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Abstract: LiDAR has become a vital sensor for autonomous driving scene understanding. To meet
the accuracy and speed of LiDAR point clouds semantic segmentation, an efficient model ACPNet is
proposed in this paper. In the feature extraction stage, the backbone is constructed with asymmetric
convolutions, so the skeleton of the square convolution kernel is enhanced, which leads to greater
robustness to target rotation. Moreover, a contextual feature enhancement module is designed
to extract richer contextual features. During training, global scaling and global translation are
performed to enrich the diversity of datasets. Compared with the baseline network PolarNet, the
mloU of ACPNet on the SemanticKITTI, SemanticPOSS and nuScenes datasets are improved by
5.1%, 1.6% and 2.9%, respectively. Meanwhile, the speed of ACPNet is 14 FPS, which basically meets
the real-time requirements in autonomous driving scenarios. The experimental results show that

ACPNet significantly improves the performance of LiDAR point cloud semantic segmentation.

Keywords: LiDAR point clouds; semantic segmentation; deep learning; asymmetric convolution;

contextual feature enhancement

1. Introduction

Scene understanding is one of the most critical tasks in autonomous driving. With
the challenges introduced by recent technologies such as autonomous driving, a detailed
and accurate understanding of the road scene has become a main part of any outdoor
autonomous robotic system in recent years. Although semantic segmentation of 2D images
is crucial to attaining scene understanding, there are still some limitations to visual sensors,
such as the inefficiency of acquiring information under insufficient light, lack of depth infor-
mation and limited field of view. In contrast, LIDAR can obtain accurate depth information
with higher density and wider viewing field regardless of lighting conditions, which makes
it a more reliable source of information for environmental perception. Therefore, the scene
understanding of LiDAR point clouds with semantic segmentation has become a focal
point in autonomous driving.

According to point clouds’ encoding methods, the current LiDAR point clouds se-
mantic segmentation methods can be divided into three categories: point-based methods,
voxel-based methods, and projection-based methods. In terms of speed, there is a lot of
computation and memory consumption in point-based and voxel-based methods, which
makes it difficult to achieve real-time effects with the on-board computing platform. A
higher priority should be placed on real-time performance when it comes to autonomous
driving than segmentation accuracy. In contrast, projection-based methods are lightweight
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and fast, so real-time effects can be achieved during deployment. In terms of segmentation
accuracy, the projection-based method has shown some success. However, since the point
cloud information is not fully utilized during feature extraction, there is still room for
improving segmentation accuracy.

When achieving real-time effects, it is of great relevance to improve the segmentation
accuracy in autonomous driving scenarios. To meet segmentation accuracy and speed,
an efficient real-time network ACPNet (Asymmetric Convolution based on PolarNet) is
proposed in this paper. PolarNet [1] is the baseline network of ACPNet, which encodes
point clouds through polar bird’s-eye-view (BEV) representation. BEV is the abbreviation
for Bird’s Eye View, which is a perspective that views an object or scene from above, just
like a bird looking down at the ground in the air. Also known as God’s perspective, which
is a perspective or coordinate system used to describe the perception of the world. The
using of polar BEV has some advantages: First, in terms of point allocation within grid
cells, the polar BEV method will assign point clouds to their respective grid cells more
evenly. Second, since the partitioning method brings about a more balanced distribution
of points, the theoretical upper limit of prediction accuracy for the semantic classification
of point clouds will be increased, thereby improving the performance of downstream
semantic segmentation models [1]. In ACPNet, the encoded point cloud features are fed
into an Asymmetric Convolution Backbone Network (ACBN) for feature extraction. Then,
the features extracted by the backbone are input to the Contextual Feature Enhancement
Module (CFEM) for further mining of contextual features. Moreover, global scaling and
global translation are used as Enhanced Data Augmentation (EDA) while ACPNet is being
trained. Experiments are conducted on the SemanticKITTI [2], SemanticPOSS [3] and
nuScenes [4] dataset to verify the validity and generalization of our method. The main
contributions of this paper can be summarized as follows:

*  An Asymmetric Convolution Backbone Network is proposed. Asymmetric convolu-
tions are used in the backbone to enhance the skeleton of square convolution kernels
and reduce interference caused by target rotations.

* A Contextual Feature Enhancement Module is proposed, which can fully extract the
contextual feature by decomposing and aggregating the features.

*  Enhanced Data Augmentation methods of global scaling and global translation are
used to enrich the diversity of the dataset samples. Thus, the generalization capability
of the model is further improved without increasing the computational cost.

2. Related Works

Due to the sparsity and disorderliness of point clouds, encoding the input point cloud
is a crucial issue when using convolutional neural networks for semantic segmentation of
3D point clouds. According to the encoding methods for point clouds, existing point cloud
encoding methods can be divided into three categories: Point-based Methods, Voxel-based
Methods, and Projection-based Methods.

2.1. Point-Based Methods

PointNet [5] is a point-wise learning method for point cloud features, and max pooling
is used to integrate global features. PointNet++ [6] is an extension to PointNet, and the
ability to extract local information of different scales is strengthened. A spatially continuous
convolution is proposed in PointConv [7], which reduces the memory consumption of
the algorithm effectively. For semantic segmentation in large-scale point clouds scenarios,
the point clouds are represented as interconnected superpoint graphs in SPG [8], and
then PointNet was used to learn the features of the superpoint graph. An attention-
based module was designed in RandLA-Net [9] to integrate local features, achieving
efficient segmentation in large-scale point clouds. Segmentation performance was further
improved in KPConv [10] with a novel spatial kernel-based point convolution. Lu et al. [11]
suggested the use of distinct aggregation strategies for both within-category and between-
category data. Employing aggregation or enhancement techniques on local features [12]
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can effectively enhance the perception of intricate details. Furthermore, to effectively learn
features from extensive point clouds encompassing diverse target types, Fan et al. [13]
introduced the SCF-Net. This network incorporates a dual-distance attention mechanism
and global contextual features to enhance semantic segmentation performance.

Point-based methods directly work on the raw point clouds without excessive initial-
ization transformation steps. However, when handling expansive point cloud scenes, the
local nearest neighbor search is inevitably involved, which is computationally inefficient.
Thus, there is still clearly room for improvement in point-based methods.

2.2. Voxel-Based Methods

Point clouds are regularly divided into 3D cubic voxels, and Voxel-based methods
employ 3D convolution for the extraction of features. SEGCloud [14] is one of the earlier
methods for semantic segmentation based on voxel representation. In order to utilize 3D
convolution efficiently and expand the receptive field, 3D sparse convolution [15] is used
in Minkowski CNN [16], which reduces the computational complexity of convolution. In
pursuit of higher segmentation accuracy, a neural architecture search (NAS) based model
SPVNAS [17] is proposed, which trades high computational cost for accuracy. In order to
fit the spatial distribution of the LiDAR point clouds, a cylinder voxel division method is
proposed in Cylinder3D [18], which makes it obtain high accuracy. In order to streamline
computations and enhance the intricacies of smaller instances, an attention-focused feature
fusion module and an adaptive feature selection module are proposed by Cheng et al. [19].
To improve the speed of voxel-based networks, a method of knowledge distillation from
point to voxel is proposed in PVKD [20] to achieve model compression.

High segmentation accuracy is typically achieved in voxel-based methods. However,
3D convolution is inevitably used, resulting in significant memory occupation and high
computational consumption.

2.3. Projection-Based Methods

The basic concept behind projection-based methods is to transform point clouds into
images that can undergo 2D convolution operations. The SqueezeSeg [21-23] series of
algorithms based on SqueezeNet [24] perform semantic segmentation after projecting
point clouds. RangeNet++ [25] implements semantic segmentation based on the backbone
network of DarkNet53 [26], and a K-Nearest Neighbor (KNN) algorithm is proposed to
improve segmentation accuracy. 3D-MiniNet [27] is based on a lightweight backbone
to build the network, achieving a faster speed. A polar BEV representation method is
proposed in PolarNet [1], which uses a simplified version of PointNet to encode the point
clouds of each polar coordinate grid to obtain a pseudo image, and KNN post-processing
operation is no longer needed. Peng et al. [28] introduced a multi-attention mechanism
to enhance the understanding of driving scenes, specifically focused on dense top-view
semantic segmentation using sparse LIDAR data. SalsaNext [29] introduced a new context
module, which replaces the ResNet encoder blocks with a residual convolution stack
that has increasing receptive fields. Additionally, it incorporated a pixel-shuffle layer
into the decoder. MINet [30] employed multiple paths with varying scales to effectively
distribute computational resources across different scales. FIDNet-Point [31] designed a
fully interpolation decoding module that directly upsamples the multi-resolution feature
maps using bilinear interpolation. CENet+KNN [32] incorporated convolutional layers
with larger kernel sizes, replacing MLP, and integrated multiple auxiliary segmentation
heads into its architecture.

There are obvious advantages in computational complexity and speed in projection-
based methods. Therefore, it is significant to improve the segmentation accuracy of
projection-based methods for practical application in autonomous driving.
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3. Methodology

The overall framework of ACPNet is shown in Figure 1. First, the raw point clouds
are encoded using a polar BEV encoder. Then, the encoded point cloud features are input
into the ACBN constructed with asymmetric convolutions for feature extraction. Next,
the features extracted by the backbone are inputted into the CFEM for further mining
contextual features. Finally, the output features are processed by the semantic head to
acquire the semantic segmentation results.
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Figure 1. The overall framework of ACPNet.

3.1. Asymmetric Convolution Backbone Network (ACBN)

Objects such as vehicles, riders, and pedestrians are the main detection targets in
autonomous driving scenarios. These objects will be presented in a small rectangular area
after the BEV projection. Furthermore, it is common for objects to rotate in the horizontal
direction. Horizontal rotation refers to the rotation angle of objects on the road compared
to the front of the LiDAR sensor. When an object is not directly in front of the LiDAR,
horizontal rotation occurs. Recent studies [33] also indicate that the central crisscross
weights play a more significant role in the square convolution kernel.

Asymmetric convolution is a type of convolutional operation used in convolutional
neural networks. Unlike square convolutions that use local convolution blocks with equal
length and width, asymmetric convolutions use rectangular blocks with unequal length
and width. These convolutions are characterized by their ability to extract different global
features depending on the orientation of the rectangular block. When the length is greater
than the width, the convolution can extract more global features in the vertical direction,
resulting in a larger receptive field or attention range. Conversely, when the length is less
than the width, the convolution can extract more global features in the horizontal direction.
By combining asymmetric convolutions with different orientations, the weights in the
horizontal and vertical directions can be overlaid to enhance the weights at the center cross
position of the square convolutional kernel.

As shown in Figure 2, when the feature map is flipped left-right or up-down, the
information extracted by the original square kernel will change. But at the same time, if
there are horizontal kernels or vertical kernels in the convolution combination, some of the
kernels will still get the same output as the original feature map in the axially symmetric
locations. From this, it can be seen that asymmetric convolution can still extract correct
features when dealing with rotational distortions, thus it will enable the model to generalize
better on the unseen rotated samples and show robustness.

To enhance the horizontal and vertical responses, we introduce the Asymmetric
Convolutions Block as a means to achieve this objective and it can improve the robustness
of the model for certain transformations, such as target rollover and rotation in BEV.
Inspired by the observation and subsequent conclusion in [33], asymmetric convolutions
of 1 x 3 and 3 x 1 are used to build the asymmetric convolutions, which strengthen the
skeleton of the square convolution kernel while weakening the corner. Moreover, the
receptive field of the combination composed of 1 x 3 and 3 x 1 asymmetric convolutions
are the same as 3 x 3 square convolutions.
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Figure 2. In contrast to square kernels, horizontal and vertical kernels demonstrate greater resilience
against flipping.

As shown in Figure 3, the ACBN consists of four downsampling asymmetric convolu-
tion blocks and four upsampling asymmetric convolution blocks. In addition, three skip
connections (the dotted line in Figure 3) are also employed to merge the low-level and
high-level features within the network, thereby enhancing the capability of network for
detailed learning.

Input Output
Features Features

! I

skip connection

DownSample TR EEEEEE ’ UpSample
AC Block AC Block
DownSample 5 UpSample
AC Block AC Block
DownSample , UpSample
AC Block AC Block
DownSample UpSample
ACBlock |~ ACBlock

Figure 3. Asymmetric Convolution Backbone Network.

The Downsample Asymmetric Convolution Block is shown in Figure 4, in which
a square convolution with the stride of 2 is operated on the features. After that, two
asymmetric convolution combinations are operated separately, and the summed results are
output. In these asymmetric convolution combinations, the kernels are 3 x 1, 1 x 3, and

1 x 3,3 x 1, respectively.
H —HEN
| \
Conv(3 x 1) Conv(1 x 3) T - Output

Features
Addition
m /
HEEE— B
|

Conv(1 x 3) Conv(3 x 1)

Input
Features

Conv(3 x 3)

Figure 4. Downsample Asymmetric Convolution Block.

The calculation of the Downsample Asymmetric Convolution Block, as demonstrated
in Equation (1):
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Fout = C3x1(C1x3(Cax3(Fin))) + C1x3(Cax1(Cax3(Fin))) 1)

where F;,, and F,;; represent input features and output features, respectively, C3x3, C1x3
and C341 represent 3 x 3,1 x 3 and 3 x 1 convolution, respectively.

Figure 5 illustrates the Upsample Asymmetric Convolution Block which makes use of
bilinear interpolation, and then low-level features are concatenated from skip connections.
Lastly, an asymmetric convolution combination consisting of 1 x 3 and 3 x 1 kernels
is performed.

Low-level
Features

Input Output
Features C ... . Features
Concatenation .

Bilinear Conv(1 x 3) Conv(3 x 1)

Figure 5. Upsample Asymmetric Convolution Block.

The calculation of the upsample asymmetric convolution block as shown in Equation (2):

Fout = C3><1(C1><3(A(B(Fin)rFlow))) (2)

where F,,, represents low-level features, A represents feature concatenation, and B repre-
sents the bilinear interpolation operation.

3.2. Contextual Feature Enhancement Module (CFEM)

One of the primary challenges of semantic segmentation is the lack of contextual
features in the whole network, so exploring the global contextual features of different
scales is crucial in learning the complex correlations among classes. Recently, Studies
regarding the semantic segmentation of 3D point clouds also pay attention to the extraction
of global contextual features [12,34] and achieved good results. Constructing high-rank
global context features directly is challenging due to the need for sufficient capacity to
capture extensive contextual variations [35]. To simplify high-rank feature extraction, the
Contextual Feature Enhancement Module is proposed. We utilize the tensor decomposition
theory [36] to construct the high-rank contextual feature by combining low-rank tensors.
This involves using two rank-1 kernels to generate the low-rank features, which are then
aggregated to produce the ultimate global context.

As shown in Figure 6, rank-1 kernels are first used to decompose high-rank contextual
features based on dimension, which generate low-rank encodings. Next, the active values
of the Sigmoid function are added as output. Finally, the current features are multiplied
with the input features to acquire the enhanced high-rank contextual features. The decom-
position and aggregation strategy is used here to avoid the difficulties of direct high-rank
feature extraction.

. Addition
Input e ] Output
Features Features
. Multiplication
Conv(3 x 1)

Conv(1 x 3)

Figure 6. Contextual Feature Enhancement Module.
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The calculation of the CFEM as shown in Equation (3):

Fout = Fiy, - (5ig(Csx1(Fin)) + Sig(Cix3(Fin))) 3)

where F;,, and F,;; represent the input feature and output feature, respectively. Sig rep-
resents the logistic Sigmoid function, while C34; and Cj3 represent the 3 x 1and 1 x 3
convolution, respectively.

3.3. Enhanced Data Augmentation (EDA)

Inspired by [37], the global scaling and global translation are employed in training
to provide more sample information and improve the model’s generalization ability. For
global scaling, this method increases the diversity of sample scales in the training data by
randomly magnifying and shrinking the global original point cloud information and label
information, thereby adding different scale information to the dataset. Moreover, global
translation enriches the dataset samples by randomly translating all points in each frame of
the point cloud, from the perspective of transforming the distance between the targets and
the sensor. Implementation details are shown in Figure 7.

(a) original scene (b) global scaling (c) global translation

Figure 7. Visualization of the original scene and enhanced data augmentation methods (shown
in BEV). (a) Original scene, (b) Scene augmented by global scaling, (c) Scene augmented by global
translation.

As shown in Figure 7b, the global scaling is implemented by extracting the scalar s to
scale the point p(x,y,z) € P in each direction from a uniform distribution U(1 —¢t,1+ f)
with t+ € {0.05,0.1,0.25}, so the randomly scaled point p* can be represented as
p*(s-x,s-y,s-z). Also, each label a is scaled so that a(x,yc,zc,w,1,h,0) € A can be
represented as a*(s - x¢,s - Ye, 5 - 2,5 - w,s-1,s-h,0) € A*.

As shown in Figure 7c, the global translation is implemented by translat-
ing each point p(x,y,z) € P, so each translated point p* can be represented as
p*(x+ Ax,y + Ay,z + Az). Also, each label a(xc,y., zc.,w,1,h,0) € A is converted to
the form a*(xc + Ax, yc + Ay, zc + Az, w,1,h,0) € A*, where Ax, Ay and Az are sampled
independently from the normal distribution N(0,02) and ¢ takes values in the range
c? € {0.1,0.2,0.4}.

Apart from the methods discussed above, Random Flip and Random Rotation in the
baseline model are still preserved in the training of ACPNet.

3.4. Loss Function

The loss in ACPNet follows the existing models [19,29], the weighted cross-entropy
loss and the Lovéasz-Softmax loss [38] are used to improve the accuracy of segmentation
and the value of Intersection-over-Union (IoU), i.e., the Jaccard index.

The formula of weighted cross-entropy loss is shown in Equation (4):

1
Vi

where v; is the frequency of each class, P(y;) and P(f;) correspond to the ground truth
probability and prediction probability of the model, respectively.

Luce(y,9) = — ZaiP(yi) log P(9;),a; = (4)
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The formula of Lovasz-Softmax loss as shown in Equation (5):
1
L = Tl Z J(e(c)) ®)
‘ ‘ ceC

where ] is the Lovész extension of the Jaccard index, C is the class number, e(c) is the vector
of errors for class ¢, e(c) € [0,1]7, and p is the number of pixels considered.
Therefore, the total loss of ACPNet is given by Equation (6):

L = Lepce + Lls (6)

4. Experiments

In order to evaluate the performance of ACPNet, experiments are conducted in this
part. During training, the Adam optimizer is used to fit the parameters with a learning rate
of 0.001 and a batch size of 2, and the maximum number of training epochs is 30. Moreover,
the training process is conducted on a server with Intel Xeon Gold 5118 @ 2.30 GHz CPU
and NVIDIA RTX 3090 GPU.

4.1. Dataset and Metric

SemanticKITTI [2] is a LIDAR point clouds segmentation dataset for large-scale out-
door scenes, which is made based on the KITTI Vision Odometry Benchmark [39]. Se-
manticKITTI provides 22 sequences of dense point-level annotations, and 19 main classes
are used for evaluation. Among all 22 sequences, sequences 00 to 10 are used as the training
set (of which sequence 08 is the validation set), and sequences 11 to 21 are used as the
test set.

SemanticPOSS [3] is a challenging benchmark created by Peking University, compris-
ing 2988 intricate LIDAR scenes with a large number of sparse dynamic instances, such as
people and riders. It is smaller and sparser compared to other benchmarks, making it more
challenging. The dataset is divided into six sequences, with sequence 2 designated as the
test set and the remaining sequences used for training.

nuScenes [4] is a large-scale autonomous driving dataset created by Motional. It
consists of 1000 scenes, each 20 s in duration and captured using a 32-beam LiDAR sensor. In
total, the dataset comprises 40,000 frames. They also formally divided the data into training
and validation sets. Following the consolidation of similar classes and removal of infrequent
ones, a total of 16 classes remain for the purpose of LIDAR semantic segmentation.

The mean Intersection-over-Union (mlIoU) [40] over all classes is used as the primary
evaluation metric. The formula of mloU is as shown in Equation (7):

mloU = — i Th
T n = TP. + FP. + FN,

)

where TP, FP. and FN, represent the predictions of True Positive, False Positive and False
Negative of each class c, respectively, and 7 is the number of classes.

FPS is also used as an evaluation metric, and the FPS is measured on a single NVIDIA
RTX 2080Ti GPU. Note that the speed of the LIDAR semantic segmentation model is
considered real-time when it reaches 10 FPS on NVIDIA RTX 2080Ti. That is because
the computing power of this GPU is comparable to that of current mainstream on-board
computing platforms, and the acquisition frequency of the Velodyne-HDLE64 LiDAR used
in the SemanticKITTI dataset is 10 Hz.

4.2. Results on SemanticKITTI, SemanticPOSS and nuScenes

In order to verify the effectiveness of ACPNet, the performance is evaluated on
SemanticKITTI, SemanticPOSS and nuScenes datasets. In this section, ACPNet is compared
with several other current mainstream methods.
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As shown in Table 1, these are the results of the SemanticKITTI test set, compared to
the baseline model PolarNet, there is a significant performance improvement in ACPNet.
In particular, the IoU is improved in 17 out of 19 classes, with improving by more than
5% in traffic participants such as trucks, buses, motorcycles, motorcyclists and bicyclists.
Furthermore, the mloU over all classes is increased by 5.1%, reaching 59.4%. Besides, the
comparison of ACPNet and other methods is presented in Table 1, there are advantages in
seven classes, and the IoU of the car is outstanding. Regarding speed, the running speed of
ACPNet exceeds 14 FPS, meeting the demand for real-time autonomous driving.

Table 1. Evaluation Results of ACPNet and existing methods on the SemanticKITTI Test Set.

Per Class IoU (%)

-}
3 g -
o z

- - = o & o0
g 5 5 5 w 5 O P g 3 X
5 T E  x E 5 £ L £ §E LI £ g £ x £ & Z
2 x T 3 % g t ¥ 3 §F % %8 £ % g » 5 E 2 5 @
Methods g U &® = £E @& & @& = g & ©» O & & > E R & B &

82.8

TangentConv [16] 359 868 13 127 11.6 102 171 202 05 829 152 617 9.0

RangeNet53++[25] 522 914 257 344 257 230 383 388 48 91.8 650 752 278 874 586 805 551 646 479 559 12
LatticeNet [41] 529 929 16.6 222 266 214 356 430 460 900 594 741 220 882 588 817 636 631 519 484 7
RandLA-Net [9] 539 942 260 258 401 389 492 482 72 907 603 737 204 869 563 814 613 668 492 477 22
PolarNet [1] 543 938 403 30.1 229 285 432 402 56 908 61.7 744 217 900 613 840 655 678 518 575 16
MINet [30] 552 90.1 418 340 299 236 514 524 250 905 59.0 726 258 856 523 811 581 661 49.0 599 24
3D-MiniNet [27] 558 90.5 423 421 285 294 478 441 145 91.6 642 745 254 894 60.8 828 608 667 48.0 56.6 28

SqueezeSegV3[23] 559 925 387 365 29.6 33.0 456 462 201 917 634 748 264 89.0 594 820 587 654 496 589 6
CNN-LSTM [42] 569 926 457 49.6 48.6 302 538 746 92 907 233 757 176 900 513 871 608 754 639 415 11
ACPNet (ours) 594 952 393 417 418 377 552 481 337 913 66.0 749 142 905 615 844 676 682 575 599 14

As shown in Table 2, these are the results of the SemanticPOSS test set, ACPNet
outperforms the compared methods significantly in terms of mloU. Additionally, ACPNet
has achieved the highest results in seven classes, including rider, plants, traffic sign, etc.

As shown in Table 3, these are the results on the NuScenes validation set, ACPNet has
achieved a mloU metric of 72.8%, which is 2.9% higher than the baseline model PolarNet.
Besides, the IoU of ACPNet is improved in 15 out of 16 classes, and improvements are
obtained in traffic participants classes such as car, bus, bicycle and motorcycle.

Table 2. Evaluation Results of ACPNet and existing methods on the SemanticPOSS test set.

Per Class IoU (%)
- 5 cow B
< X 8
T & 5 x % E % & @ = E E y ¢
Methods = ~ [ O = = &= ~ & /@ o = 2 (©]
SqueezeSeg [21] 189 142 10 132 104 280 51 57 23 436 02 156 31.0 750
SqueezeSegV2[22] 30.0 48.0 94 485 113 501 6.7 62 148 604 52 221 361 713

RangeNet53++ [25] 303 557 45 344 137 575 233 649 61 222 283 729
MINet [30] 427 618 120 633 222 681 163 293 285 746 259 317 445 764
FIDNet-Point [31] 458 716 227 717 229 677 218 275 158 727 313 404 503 795
CENet+KNN [32] 503 755 220 776 253 722 182 315 481 763 277 477 514 803
PolarNet [1] 524 723 311 727 298 740 270 334 488 791 414 396 537 780
ACPNet (ours) 540 728 312 750 291 744 289 353 456 80.0 515 460 556 76.9

8}
N
(>
o)
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Table 3. Evaluation Results of ACPNet and existing methods on the nuScenes validation set.

Per Class IoU (%)

g g
U
—_ = - =1 ) v " o =
< g g = = B = < 2
SHE R - T B T g § %
5 £ 3 % 5§ & &€ & % ¢ ¥ £ § E %
S £ % g 5 E 3 YT S T 3 £ £ 3 E & 2
Methods g n @& @ O O = & B E B A O ®» = = >
RangeNet53++ [25] 655 66.0 213 772 809 302 668 69.6 521 542 723 941 666 635 701 831 798
PolarNet [1] 699 69.7 202 872 847 346 765 711 543 585 787 955 69.2 731 733 862 852
Salsanext [29] 722 748 341 859 884 422 724 722 631 613 765 960 708 712 715 867 844
ACPNet (ours) 728 732 225 877 909 470 771 705 581 642 823 962 734 745 737 879 858

The experimental results show that our method effectively performs semantic segmen-
tation in LiDAR point clouds and outperforms other methods. Part of the visualizations of
prediction results on the SemanticKITTI dataset are shown in Figure 8.

(a) raw data (b) ground truth (c) PolarNet (d) ACPNet(ours)

Figure 8. Visualization on SemanticKITTI validation set. Where (a,b) are LIDAR raw data and ground
truth of semantic segmentation, (c,d) are predictions of this frame for PolarNet and our method. The
areas circled by the red circles represent the different properties of the segmentation results.

4.3. Ablation Studies

To investigate the individual contribution of each module over the baseline model
PolarNet [1], ablation studies are conducted on the validation set within the SemanticKITTI
dataset (seq 08). The studied modules include the Contextual Feature Enhancement Module
(CFEM), the Asymmetric Convolution Backbone Network (ACBN), and the Enhanced
Data Augmentation (EDA). GS and GT, respectively, stand for global scaling and global
translation. The results of the ablation experiments are presented in Table 4.

Table 4. Ablation studies for network components on SemanticKITTI Validation Set (seq 08).

Baseline CFAM ACBN EDA_GS EDA_GT mloU (%)

56.4
58.0

59.1

v 59.4
v 59.3

v v 59.6

AN NN N
AN N NI NN
NI NN

By adding the CFEM, the mloU of the model is improved by 1.6%. This result points
out that the module is able to mine and extract contextual features, avoiding the difficulty
of directly extracting high-ranking features.

By adding the ACBN, the mIoU of the model is improved by 1.1%. The skeleton of the
square convolution kernel is strengthened due to the asymmetric convolutions.
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By adding the EDA, the richness of training samples is increased by global scaling and
global translation. The mloU is improved by another 0.5% on the SemanticKITTI validation
set, reaching 59.6%. The refined ablation experiment results show that the effect of global
scaling is basically consistent with that of global translation, but the effect of global scaling
is slightly stronger than that of global translation.

From the results of ablation experiments, it can be concluded that the methods pro-
posed in this paper all lead to gains in performance.

4.4. Influence of Grid Density

In this section, the influence of grid density on the model is analyzed. When parti-
tioning the original point clouds, the segmentation accuracy and speed are affected by
grid density. To verify whether higher speed can be achieved by sacrificing some accu-
racy, ACPNet-mini is designed by varying the grid density. The grid sizes of ACPNet
and ACPNet-mini are 480 x 360 x 32 and 320 x 240 x 32, respectively, where the three
dimensions represent radius, angle and height.

According to Table 5, ACPNet-mini sacrifices 1.9% of the mloU by reducing the
computation, resulting in a 33.3% improvement in running speed. Besides, it can be found
that ACPNet achieves a real-time effect without introducing additional computation while
having a large improvement in mloU compared to the baseline model.

Table 5. Experiments with different grid sizes on SemanticKITTI Validation Set (seq 08).

Grid Size mloU (%) Params (M) FPS (Hz)
Baseline 480 x 360 x 32 56.4 13.6 16
ACPNet (ours) 480 x 360 x 32 59.6 10.3 14
ACPNet-mini (ours) 320 x 240 x 32 57.7 10.3 19

5. Conclusions

An efficient real-time LiDAR point clouds semantic segmentation model ACPNet
is proposed in this paper. Asymmetric Convolution Backbone Network and Contextual
Feature Enhancement Module are proposed to improve the feature extraction ability of
the model, and Enhanced Data Augmentation methods are used to enrich the diversity of
training samples. Compared with the baseline network PolarNet, the mIoU of ACPNet
on the SemanticKITTI, SemanticPOSS and nuScenes datasets are improved by 5.1%, 1.6%
and 2.9%, respectively. Meanwhile, the speed of ACPNet is 14 FPS, which basically meets
the real-time requirements in autonomous driving scenarios. Besides, ACPNet-mini is
designed by reducing the grid density in the point clouds encoding stage, significantly
increasing the speed at the expense of smaller segmentation accuracy. In summary, ACPNet
essentially satisfies the demands of real-time semantic segmentation of LIDAR point clouds
for autonomous driving.

6. Discussion

In the future, we will continue to investigate more general and effective methods to
enhance performance. Additionally, we plan to expand our approach to achieve end-to-end
3D panoptic segmentation on LiDAR point clouds for autonomous driving.
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