limitations, resulting in unsatisfactory outcomes.

One of the challenges in this research was to collect more data on Lombard speech for
deep models. Therefore, the proposed method was to automatically detect the presence
of LE in speech from the Internet and use it to train deep networks. To achieve this, the
differences between clean speech with LE and Lombard speech in noise were analyzed.
Specifically, the rapidly varying regions of speech, such as the transitions between voiced
and unvoiced segments, were investigated. The transitions between voiced and unvoiced
segments are critical for speech intelligibility. In noisy environments, where Lombard
speech typically occurs, these transitions help to distinguish speech sounds. Understanding
how these transitions are modified under the Lombard effect contributes to improving
speech intelligibility in noise. These regions can be identified by estimating the frequency
tracks and their spectral energy peaks. The number and location of the peaks are relevant
for this task. This analysis covers different types of noise and SNR levels.

This article is built upon the paper presented by the authors at the ISMIS confer-
ence [19]. However, a thorough analysis of tracking changes in 2D speech representations,
i.e., spectrograms, mel spectrograms, chromagrams, and MFCC-grams, by introducing the
noise of various SNRs, is included, as well as additional of noise types to the investigation,
comparing with the original conference paper.

2. Materials and Methods

To investigate the variation in frequency characteristics of Lombard speech at different
noise distortions, the speech signals were converted to 2D representations, i.e., spectro-
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grams, mel spectrograms, chromagrams, and MFCC-grams. Based on such a representation,
frequency tracks were extracted employing the McAulay and Quartieri [23] algorithm. An
overlap-add synthesis using a minimum-phase impulse response with group delay ma-
nipulations implemented in the STRAIGHT vocoder was used for speech synthesis. The
block diagram of the experimental setup is presented in Figure 1. As seen in Figure 1, an
evaluation applied to monitor frequency changes in the presence of noise was performed
using several measures. After the frequency track changes were assessed, automatic noise
profiling, followed by pitch modifications of natural speech signals depending on the
profiling result and frequency change trends, was obtained. Perceptual evaluation was
applied to check the quality of the synthesized speech, into which LE was incorporated
according to noise profiling.
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Figure 1. Block diagram of the experiment.

2.1. Analysis of Frequency Change in Lombard Speech

To detect the frequency changes at each time point, the time–frequency signal features
were converted to the following 2D representations: spectrograms, mel spectrograms,
chromagrams, and MFCC-grams. The process of 2D speech signal representation creation
consists of the calculation of the discrete Fourier transform of each short-time frame of
speech signal:

Xl(k) =
N−1

∑
n=0

xl(n)w(n)e
−2π jkn

N (1)

where Xl(k) are Fourier transform coefficients (k = 0, . . . , NFT − 1, NFT is the number
of Fourier transform coefficients), xl(n) is the sample of lth short-time frame of signal
(l = 0, . . . , L− 1, and L denotes the number of short-time frames), N is the length of the
signal, w(n) = 0.54− 0.46con(2πn/ N − 1) is the Hamming window function, and j is the
imaginary unit.

(1) Spectrogram

To generate a spectrogram, the Fourier transform coefficients are collected together,
and a spectrogram image is built up.
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(2) Mel spectrogram

The mel spectrogram is a scaled power spectrogram created using a filter bank over
a specific frequency range. The relationship between the mel scale and the Hertz scale is
defined by the following formula:

Mel( f ) = 2595 log
(

1 +
f

700

)
(2)

where f is a given frequency in Hertz.

(3) Chromagram

The chromagram representation projects the entire musical spectrum into 12 bins that
correspond to the 12 semitones of an octave. This results in an observation that every pitch
might be represented by two factors: tone height and chroma. Tone height is represented
by the octave number, while the chroma is the number of pitches inside the octave (0 to
11)—just like sounds in a chromatic scale (C–C#–D–D#–. . .–B).

(4) MFCC-gram

MFCCs, short for Mel-frequency Cepstral Coefficients, provide a condensed version
of the mel spectrogram. The log magnitude of the mel spectrum is first computed, and then
the Discrete Cosine Transformation (DCT) is applied to obtain MFCCs. The mathematical
formula for MFCCs can be expressed as follows:

cn =
M−1

∑
i=0

micos
(

πn(i + 1/ 2)
M

)
(3)

where mi are the log filter bank amplitudes in i-th mel filter bank, M is the number of filters
in the mel filter bank, and n refers to the order of the cepstral coefficient being calculated
(n = 0, . . . , M− 1).

These feature space representations are visualized in Figures 2 and 3, where the
Lombard speech excerpt and the same speech fragment with added nonstationary street
noise at 0 dB SNR are displayed, respectively. For this analysis, the spectrogram repre-
sentation was generated using Hamming windows of size 512. This window size gives
a smoothed Fourier spectrum. At the same time, the frequency resolution is sufficient
for frequency tracking. An overlap of 256 is used to avoid losing information due to the
window operation.
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Upon analyzing the 2D signal representations, it became apparent that the spectrogram
was the most effective in illustrating how the signal’s frequency content varies over time.
The spectrogram provides a detailed view of both the time and frequency domains, enabling
us to examine changes in the frequency range with good detail.

Changes in frequency can also be well observed in the mel spectrogram. On the other
hand, the mel scale is specifically designed to reflect how the human auditory system per-
ceives sound. It emphasizes lower frequencies and is less sensitive to differences in higher
frequencies. Hence, a spectrogram that provides a more straightforward representation
was chosen.

2.2. Estimation of Frequency Tracks

Several methods for tracking frequency tracks and their variations have been proposed
in the literature [24,25]. In this study, the classic algorithm by McAulay and Quartieri
(McA-Q) was adopted [23]. This algorithm detects frequency tracks in spectrograms by
finding the local maxima of the spectrogram in each short-time frame, l. These maxima
are called peaks. The peaks, along with their amplitudes and frequencies, are then fed to
the tracking algorithm, which aims to eliminate partial trajectories. The McA-Q algorithm
performs peak matching between consecutive frames. The algorithmic form of the peak
matching process between frames l and l + 1 is presented in Appendix A. The process of
determining frequency tracks in a speech signal is performed based on a spectrogram, a
visual representation of the distribution of signal acoustic energy across frequencies and
over time. The color darkness reflects the signal intensity.

The matching of each spectrum peak in frame l to the peaks in frame l + 1 consists
of 3 main steps. In the first step, for each frequency ωl

n in frame l, a search is done for a
frequency ωl+1

m in frame l + 1, which is the nearest to this frequency and whose absolute
distance is less than the threshold (i.e., ∆). In the second step, it is checked if the frequency
ωl+1

m has no better match to the unmatched frequencies of frame l. If this condition is
satisfied, then the frequencies are matched, and their amplitudes are interpolated between
the frames. Otherwise, the adjacent remaining lower frequency ωl+1

m−1 (if such exists) is
tested. In the last step, for the remaining frequencies in frame l + 1, for which no matches
were made, frequencies are created in frame l with zero amplitude, and the match is made.

The result of applying the tracker to the Lombard speech signal is shown in Figure 4,
where the Lombard speech excerpt and the same Lombard speech excerpt with added
nonstationary street noise at 0 dB SNR are displayed.
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A ratio of 0 dB indicates equal signal and noise levels; therefore, the degradation of
formant tracks of noisy speech is visible (Figure 4). When SNR is 20 dB, the signal can
generally be considered relatively clean, and frequency track tendencies compared with
a signal without added noise can be perceptible. When SNR is 0 dB, it can be regarded
as heavily noisy. To verify the difference in intelligibility between these three conditions,
behavioral or psychophysical methods should be employed [26].

2.3. Frequency Track Changes Assessment

To evaluate frequency track changes, three different image assessment measures
were used: SSIM (Structural SIMilarity) index—an image-quality assessment metric that
quantifies the similarity between two images based on their structure, luminance, and
contrast; RMSE (Root Mean Square Error)—a commonly used metric to measure the
difference between two sets of values (including two images) based on the calculation of
the square root of the average of the squared differences between corresponding values;
and dHash (Difference Hash)—a technique used for image hashing, which occurs together
with the Hamming distance to compare obtained hash values.

2.3.1. The Structural Similarity Index Measure

To quantify the effect of noise on speech, in terms of the Lombard effect, an aver-
age formant track error was calculated as an objective image-quality metric. Firstly, the
Structural SIMilarity (SSIM) index was calculated for image-quality assessment. The SSIM
index was developed by Wang et al. [27] to evaluate the quality of two images based on
the perspective of image formation, i.e., the image luminance, contrast, and structural
similarity. The advantages mentioned above for this method make it sensitive to changes
in the image, which is very important in this study. It should also be noted that the SSIM
index is widely used as the quality indicator of compared images [28,29].

Let x and y be two non-negative image signals. The structural SSIM index is calculated
using the following formula [27]:

S(x, y) =
[
l(x, y)]α·[c(x, y)]β·[s(x, y)]γ (4)

where α > 0, β > 0, and γ > 0 are weights (in this research parametrized as α = β = γ = 1),
l(x, y) is the luminance comparison function, c(x, y) is the contrast comparison function,
and s(x, y) is the structure comparison function. The functions are given by:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(5)
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c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(6)

s(x, y) =
σxy + C3

σxσy + C3
(7)

where µx and µy, σx and σy, and σxy are the local means, standard deviations, and cross-
covariance of the images being compared, respectively. The constants C1, C2, and C3 are
used to avoid instability [27]. The overall similarity measure, SSIM, is in the range of −1
to 1. A value of 1 indicates an ideal agreement between two images, while a value of −1
indicates that the given images are very different. In this research, the difference between
the image of the estimated frequency tracks of the clean speech signal and that of the noisy
speech signal was calculated using the SSIM index.

2.3.2. The Root Mean Square Error Measure

The Root Mean Square Error (RMSE) is a commonly used measure to evaluate the
difference between two sets of values, including two images [30,31]. It is calculated as the
square root of the average of the squared differences between corresponding pixel values
in two images:

RMSE =
1

MN

√√√√ M

∑
i=1

N

∑
j=1

[A(i, j)− B(i, j)]2 (8)

where A(i, j) and B(i, j) are the pixel values at position (i, j) in reference image A and fused
image B, respectively, and M and N are the width and height of the images, respectively.

A lower RMSE value indicates better image similarity. The increased value of RMSE
means that the images are less similar and the degree of distortion is higher.

2.3.3. The dHash-Based Measure

Hashing is a process that uses a mathematical algorithm to transform input data into a
unique output called a hash value. A hash value is a fixed-length string of characters repre-
senting the original data. This process is useful for verifying the integrity and authenticity
of data, as any change in the input data will result in a different hash value. Hashing is also
used for storing and retrieving data efficiently, as hash values can be used as indexes in
a data structure. Some examples of hashing algorithms are MD5, SHA-1, SHA-256, and
RIPEMD-160 [31–34].

Regarding images, the hashing function can generate hash codes that capture the unique
characteristics of images, allowing for image comparison [35], image retrieval [36,37], and
image authentication [38]. Hash functions are ideal for detecting (near-)identical photos
because of their robustness against minor changes, while also minimizing the number of
false-positive collisions [39].

By comparing the hash value of two images, their similarity is determined. The
difference hash (dHash) algorithm, based on the calculation of the difference for each of the
pixels and comparing the difference with the average differences, was used in this research.
The algorithm operates as follows: the input image is first converted to greyscale and
resized to a smaller size; the pixel differences are then calculated. This process is repeated
for all rows, thus producing a row-wise hash. The row-wise hashes represent the final
hash value.

The pixel differences are calculated as follows: if the value of the left pixel is greater
than or equal to the value of the right pixel, a 1 is assigned to represent that pixel pair.
Otherwise, a 0 is assigned. These values are the individual parts that make up the resulting
dHash value.
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To estimate the similarity between the two images, the Hamming distance is calculated
based on the dHash values of the two images:

Hamming distance = Number o f di f f ering bits (9)

This paper used the Python module, ImageHash, which was developed by Buch-
ner [40]. The hash consists of 16 hexadecimal characters, and each hexadecimal character
represents 4 bits; therefore, the size of this hash is 64 bits. In the case of 64-bit hashes, the
Hamming distance ranges from 0 (when the hashes are identical) to 64 (when all hashes are
different). According to Joshi et al., if the Hamming distance is less than 5, the images are
considered similar or duplicates [39].

3. Experiments

Recordings of natural speech were obtained in a room with an acoustically treated
interior that suppresses reverberation. Recordings of Lombard speech were obtained in
the same studio to maintain the same acoustic conditions. To acquire the Lombard effect
while speaking, the interfering noise was played back through closed headphones. Eight
speakers (four males and four females) read fifteen sentences separately. The speakers
were untrained, healthy, native students from the Gdansk University of Technology. Each
speaker repeated a given sentence twice under a different condition.

The Lombard speech recordings were split into smaller segments, the length of which
was 1 s. As a result, 2719 recordings were used in the experiment. The effect of different
types of noise was investigated at varying levels of SNR, from −10 dB to 40 dB (i.e., from
high to slightly distorted speech).

Two types of noise, generated and environmental, were added to the signals. Four real-
life noises, babble speech (i.e., a mix of many talkers), city streets, rain, and pub recordings,
were selected. These recordings were taken from the YouTube platform. High-quality
recordings were selected to minimize the loss of compression artifacts. After downloading,
spectral analysis was also performed on each recording. The speech and noise signal
sampling rates were adjusted to 16 kHz before the test. Generated noise included two
colored noises, namely pink and purple.

3.1. Results of the Influence of Noise Interference on the Frequency Tracks of Lombard Speech

The experiment was designed to measure the influence of noise interference on the
frequency tracks of Lombard speech. The obtained SSIM index values, RMSE values, and
dHash-based values indicating the correspondence between the shape of a speech signal with
LE and its noisy version in different SNR conditions are contained in Tables 1–3, respectively.

Table 1. The SSIM index values for Lombard speech recordings (the SSIM index ranges from 0 to 1,
where a higher value indicates greater similarity, while a value of 0 indicates dissimilar images).

Noise Type −10 dB 0 dB 10 dB 20 dB 30 dB 40 dB

Purple noise
Mean 0.3439 0.347 0.3548 0.3875 0.5461 0.7392

STD 0.0006 0.0007 0.0008 0.0014 0.0034 0.0043

Pink noise
Mean 0.343 0.3444 0.3621 0.5258 0.6958 0.8095

STD 0.0006 0.0007 0.0011 0.0031 0.0041 0.0037

Pub noise
Mean 0.412 0.428 0.514 0.634 0.767 0.862

STD 0.001 0.001 0.002 0.003 0.003 0.002

City street noise
Mean 0.3733 0.3789 0.4198 0.5379 0.6985 0.8188

STD 0.0007 0.0007 0.0013 0.0025 0.0033 0.0030
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Table 1. Cont.

Noise Type −10 dB 0 dB 10 dB 20 dB 30 dB 40 dB

Babble speech
noise

Mean 0.5214 0.5618 0.6610 0.7656 0.8547 0.9146

STD 0.0015 0.0019 0.0026 0.0027 0.0021 0.0016

Rain noise
Mean 0.3672 0.3701 0.3843 0.5214 0.6959 0.8202

STD 0.0006 0.0007 0.0009 0.0026 0.0035 0.0031

Table 2. The RMSE values for Lombard speech recordings (the RMSE measure does not have a
predefined range. The RMSE score is a non-negative real number, and 0 means that the images are
precisely the same).

Noise Type −10 dB 0 dB 10 dB 20 dB 30 dB 40 dB

Purple noise
Mean 3.8962 3.8910 3.8833 3.8469 3.3810 2.7931
STD 0.0350 0.0349 0.0346 0.0346 0.0393 0.0431

Pink noise
Mean 3.5239 3.5156 3.5003 3.4697 3.1240 2.5524
STD 0.0434 0.0432 0.0427 0.0420 0.0459 0.0477

Pub noise
Mean 3.8153 3.8110 3.8059 3.7779 3.3486 2.7671
STD 0.0363 0.0363 0.0360 0.0362 0.0410 0.0430

City street noise
Mean 3.7879 3.7837 3.7796 3.7679 3.3289 2.7807
STD 0.0421 0.0419 0.0417 0.0416 0.0480 0.0517

Babble speech
noise

Mean 3.7813 3.7708 3.7541 3.7139 3.2991 2.6972
STD 0.0310 0.0309 0.0306 0.0308 0.0350 0.0377

Rain noise
Mean 3.6019 3.5930 3.5773 3.5498 3.1656 2.6105
STD 0.0337 0.0335 0.0332 0.0328 0.0361 0.0380

Table 3. The dHash-based values for Lombard speech recordings (the Hamming distance ranges
from 0 to 64, where a lower value indicates more remarkable similarity, while a value of 64 indicates
dissimilar images).

Noise Type −10 dB 0 dB 10 dB 20 dB 30 dB 40 dB

Purple noise Mean 25.172 24.666 24.185 23.267 19.584 11.238
STD 0.161 0.166 0.158 0.171 0.224 0.268

Pink noise
Mean 25.449 25.110 24.637 20.627 14.746 10.445
STD 0.168 0.170 0.175 0.211 0.246 0.250

Pub noise
Mean 25.391 24.357 22.633 18.433 13.128 9.674
STD 0.165 0.172 0.180 0.214 0.244 0.233

City street noise Mean 25.564 25.008 23.728 20.769 15.177 10.609
STD 0.173 0.174 0.177 0.197 0.238 0.239

Babble speech
noise

Mean 23.934 21.729 17.923 13.554 10.098 7.284
STD 0.169 0.200 0.230 0.239 0.217 0.189

Rain noise
Mean 25.480 25.012 24.398 21.017 15.013 10.657
STD 0.169 0.167 0.166 0.198 0.236 0.242

To compare the results of the three measures, the results were normalized to the
interval [0, 1]. For RMSE and dHash-based scores, the results were further transformed. In
the transformed version, the biggest value from the original scores was represented as 0,
and the smallest value was defined as 1, with the other values scaled accordingly between
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0 and 1. The STD for each normalized mean value was calculated using the following
formula:

Normalized_STD =
Range_o f _Normalized_Mean ∗ Original_STD

Range_o f _Original_Mean
(10)

Range_o f _Normalized_Mean and Range_o f _Original_Mean refers to the difference
between the maximum and minimum values of the normalized mean values and original
mean values, respectively.

A graphical representation of the results obtained is given in Figures 5–7, where the
normalized standard deviation is shown as a vertical error bar.
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In the case of the RMSE metric, many high standard deviation values were obtained.
This indicates that the obtained similarity measures were scattered over a larger distance
from the mean and vary widely; therefore, the RMSE measure was not considered further.
For the SSIM and dHash-based scores, the best results in terms of less variability were
obtained for babble speech noise, followed by recordings mixed with pub noise. Results
for city street, pink noise, and rain noise were very similar. Purple noise had a poorer
estimate at 20 dB and over, giving a worse result. Further, the spectrum of noise signals
was analyzed. The following spectral envelope shape parameters were extracted: Spectral
Entropy, Spectral RollOff, and Spectral Brightness. The normalized values are given in
Table 4.

Table 4. The normalized spectral characteristics of the noise signals.

Noise Type Spectral Entropy Spectral RollOff Spectral Brightness

Purple noise 1 1 1
Pink noise 0.76 0.29 0.15
Pub noise 0.88 0.51 0.34

City street noise 0.97 0.84 0.84
Babble speech noise 0.82 0.47 0.17

Rain noise 1.00 1.00 1.00

When comparing the spectrum-based values (Table 4) of the noise signal that was
analyzed, it was observed that the spectral entropy, which measures spectrum irregularity,
reflects the unpredictability of these signals. This may have led to lower SSIM index and
dHash-based values for these noises (except for the pink noise). Also, the amount of
high-frequency information, which Spectral Brightness and RollOff reflect, directly impacts
the SSIM index and dHash-based scores presented in Tables 1 and 3, respectively.

3.2. Modification of the Neutral Speech Samples Based on Noise Profiling

The investigations conducted also included an attempt to modify neutral speech
samples based on noise profiling and test them using a speech-quality indicator. Automatic
noise profiling, utilizing the developed noise profiling method presented initially in a paper
by Korvel et al. [19], and later extended and published by Kąkol et al. [41], was used for this
purpose. This method employs machine learning to perform near-real-time noise profiling.
The noise recognition model is built upon a Naïve Bayes [42] classifier, using noise signal
features derived from the Aurora noise dataset [43]. The target classes used were airport,
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babble speech, car noise, exhibition, restaurant, street noise, subway, train, and pink noise.
Each recording containing noise was processed as follows:

• For the training process, a signal was divided into a frame length of 2 s to collect the
statistical features.

• During each analysis step, the 2-s window was shifted by 0.1 s.

This work aims to modify neutral speech samples based on the noise profiling results
obtained. The modifications that were applied to the signal are related to one of the most
well-known Lombard speech characteristics—pitch shifting. The F0 is calculated using the
following 2nd-degree polynomial equation:

y = a0 + a1x + a2x2 (11)

where x represents an SNR level, and a0, a1, a2 are coefficients obtained from track change
analysis. The polynomial coefficients obtained from track change analysis are given in
Table 5. The coefficient of determination (R2 values) was calculated to indicate the goodness
of fit of a curve to the data.

Table 5. Polynomial coefficients and R2 values obtained from track change analysis.

Type Noise a2 a1 a0 R2 Value

Pub noise −0.0073 0.0113 1.349 0.9865
City street noise −0.0011 0.0462 1.308 0.987

Babble speech noise −0.0086 0.0131 1.436 0.9874
Rain noise −0.0107 0.0016 1.422 0.9869

To compare the results, statistical pitch modification was made, which involved
increasing F0 by 10% regardless of the type of noise and its signal-to-noise ratio. F0
trajectory for speech modifications was extracted using the STRAIGHT vocoder. The basic
principles of this algorithm can be found in a paper by Kawahara [44]. An overlap-add
synthesis using minimum-phase impulse response with group delay manipulations was
employed for synthesized speech creation.

A graphical representation of a neutral speech fragment with added nonstationary
restaurant noise at 0 dB SNR, displayed together with its synthesized variants using two
different F0 modification techniques, i.e., increase F0 by 10% and noise profiling-based F0
modifications, is given in Figure 8.
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To measure the quality of the synthesized speech signals, the Perceptual Evaluation of
Speech Quality (PESQ) test, which was standardized using the ITU-T in Recommendation
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P.862 [45,46], was implemented in this research. This implementation enabled the under-
taking of PESQ measurements by comparing a degraded speech signal with a reference
(undegraded) speech signal. As a result, scores known as Mean Opinion Scores for Listen-
ing Quality Objective (MOS-LQO) were generated. These scores represent the perceived
quality of the degraded speech.

Estimated MOS-LQO values are given in Table 6, where the highest scores for each
noise type and SNR are highlighted in bold font. A graphical representation of the results,
along with values of the standard deviations, is shown in Figure 9.

Table 6. The MOS-LQO values (measure produces a score ranging from −0.5 to 4.5, with higher
scores indicating better speech quality; such values are highlighted in bold font).

−10 dB 0 dB 10 dB 20 dB 30 dB 40 dB

Pub noise

Normal speech Mean 0.925 1.283 2.086 2.824 3.656 4.187
STD 0.309 0.423 0.227 0.196 0.144 0.070

Increase F0 by 10% Mean 0.964 1.351 2.106 2.849 3.680 4.196
STD 0.343 0.434 0.228 0.193 0.136 0.068

Noise profiling-based F0
modifications

Mean 0.969 1.479 2.162 2.899 3.703 4.196
STD 0.358 0.407 0.205 0.182 0.142 0.068

City street
noise

Normal speech Mean 0.878 1.192 1.850 2.589 3.490 4.162
STD 0.297 0.346 0.245 0.211 0.187 0.083

Increase F0 by 10% Mean 0.835 1.173 1.882 2.618 3.521 4.179
STD 0.314 0.373 0.244 0.200 0.181 0.080

Noise profiling-based F0
modifications

Mean 0.899 1.213 1.914 2.670 3.583 4.179
STD 0.350 0.326 0.234 0.198 0.164 0.080

Babble
speech
noise

Normal speech Mean 1.278 1.510 2.308 2.974 3.707 4.175
STD 0.420 0.458 0.203 0.193 0.119 0.079

Increase F0 by 10% Mean 1.271 1.544 2.306 2.992 3.726 4.186
STD 0.352 0.468 0.248 0.191 0.126 0.081

Noise profiling-based F0
modifications

Mean 1.264 1.682 2.361 3.014 3.726 4.175
STD 0.388 0.449 0.193 0.190 0.126 0.079

Rain noise

Normal speech Mean 0.747 1.299 2.059 2.861 3.776 4.277
STD 0.298 0.329 0.232 0.223 0.147 0.066

Increase F0 by 10% Mean 0.875 1.339 2.079 2.890 3.805 4.286
STD 0.545 0.295 0.223 0.215 0.136 0.065

Noise profiling-based F0
modifications

Mean 0.883 1.361 2.118 2.966 3.836 4.286
STD 0.346 0.281 0.222 0.188 0.129 0.065

Regarding the MOS-LQO values, it was observed that the quality of the synthesized
speech in noise was generally enhanced through the utilization of the adopted F0 mod-
ifications in the literature, except for city street noise at 0 dB. The noise profiling-based
F0 modifications have yielded better scores compared with increasing F0 by 10%. It was
also found that across different scenarios, recordings with babble noise generally obtained
the highest scores, followed by those mixed with pub noise. This assessment includes all
noise conditions considered, except for babble speech at −10 dB (see Table 6 and Figure 9).
It should be noted that babble noise produced the fewest frequency changes, as per the
track-change analysis. In contrast, this type of noise causes the most problems in the
speech-denoising process, as it requires removing one speech source without affecting the
other. The method of modification, F0, as proposed in this research, while effective in most
scenarios, may require further refinement to handle all types of noise. It should also be
researched as to its viability in real-world noise environments.
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4. Conclusions

This paper presents the results of a study that examined the spectral characteristics
of Lombard speech under noise interference. This study aimed to extend the existing
theoretical knowledge on the Lombard effect by analyzing how different types of noise
affect it; that is why the experiment was carried out in controlled conditions.

The investigation carried out demonstrated that the highest performance was achieved
for babble noise, followed by pub noise. This paper also shows a clear correlation between
the SSIM indexes and the spectral characteristics of the noise signal. A relationship between
the Spectral Brightness, RollOff, and Entropy of the noise signal and the signal degradation
is also observed, i.e., the higher these values are, the more the speech signal is degraded.

The MOS-LQO values indicate that in most cases (except for babble speech noise
at 0 dB SNR), the adopted F0 modifications improve the quality of speech synthesized
in noise, resulting in the leading position of noise profiling-based F0 modifications. It
should, however, be noted that these changes in speech quality are not significant with the
F0-applied modifications.

Although Lombard speech processing and synthesis have made many advances in
recent years, there is still a need to improve speech synthesis models to be more robust in
adverse SNR conditions. Based on the research, further investigation could be done to use
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more extensive modifications (not just F0 modifications) to make the model more robust
in adverse noise conditions. Our previous study revealed that the analysis conducted
separately for individual speakers shows remarkable differences between them [47]. In
the future, the testing of the idea of a male–female division is highlighted as an important
thread to be checked [48]. Also, deep-learning algorithms instead of the state-of-the-art
vocoder can be applied to such a task. This way, a more extensive repository of records
may be obtained; however, the results of the synthesized LE, incorporated into natural
speech, should be checked in subjective tests.

Moreover, the paper does not consider the case of mixed noises, which may occur in
real life. Therefore, this is another issue that requires further investigation. Also, future
analysis could be conducted to investigate the impact of high-frequency information on
speech intelligibility in noisy environments. This will include evaluating the benefits of
higher sampling rates and the presence of high-frequency noise components, which may
more accurately reflect real-world listening scenarios, such as trying to understand speech
in a noisy environment.

There are some general outcomes of the study performed:

1. Implications for Speech Synthesis and Recognition Technologies:

- The findings from this study could impact the development of more advanced
speech synthesis and recognition systems. By incorporating the principles of the
Lombard effect, these systems could adapt to noisy environments, enhancing
their effectiveness in real-world scenarios like crowded public spaces or vehicles.

2. Application in Assistive Technologies:

- This research holds potential benefits for assistive communication technologies,
especially for individuals with hearing impairments. The enhanced clarity and
intelligibility of speech generated through LE-influenced methods could improve
communication in challenging auditory environments.

3. Future Research Directions:

- There is scope for exploring the application of the Lombard effect in different
languages, as speech characteristics and responses to noise may vary across
languages.

- Further research could also delve into the subjective perception of LE-modified
speech by listeners, particularly in terms of naturalness and ease of understand-
ing.

4. Integration with Ambient Intelligence Systems:

- This study’s methodology and findings can be integrated into ambient intel-
ligence systems for smarter environment-responsive communication aids, for
instance, in smart homes or workplaces, where the system may automatically
adjust communication modalities based on the detected noise levels.

5. Challenges and Limitations:

- This study highlights the challenges in accurately mimicking the natural Lombard
effect, particularly in maintaining the naturalness of speech while enhancing
intelligibility.

- Limitations in current speech synthesis technologies in replicating complex hu-
man vocal nuances in varying noise conditions need addressing.

6. Broader Societal Impact:

- This research can contribute to enhancing public safety communications, like
emergency announcements in noisy environments, by ensuring clearer and more
intelligible speech transmission.

- It also has implications for improving communication in educational settings,
especially in noisy classrooms or during outdoor activities.
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By exploring these additional aspects, the conclusions of the paper can be broadened
to encompass a wider range of implications, applications, and future research directions.
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Appendix A

Algorithm A1: The pseudo-code of the peak matching.

INPUT:
ωl

n—the frequency on frame l
ωl+1

m —the frequency on frame l + 1
N—the total number of peaks in frame l
M—the total number of peaks in frame l + 1

n = 0, . . . , N − 1
m = 0, . . . , M− 1
p = 0, . . . , M− 1
p 6= m

for each frequency in frame l do
STEP 1. if

∣∣∣ωl
n −ωl+1

m

∣∣∣ ≥ ∆ then

ωl
n is matched to itself in frame l + 1

the amplitude of ωl
n is set to zero

else
if
(∣∣∣ωl

n −ωl+1
m

∣∣∣<∣∣∣ωl
n −ωl+1

p

∣∣∣< ∆ ) then

ωl+1
m is declared to be a candidate to ωl

n
end if

end if
STEP 2. if

(∣∣∣ωl+1
m −ωl

n

∣∣∣ < ∣∣∣ωl+1
m −ωl

p+1

∣∣∣ , where p > i) then

ωl
n is matched to ωl+1

m
else

if ωl+1
m−1 exists then

if
∣∣∣ωl

n −ωl+1
m−1

∣∣∣< ∆ then

ωl
n is matched to ωl+1

m−1
else

ωl
n is matched to itself in

frame l + 1
the amplitude of ωl

n is set to zero
end if
end if

STEP 3. for the remaining frequencies in frame l + 1
frequencies are created in frame l with zero amplitude
the match is made

The comments on the algorithm:

3 If the frequencies are matched, they are eliminated from further consideration.
3 ∆ denotes a matching interval [21]
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