
Citation: Liu, C.; Wan, J.; Li, L.; Yao,

B. Throughput Optimization for

Blockchain System with Dynamic

Sharding. Electronics 2023, 12, 4915.

https://doi.org/10.3390/

electronics12244915

Academic Editor: Mehdi Sookhak

Received: 31 October 2023

Revised: 4 December 2023

Accepted: 5 December 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Throughput Optimization for Blockchain System with
Dynamic Sharding †

Chuyi Liu 1,2,3,‡ , Jianxiong Wan 1,2,3,*,‡, Leixiao Li 1,2,3 and Bingbing Yao 1,2

1 College of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China;
lcy@imut.edu.cn (C.L.); lileixiao@imut.edu.cn (L.L.); 20201800637@imut.edu.cn (B.Y.)

2 Inner Mongolia Autonomous Region Engineering & Technology Research Center of Big Data Based Software
Service, Hohhot 010080, China

3 Research Center of Large-Scale Energy Storage Technologies, Hohhot 010080, China
* Correspondence: jxwan@imut.edu.cn
† This paper is an extended version of our paper published in IEEE SMC 2023.
‡ These authors contributed equally to this work.

Abstract: Sharding technology, which divides a network into multiple disjoint groups so that trans-
actions can be processed in parallel, is applied to blockchain systems as a promising solution to
improve Transactions Per Second (TPS). This paper considers the Optimal Blockchain Sharding
(OBCS) problem as a Markov Decision Process (MDP) where the decision variables are the number
of shards, block size and block interval. Previous works solved the OBCS problem via Deep Rein-
forcement Learning (DRL)-based methods, where the action space must be discretized to increase
processability. However, the discretization degrades the quality of the solution since the optimal
solution usually lies between discrete values. In this paper, we treat the block size and block interval
as continuous decision variables and provide dynamic sharding strategies based on them. The
Branching Dueling Q-Network Blockchain Sharding (BDQBS) algorithm is designed for discrete
action spaces. Compared with traditional DRL algorithms, the BDQBS overcomes the drawbacks
of high action space dimensions and difficulty in training neural networks. And it improves the
performance of the blockchain system by 1.25 times. We also propose a sharding control algorithm
based on the Parameterized Deep Q-Networks (P-DQN) algorithm, i.e., the Parameterized Deep
Q-Networks Blockchain Sharding (P-DQNBS) algorithm, to efficiently handle the discrete–continuous
hybrid action space without the scalability issues. Also, the method can effectively improve the TPS
by up to 28%.

Keywords: blockchain; sharding; deep reinforcement learning; hybrid action space

1. Introduction

In recent years, blockchain technology has emerged as a disruptive and transforma-
tional technology with high trust and security potential, and it has been widely used in
various fields, such as identity management [1], supply chains [2], game systems [3], food
tracing [4], value trading [5], etc. However, it is still challenging to apply blockchain
systems in large-scale systems because of their slow data-processing speed. For exam-
ple, Ethereum [6] can encompass thousands of blockchain nodes, but it can only process
14 Transactions Per Second (TPS); Hyperledger [7] achieves throughput of more than
3500 TPS. However, in some industries such as finance, the TPS of 3500 is still too low to
process a large number of transactions.

At present, the most effective way to improve blockchain throughput is to apply
sharding technology to a blockchain and redesign its architecture. Sharding splits the
blockchain network into multiple disjointed networks called shards. In a so-called shard
network, each node only communicates with a limited number of nodes within the same
shard. This technique substantially reduces the storage, computation and communication

Electronics 2023, 12, 4915. https://doi.org/10.3390/electronics12244915 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12244915
https://doi.org/10.3390/electronics12244915
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6812-290X
https://doi.org/10.3390/electronics12244915
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12244915?type=check_update&version=2

Electronics 2023, 12, 4915 2 of 20

cost [8]. At present, extensive research is being conducted, both in academia and the
industry, to optimize sharding policies to improve blockchain TPS. Sharding policies fall
under either of the following two categories: (i) static and (ii) dynamic. Static methods
refer to unchanged sharding policies [9–12]. Dynamic sharding technology can provide
dynamic sharding strategies for dynamic blockchain environments, improving blockchain
throughput. Yun et al. [13] proposed a Deep Q-Networks enabled Shard-based Blockchain
(DQNBS) scheme that dynamically selects the optimal configuration (i.e., the number of
shards, block size and block intervals, etc.) to maximize TPS. Zhang et al. [14] proposed
SkyChain, which consists of an adaptive ledger protocol to facilitate merging or spliting the
block, and an optimization framework which can adjust the number of shards, the block
size and block interval for a long-term balance between security and TPS. However, their
works may yield sub-optimal solutions since the action space is discrete and the number
of available actions is strictly limited for tractability. This is because the Deep Q-Network
(DQN) algorithm did not solve the problem of action space explosion, resulting in difficulty
in training neural networks.

In the blockchain computing process, tasks need to be sharded in real time according
to the resources and system conditions, i.e., the state at that time, so as to improve the
execution efficiency of the system. This is consistent with the logic of MDP in dealing with
the dynamic planning problem. Therefore, we endeavor to find higher-quality sharding
polices by reformulating the Optimal Blockchain Sharding (OBCS) problem into a Markov
Decision Process (MDP) with discrete–continuous hybrid action space, where the number
of shards is discrete-valued, while the block size and block interval are continuous. We use
two different methods to solve this problem. In the first method, we discretize continuous
variables and then process them according to the discretization method. The Branching
Dueling Q-Network (BDQ) algorithm is used in the blockchain fragmentation problem,
and we propose the Branching Dueling Q-Network Blockchain Sharding (BDQBS) algo-
rithm. The BDQBS solves the problem of action space explosion and provides better action
strategies for blockchain systems, thereby improving blockchain performance. However,
the BDQBS discretizes continuous action to obtain discrete action space, which ignores
precise action. So, we used another method, applying the Parameterized Deep Q-Networks
(P-DQN) algorithm to solve the problem in the discrete–continuous hybrid action space and
propose the Parameterized Deep Q-Networks Blockchain Sharding (P-DQNBS) algorithm.
The P-DQNBS provides more precise action strategies for blockchain systems, further
improving the performance of blockchain.

The main contributions of this project are summarized as follows:

1. Algorithm design: The BDQBS and P-DQNBS are proposed for blockchain sharding
problems. Through the unique neural network structure of BDQ, BDQBS reduces the
output dimension of the neural network, solving the problem of neural networks being
difficult to train as a result of action space explosion. At the same time, it also shortens
the time for parameter tuning and provides a fast sharding policy for blockchain.
Compared to the BDQBS, the P-DQNBS provides a more accurate sharding policy for
blockchain, which is more suitable for the real dynamic blockchain environment.

2. Extensive simulation-based evaluation: We use Python to build a blockchain shard-
ing simulation environment based on existing blockchain sharding systems. We
implemented BDQBS and P-DQNBS for different action spaces in the optimization
of blockchain throughput based on sharding technology. By comparing throughput,
average sub-action and security, the results show that the BDQBS and P-DQNBS are
significantly superior to the baseline algorithm. P-DQN and BDQ have increased
throughput by 1.28 and 1.25 times.

The rest of the paper is organized as follows. Section 2 reviews the related literature.
In Section 3, the system model is presented. Our proposed sharding algorithm is presented
in Section 4, followed by simulation results in Section 5. Finally, we conclude this paper in
Section 6.

Electronics 2023, 12, 4915 3 of 20

2. Related Work

This section reviews related studies on sharding technology, which are grouped into
two categories: static sharding and dynamic sharding. Traditional blockchain networks
usually use static sharding to process transactions, i.e., the entire network is divided
into multiple fixed-size blocks, each of which processes a certain number of transactions.
The static sharding process is relatively simple and easy to implement. However, static
sharding is prone to network congestion and transaction latency problems. Dynamic
sharding dynamically adjusts the size and number of shards based on the network load and
the node availability, ensuring that the network is always able to handle highly concurrent
transactions. Dynamic sharding is complicated to implement due to the complexity of
parameter changes.

2.1. Static Sharding Technology

Typical static sharding techniques are Elastico [9] and OmniLedger [10]. Lu et al. [9]
proposed Elastico, the first sharding technology for public chains, which combines the
Proof of Work (PoW) [15] protocol with the Practical Byzantine Fault Toll (PBFT) [16,17]
protocol. Nodes establish identification through PoW first, and then are randomly assigned
to various committees. A committee can complete the PBFT protocol in each step as the
number of nodes in each committee is small enough. Thus, the nodes in each committee
can process transactions in parallel, which almost achieves linear scaling of throughput.
However, Elastico cannot handle cross-sharding transactions.

The overall architecture of OmniLedger [10] is composed of one identity chain and
multiple subchains. OmniLedger uses the RandHound [18] protocol to divide all nodes
into different groups and randomly assign these groups to different sharding subchains.
The consensus within each shard adopts the PBFT protocol. By removing the full sequence
requirements of the blocks, OmniLedger organizes the blocks into a Directed Acyclic
Graph structure, which increases the system throughput and reduces the transaction
confirmation delay. In addition, OmniLedger uses atomic submission protocols to handle
cross-sharding transactions. And by using ledger-editing technology, it sets checkpoints
and prunes historical data before checkpoints to reduce the storage pressure on nodes.
Using OminiLedger, the throughput of the blockchain increases linearly with the number
of shards.

Based on Elastico and OmniLedger, researchers have made improvements to blockchain
system architectures, such as Zilliqa [11] and Rapid Chain [12]. The Zilliqa team conducted
architecture and performance optimization based on Elastico. In terms of architecture, they
proposed a dual-chain architecture, with one transaction chain storing transaction data
and one directory service chain storing miner metadata information. In terms of perfor-
mance optimization, Zilliqa adopted CoSi multi-signature technology in the consensus
phase. By using digital signatures instead of MAC in the PBFT protocl, the PBFT can be
applied to hundreds of nodes, greatly improving its scalability. On the basis of OmniLedger,
RapidChain [12] added information distribution technology based on erasure codes to
accelerate the propagation speed of blocks, achieving full sharding technology covering
communication computation and storage. In order to reduce the state cost, RapidChain
adopts the Cuckoo protocol, which only needs to replace some nodes during each sharding
switch. The RapidChain system mainly consists of three important phases, namely the
bootstrapping phase, consensus phase and reconfiguration phase. The bootstrapping phase
will only run once at the beginning of the RapidChain system, creating an initial random
source and randomly selecting a special committee called the reference committee, whose
members randomly allocate nodes to form a sharding committee.

2.2. Dynamic Sharding Technology

Although the static methods are easy to design and implement, they cannot adapt
to the dynamic blockchain environment, such as a variation in the number nodes in the
system and intermittent attacks from malicious nodes, etc. Dynamic sharding technology

Electronics 2023, 12, 4915 4 of 20

solves the problem that the sharding policy cannot be adjusted according to the situation.
To address this issue, a popular approach is to formulate the OBCS problem as a Markov
Decision Process (MDP) and integrate DRL into the sharding controller.

Yun et al. [13] proposed a scalable blockchain system based on fragmentation, which
optimizes throughput while maintaining a high security level. They combined sharding
technology with DRL, abstracted the blockchain sharding selection process into the MDP
and proposed the DQNBS method. Sharding technology continuously delegates mining
tasks to other nodes. By adjusting the number of shards, the security level can be changed
proactively. It uses DRL to optimize the performance of the blockchain to meet large-scale
and dynamic Internet of Things operations. In particular, based on the DRL framework,
the concept of trust is integrated into the consensus phase. Thus, we can estimate the
malicious probability of the network by monitoring the consensus result of each epoch.
Based on network trust, the blockchain calculates the number of secure shards and adopts
adaptive control to maintain optimal throughput conditions.

Zhang et al. [14] proposed a sky chain which combines blockchain with DRL. This is a
new type of blockchain framework based on dynamic sharding, which achieves a balance
between performance and security without affecting scalability in dynamic environments.
Firstly, the sky chain adopts an adaptive ledger protocol to ensure that the ledger based on
dynamic fragmentation policy can be effectively consolidated or split. Then, it proposes a
fragmentation method based on DRL in order to optimize the fragmentation policy under
the dynamic environment of a high-dimensional system state. The authors constructed
a framework to evaluate blockchain sharding systems in terms of performance and secu-
rity, achieving a long-term balance between the two by adjusting the sharding interval,
number of shards and the block size. In addition, DRL can learn the characteristics of the
system from previous experience and obtain long-term returns by adopting appropriate
fragmentation strategies according to the current network state.

The above dynamic sharding technologies based on DRL generally adopts the basic
DRL algorithm DQN, which solves the problem of state space explosion. However, when
the action dimension increases and leads to an explosion in the action space, using DQN
will result in the inability of neural network training.

3. System Overview
3.1. System Model

The blockchain sharding system containing N nodes is shown in Figure 1. The
blockchain sharding system divides nodes into different shards, and nodes within the
shards process transactions in parallel. Firstly, each node in the blockchain needs to solve a
workload problem, PoW, to obtain its own identity (ID). The calculation process involves
putting the “seed” of the PoW (i.e., EpochRand), the IP address, public key (PK) and the
random number Nonce through the SHA-256 hash algorithm to obtain ID. The ID needs
to be smaller than the target difficulty value d in the blockchain; i.e., the ID is a 256-bit
value that starts with a certain number of 0 bits. Since the SHA-256 hash algorithm is
irreversible, the only way to compute the hash value is that the node needs to keep trying
to input different values of Nonce until it finds a hash value that meets the conditions.
This process consumes a lot of computational resources and time in order to ensure the
security of the algorithm. Then, a certain number of nodes are selected form the directory
committee (DC) based on the speed of resolving the PoW. Once the nodes in the DC are
identified, the blockchain is sharded and the nodes in the blockchain are divided into K
shards based on the node’s ID. The transactions are processed in parallel, and the nodes
in the shards pack the transactions into blocks and execute the Practical Byzantine Fault
Tolerance (PBFT) consensus algorithm. PBFT is used to solve the Byzantine Fault Tolerance
problem in blockchain networks, i.e., how to guarantee the correctness of the consensus
result in the presence of some malicious nodes in the network. The nodes in the shards
verify the block and send it to the DC, which packages it into a final block, performs PBFT

Electronics 2023, 12, 4915 5 of 20

on it, uploads it to the blockchain after verification and returns the packaged information
to all the nodes in the shards for updating.

Running PoW at each node

Non-DC nodes

Shard 1

Shard 2

Shard 3

Shard Kt

PBFT

PBFT

PBFT

PBFT

Block 1

Block 2

Block 3

Block Kt

DC
nodes

Final
Block

PBFT
DC

Root
Chain

Figure 1. Blockchain sharding process in [19].

At epoch t, the computing capability of node i is denoted as Ci,t. Sharding begins from
each node using its computing capability Ci,t to run a computational-intensive task knows
as PoW to obtain the identity in the blockchain. All nodes are then grouped as DC nodes
and non-DC nodes:

• DC nodes. DC nodes are those who solve the PoW first. They receive local blocks
from each shard, and a randomly chosen primary DC node generates the final block
by merging all local blocks. The final block should be validated by all DC nodes via
PBFT consensus protocol before being broadcast throughout the network and linked
to the root chain.

• Non-DC nodes. Non-DC nodes in the blockchain are divided into Kt shards. Here we
assume that a transaction can only be assigned to one shard, which is implemented
in account-based sharding [20]. All shards process transactions in parallel and create
local blocks of size Bt at interval Tt. Then, nodes in a shard broadcast messages
through the communication channel with transmission rate Ri,j,t to perform a local
PBFT consensus protocol to validate that the information in the local block is correct.

3.2. Blockchain Sharding Mechanism

The blockchain sharding clustering mechanism is shown in Figure 2. Firstly, each node
selects its own PK and IP address locally for future authentication. Nodes in blockchain
networks can obtain their own IDs by solving a simple PoW. The identity ID of q node can
be represented as

ID = H(EpochRand||IP||PK||Nonce) < d, (1)

where EpochRand is the “seed” of the PoW, which needs to be generated at the end of the
previous epoch to ensure that the PoW is not pre-caculated. d is the difficulty level of the
PoW algorithm. It is a predefined parameter in the network which determines how much
computing power is needed to solve the PoW. H is a hash operation.

A sharded blockchain consists of a DC and K shards. To share the sharding information,
we need to select DC nodes first. The nodes in the DC are composed of the top C nodes that
solve the PoW the fastest. To ensure that the number of nodes in the DC is similar to the
other K shards, C=bN/[K + 1]c. After the nodes in the DC are determined, the information
is broadcast to other nodes. The non-DC nodes will check the information of the DC
nodes. Then, the nodes are assigned into shards, according to the last L bit of the node
ID. For example, if L = 3, the shard number is equal to the last three digits of ID, namely,
2L = 23 = 8. All nodes need to send their own information, namely PK, EpochRand,
Nonce and ID, to the DC. The nodes in the DC collect all the information and broadcast it
throughout the entire network, enabling the entire network to receive fragment information.

Electronics 2023, 12, 4915 6 of 20

After each node knows its shard number, nodes within the same shard establish point-to-
point connections.

Every nodes solves
the PoW based
identity check

First C winners

The other nodes

DC Nodes

Non-DC Nodes

Broadcast
to others

Report ID to
check the results

of the DC
Send committee list

Figure 2. Sharding clustering mechanism in [13].

After the blockchain shard is complete, the division of transactions is determined
based on the account UTXO, which means that the transaction is allocated to the shard
that matches the last L-bit hash value of the sender’s account. This is to prevent malicious
users from generating transactions that exceed their balance and distributing them to
different shards.

3.3. Markov Decision Process Formulation for Optimal Blockchain Sharding Problem

We model the blockchain sharding problem as an MDP. In our system, the state space,
action space and reward function are defined as follows:

• State Space. The system state at epoch t can be expressed by

st = [Rt, Ct, Ht, Pt], (2)

where Rt = {Ri,j,t} is the matrix of the data transmission rate, i, j ∈ N; Ct = {Ci,t} is
the vector of the node computing capability; Pt is the probability of malicious nodes
in the blockchain at time t, which is calculated based on consensus history [13]; and
Ht = {Hi,t} is the vector of the consensus history of the previous epoch slot, which is
a binary variable where Hi,t = 0 means that node i accepted the block to be linked to
the blockchain at epoch t− 1 and vice versa.

• Action Space. The throughput is closely related to the number of shards Kt, block size
Bt (in bytes) and block interval Tt. Thus, we define the action at epoch t as

at = [Kt, Bt, Tt], (3)

where Kt is discrete and is selected from a finite enumerable set {1, 2, . . . , kmax};
Tt ∈ [Tmin, Tmax] is continuous. Bt is also discrete, but since the action space of Bt
is quite large, e.g., several Megabytes, we assume that Bt is approximately continuous.

• Reward Function. We use the transaction throughput as our reward function. The re-
ward rt in epoch t can be defined as

rt =

Kt × b(Bt − BH)/bc

Tt
, constraints C1–C3 are satisfied,

0 , otherwise,
(4)

C1 : kmax < (N[1− 3Pt]− 1)/[3NPt + 1] (5)

C2 : kmax < (2N/[3Pt + 1])− 1 (6)

Electronics 2023, 12, 4915 7 of 20

C3 : Tlatency = T + Tk
c ≤ uT, K = 1, 2, . . . , k (7)

where the numerator is the number of transactions processed by Kt shards in parallel
and the denominator Tt represents the block interval. BH is the size of the block head
and b is the average size of transactions. In (4), constraints C1 and C2 are security
constraints to ensure that after blockchain nodes are sharded, malicious nodes within
the shard cannot threaten the security of the entire shard, and to prevent blocks
generated by malicious nodes from being uploaded to the blockchain. Constraint C3
is a delay constraint. In order to meet the final attributes of the blockchain, the delay
should be completed within several consecutive block intervals u. Tc is the time
consumed for consensus.

3.4. The Optimal Blockchain Sharding Problem

The optimal blockchain sharding problem can now be written as the following opti-
mization problem:

max
at=[Kt ,Bt ,Tt]

E
T

∑
t=0

γtrt, (8)

where γ ∈ [0, 1] is the discount rate.
Note that Pt can be determined based on Ht, and Tc depends upon Bt and Kt. The de-

tails for calculating these variables can be found in [13], which we omit here due to space
limitations. Problem (8) seeks to maximize the accumulated throughput. Given a policy π,
which is a mapping between states and actions, the Q function is defined as the expectation
of accumulated reward from state st after executing action at and following policy π, i.e.,

Qπ(st, at) = Eπ

[
∞

∑
τ=0

γτrt+τ |st, at

]
. (9)

The optimal action can be selected once the optimal Q function is found. The optimal
Q function satisfies the optimal Bellman equation defined as

Q∗π(st, at) = Eπ [rt + γ max
at+1

Q∗(st+1, at+1)]. (10)

The traditional Q learning algorithm learns the optimal Q function by

Qπ(st, at) = Qπ(st, at)+

α(r + γ max
at+1

Qπ(st+1, at+1)−Qπ(st, at)),
(11)

where α ≥ 0 is the learning rate, and the Q function is stored in a lookup table. An issue
with Q learning is that it can only solve MDPs with discrete action space. However, our
problem has a discrete–continuous hybrid action space. As such, it is impossible to directly
apply the Q learning algorithm to estimate the optimal Q function. In the next section, we
leverage the BDQ and P-DQN [21] to solve problem (8).

4. The Blockchain Sharding Algorithm

In order to improve the performance of the blockchain sharding system, we proposes
two blockchain sharding control algorithms based on DRL for different action spaces,
namely, blockchain sharding algorithms based on BDQ and P-DQN. The blockchain shard-
ing algorithm based on BDQ not only solves the problem of discrete action space explosion,
but also solves the problem of neural networks being difficult to train as a result of action
space explosion. The BDQ proposes a new neural network structure with a shared de-
cision module, which is connected to the network branches and state value branches of
subactions in the action space. Moreover, it provides a certain degree of independence for
each individual action dimension and has better scalability. The blockchain sharding algo-

Electronics 2023, 12, 4915 8 of 20

rithm based on P-DQN solves the problem of discrete–continuous hybrid action space in
blockchain sharding decision making. P-DQN uses two different neural networks, namely
the policy network and the value network, to predict action. The policy network outputs
the continuous action parameters corresponding to a given discrete action, and obtains the
continuous action value function from the continuous action parameters and state input
value network. The optimal action is selected based on the value function.

4.1. The BDQBS Algorithm

When using DRL to deal with blockchain sharding problems, most studies use DQN to
provide the blockchain sharding policy. DQN solves the problem of state space explosion,
but when dealing with the problem of action space explosion caused by the combination of
the number of actions and the number of action dimensions, DQN has the drawbacks of a
complex neural network output and difficulty in training. BDQ is an extension of DQN that
proposes a new neural network structure to approximate multidimensional action space
functions, achieving a linear increase in network outputs with degrees of freedom. It enables
the better training of neural networks, resulting in better action strategies. Therefore, we
use BDQ to find the optimal solution to the blockchain sharding problem in the discrete
action space.

The neural network structure of BDQ is shown in Figure 3. The state st = (Rt, Ct, Ht, Pt,)
is input into the neural network. After the shared module, it outputs the dominant functions
of K, B, T, A(st, Kt), A(st, Bt), A(st, Tt) and the state value function V(st). The dominant
function is added to the state value function to obtain the Q value, which is used to select
the optimal action.

Figure 3. The neural network structure of BDQ.

4.1.1. Algorithm Design

Algorithm 1 shows the details of our BDQ algorithm. In each epoch t, the algorithm
first initializes the experience replay pool D to store the experience samples generated by
interactions between the agent and the blockchain environment. The experience samples
are used to train the neural network. Two neural networks with the same structure, online
network and target network, as well as weight θ and θ′, are initialized. The status of
the blockchain environment st = (Rt, Ct, Ht, Pt) is obtained at the current time t (line 6).
With the state st, the network outputs the advantage function (AK, AB, AT) and state value
function V(st) of the subaction and adds them together to obtain the Q value of the action.
Select at = (Kt, Bt, Tt) of blockchain sharding based on the ε-greedy policy [22] (line 7).
Input at into the blockchain (line 8). The blockchain nodes are divided into K shards based
on Kt. According to Bt and Tt, the node processes transactions in parallel within time t and
generates a block of size B. The DC collects the blocks generated by sharding, merges them
into final blocks, and uploads them into the blockchain. The blockchain system proceeds to
the next state st+1 = (Rt+1, Ct+1, Ht+1, Pt+1) and obtains reward rt, i.e., the throughput of
processing transactions (line 9–10). The samples generated by the interaction between the
agent and the blockchain system environment are stored in the experience pool to update
the neural network (line 11). At last, the network is trained by the experience extracted
from experience pool D and the parameters are updated (line 12).

Electronics 2023, 12, 4915 9 of 20

Algorithm 1: The BDQBS Algorithm process

Input: the state of the blockchain system at time t : st = (Rt, Ct, Ht, Pt)
Output: the action of blockchain system executed at time t : at = (Kt, Bt, Tt)

1 Initialize the experience playback pool D with size Z;
2 Initialize the online network and target network with the same structure;
3 Initialize the weights of both networks are θ and θ′;
4 t=0;
5 while t ≤ N do
6 st ← current environmental status;
7 using the ε-greedy policy to select action

at =

{
argmaxQ(st, ad), 1− ε;

random generation action, ε;

8 execute action at;
9 st+1 ← the next state of the current environment;

10 rt ← current reward;
11 store (st, at, st+1, rt) in D to train the neural networks;
12 randomly extract the experience(st, at, st+1, rt) of minibatch from D;
13 train the neural network;
14 update the parameters of the neural network by (12);
15 Waiting for t to move forward to t + 1;
16 end

4.1.2. Approximation Architecture

According to Figure 3, the specific steps for updating the neural network parameters
in line 8 of Algorithm 1 are as follows. The output of the BDQ neural network consists
of the advantage function and state values of multiple action branches. The Q value of
the action is obtained by adding the advantage function to the state value. According to
(12), the loss values are calculated based on each Q value of multi-actions and the target
function, respectively. They are added together to obtain the final loss value.The gradient
descent method is used to update neural network parameters. The green arrows represent
the flow of the state value, and the red arrows represent the function computation process
for the sub-actions.

L = Est ,at ,Rt+1,st+1 D[
1
N ∑

d
(yd −Qd(st, ad))

2] (12)

where yd is defined as

yd = r + γ
1
N ∑

d
Q′d(st+1, argmaxQd(st+1, ad))

a′d∈Ad

(13)

Q′d(st+1, argmaxQd(st+1, ad))
a′d∈Ad

obtains the Q value based on the state–action pair in the

Q′d network, and the sub-action ad is determined by the maximum Q value based on the
state st+1 in the Qd network. The Q function in (14) consists of the state value function
V(st) and the advantage function Ad(st, ad).

Qd(st, ad) = V(st) + Ad(st, ad) (14)

There are two neural networks with the same structure in the algorithm, where the
online network updates in real-time and the target network is updated every C steps, using
the parameters of online network.

Electronics 2023, 12, 4915 10 of 20

4.2. The P-DQNBS Algorithm

In the real blockchain, the number of shards and the block size are discrete parameters.
However, due to the large action space of the block size, such as [0, 223], we approximately
assume that the block size and block interval are continuous. Furthermore, the block size
and block interval in the action space of the blockchain sharding problem can be regarded
as continuous decision variables to construct a mixed-action-space MDP, further reducing
the discrete action space. For the processing of mixed action spaces, previous work has
approached the discrete action space by discretizing continuous action or relaxing discrete
action into a continuous set to obtain a continuous action space. We used the P-DQN
framework to solve the mixed action space problem and provide more accurate action
for sharded blockchain networks. The P-DQN algorithm seamlessly integrates DQN for
discrete action and Deep Deterministic Policy Gradient [23] for continuous action.

4.2.1. Algorithm Design

Algorithm 2 shows the details of our P-DQNBS algorithm. In each epoch t, it first
computes the optimal continuous action B∗Kt

and T∗Kt
for each Kt ∈ {1, 2, ..., kmax} based on

the current state st (line 5), then selects the optimal K∗t by

K∗t = arg max
Kt∈{1,2,...,kmax}

Q(st, Kt, B∗Kt
, T∗Kt

; ω) (15)

and obtains the optimal action a∗t = [K∗t , B∗K∗t , T∗K∗t] (lines 6–7). Then, an action chosen from
the ε-greedy policy

at =

{
A random action, with probability ε,

[K∗t , B∗K∗t , T∗K∗t], otherwise.
(16)

is executed (line 8). The reward can be computed by (4) (line 9) since violation of constraint
C1–C2 indicates that the ratio of malicious nodes is greater than the upper bound required
by the PBFT consensus protocol, and consequently, no block is generated. Violation of
constraint C3 means that the block cannot be verified within the threshold, which means
the uploading of the block to the blockchain fails. Next, a system transition (st, at, rt, st+1)
is formed and stored in the replay buffer D (line 10), from which a minibatchM is sampled
to train the policy network and value network, respectively (line 11). More specifically, the
policy network is updated by maximizing the Q function; therefore, the loss function is
set as

LΘ
t (θ) = ∑

(sτ ,aτ ,rτ ,sτ+1)∈M
Q(sτ , Kτ , B∗Kτ

, T∗Kτ
; ω) (17)

(line 9). The updating target for the value network is

yτ = rτ + max
Kτ+1∈{1,2,...,kmax}

γQ(sτ , Kτ , B∗Kτ
, T∗Kτ

; ω) (18)

and is updated by minimizing the squared TD error, i.e.,

LQ
t (ω) =

1
2 ∑

(sτ ,aτ ,rτ ,sτ+1)∈M
[Q(sτ , Kτ , B∗Kτ

, T∗Kτ
; ω)− yτ]

2 (19)

(lines 13–14).
In order to enhance the stability of P-DQNBS, we also use the target networks [24],

which are periodically updated (line 15).

Electronics 2023, 12, 4915 11 of 20

Algorithm 2: The P-DQNBS Algorithm process

1 Initialize the weights θ and ω for policy network (B∗Kt
, T∗Kt

)(st; θ) and value
network Q(st, Kt, B∗Kt

, T∗Kt
; ω);

2 Initialize the weights θ′ and ω′ for target network (B∗Kt
, T∗Kt

)(st; θ′) and
Q(st, Kt, B∗Kt

, T∗Kt
; ω′);

3 Initialize exploration parameter ε, minibatch size M, replay buffer D, and
stepsizes αt, βt ≥ 0;

4 for t = 1, 2, ..., T do
5 Observe the current state st = [rt, Ct, Ht, Pt];
6 B∗Kt

and T∗Kt
← (B∗Kt

, T∗Kt
)(st; θ);// Obtain the optimal continuous

actions with respect to Kt
7 Select the optimal discrete action K∗t by (15);
8 Select action at according to the ε greedy policy by (16);
9 Take action at, obtain the next state st+1, and calculate the reward by (4);

10 Store the transition (st, at, rt, st+1) into D;
11 Sample transitions (sτ , aτ , rτ , sτ+1) randomly from D to form a minibatchM;
12 Update the policy network by maximizing (17);
13 Compute the updating target for value network by (18);
14 Update the value network by minimizing (19);
15 Update target networks by θ′ ← θ − αt∇θLΘ

t (θ), ω′ ← ω− βt∇ωLQ
t (ω);

16 end

4.2.2. Approximation Architecture

To improve the algorithm’s scalability, we use a neural network shown in Figure 4
to approximate the Q function. The neural network consists of two components, i.e., a
policy network and a value network. The policy network parameterized by θ takes the
system state st as input, and outputs B∗Kt

and T∗Kt
, i.e., the optimal continuous actions with

regard to a particular discrete action Kt; the value network parameterized by ω takes the
system state st, B∗Kt

and T∗Kt
as input and outputs Q(st, Kt, B∗Kt

, T∗Kt
; ω) of each discrete action

Kt ∈ {1, 2, ..., kmax}.

st = (Rt, Ct, Ht, Pt)

Policy network

Value network

(Kt, B∗Kt
, T∗Kt

)1, 2, ..., kmax

Q(1)Q(2)...Q(kmax)

Kt
∗ = argmaxiQ(i)

Figure 4. The neural network architecture of P-DQNBS.

The training of the policy network and value network by our Parameterized Deep
Q-Networks Blockchain Sharding (P-DQNBS) algorithm is shown in detail as follows.

5. Simulations

In order to ensure the validity of the research findings, we used Python to build a
blockchain simulation environment based on the fragmentation process of the blockchain

Electronics 2023, 12, 4915 12 of 20

system to simulate the actual sharding computation process. We used the Pytorch frame-
work to implement the DRL. The proposed algorithms are implemented in the simulation
environment to simulate the operation of algorithms under real conditions. Finally, we
compared our algorithms with other algorithms under the same environmental parameters
to obtain quantitative results. The interaction flowchart between the blockchain simulation
environment and the algorithm is shown in Figure 5.

Transaction
pool

Blockchain Layer

Shard 1 DC

Shard K

Block Block Block Block Block Block Block

Node
i

Node
i + 1

Node
i + 2

Node
i + 3

Node
i + 4

Node
i + 5

Node
i + 6

Node
i + 7

Node
i

Node
i + K

Node
i + 2K

Block1

Node
i + K− 1

Node
i + 2K− 1

Node
N − C

BlockK

Node
j

Node
j + 1

Node
C

Block1

Block2

Block3

BlockK

Figure 5. Simulation system structure of blockchain sharding.

After initialization, the transmission rate, computing power, consensus history and
probability of malicious nodes between nodes in the blockchain at the current time are
taken as the system state st. The state st is input into the neural network of the algorithm,
and a random action or neural network action is selected through ε-greedy strategy is
output as action at. Subsequently, the system enters the next moment st+1 and calculates
the immediate reward rt. The experience (st, at, rt, st+1) is stored in the experience pool.
And the batch size of experience is selected to update the neural network parameters. All
data are seaved and st+1 is set as the current state st to start the next cycle.

5.1. Parameter Settings

This section mainly describes the setting of experimental environment parameters, as
well as BDQBS and P-DQNBS parameters. Due to the different neural network structures of
the two algorithms, the parameter settings are based on the experimental results of tuning
the parameters of each algorithm.

5.1.1. Parameters for the Blockchain Environment

We use PyTorch [25] to build neural networks and implement our proposed algorithm
with Python 3.6. The simulation environment is the same as [13], which includes 200 nodes.
The maximum number of shards is 8. The maximum block interval and maximum block
size are set to 16 s and 8 MB. The average transaction size and block header size are assumed
to be 200 B and 80 B. The computing capability and data transmission rate follow uniform
distributions. The policy network has three hidden layers, with the number of neurons
being 256, 128 and 64, respectively; the value network has two hidden layers, with the
number of neurons being 128 and 64, respectively. The policy network and value network
use Adam optimization. Table 1 summarizes the parameter settings used in this paper.

Electronics 2023, 12, 4915 13 of 20

Table 1. Parameters for the blockchain environment.

Symbol Parameters Value

N Number of nodes 200
kmax Maximum allowable shard number 8
Tmax Maximum block interval 16 s
Bmax Maximum block size of each shard 8 MB

b Average transaction size 200 Bytes
BH Block header size 80 Bytes
Ci,t Computing capability of node i at epoch t 10–30 GHz
Rij,t Data transmission rate between node i and j at epoch t 10–100 Mbps

5.1.2. Parameters for the Algorithms

As the Q-function is unknown, we incorporate neural networks in the reinforcement
learning process, using the basic neural network Back Propagation for function approxima-
tion. For the BDQBS and P-DQNBS algorithm, we use the following settings. We set the
number of neurons in the hidden layer to 256, 128 and 64, respectively. The discount factor
γ is set to 0.9 to make the algorithms more inclined towards long-term optimization, which
is beneficial for maximizing rewards. In order to explore better action in the early stage
of the algorithms, the initial exploration probability of the algorithms is set to 0.9. After
the algorithms explore 2000 steps, the exploration probability decreases by 0.01 per step
until the exploration probability reaches 0.1. We set the experience pool size to 1000 and
the update frequency of neural network parameters to update every 10 steps.

We set the number of hidden layers in the BDQBS algorithm neural network to 3,
and set the learning rate r to 0.05. The number of experiences selected when updating the
neural network is 32. In addition, dropout was introduced to prevent overfitting of the
neural network, with a random inactivation ratio of 0.5.

The neural network of the P-DQNBS algorithm consists of a policy network and a
value network. The number of hidden layers in both networks is set to 3. We set the
learning rate rp of the policy network to 0.001, and the learning rate rv of the value network
to 0.0001. We select 128 experiences when updating the neural network.

Table 2 shows the differences between the BDQBS and P-DQNBS settings.

Table 2. Parameters for BDQ and PDQ algorithm neural network.

Algorithm Symbol Parameters Value

BDQBS
r Neural network learning rate 0.05

M Number of experiences extracted 32
δ Random inactivation rate of neural networks 0.5

P-DQNBS
rp Policy network learning rate 0.05
rv Value network learning rate 0.05
M Number of experiences extracted 32

5.2. Performance Comparison

We compared DQNBS as a baseline algorithm with our proposed P-DQNBS and BDQBS.
The advantages and disadvantages of the three algorithms are shown in Table 3. They are
compared from five aspects: TPS, sub-actions, TPS under different malicious node ratios, TPS
under different transaction sizes and the average latency under different algorithms.

Electronics 2023, 12, 4915 14 of 20

Table 3. Comparison of algorithm advantages and disadvantages.

Algorithm Advantages Disadvantages

DQNBS
It is capable of dynamically adapting sharding to meet large-scale
and dynamic IoT operations based on the dynamically changing

environment in the blockchain system.

Too many discrete actions may slow
down the learning process and fail to

handle continuous action spaces.

BDQBS It can work with discrete action spaces and discretize continuous
action spaces to indirectly process continuous action spaces.

The discretization of continuous space
may lead to errors in results, as well as an

explosion of the action space.

P-DQNBS
It is possible to handle the discrete–continuous hybrid action space

directly in the sharding process, with a simpler processing and more
accurate results.

It is complex and takes longer to process.

5.2.1. Throughput Analysis

Figure 6 plots the average TPS of three algorithms. All algorithms explore the action
space for 2000 steps with ε = 0.9 before ε decreases to 0.1 linearly in 100 steps.

0 0.5 1 1.5
·104

0

1

2

3

·104

Step

A
ve

ra
ge

TP
S

DQNBS
BDQBS

P-DQNBS

Figure 6. Average TPS under different algorithms.

The TPS of each algorithm first grows rapidly with the increase in the number of
steps, then tends to stabilize, and approaches the limit value infinitely. P-DQNBS grows
the fastest and has the highest limit value; in other words, P-DQNBS always has the largest
TPS to a fixed number of steps. The TPS growth rate and instantaneous value of BDQNBS
are inferior to P-DQNBS, which is better than DQNBS.

The average reward of the BDQBS algorithm is about 1.25 times greater than that of
the DQNBS algorithm. When all algorithms converge, the average TPS of P-DQNBS is 28%
and 11% higher than DQNBS and BDQ, respectively. Figures 7–9 show the average of the
three sub-actions in different algorithms.

Electronics 2023, 12, 4915 15 of 20

P-DQNBS BDQBS DQNBS

5

6

7

8

N
um

be
r

of
sh

ar
ds

Figure 7. Average of sub-action K.

P-DQNBS BDQBS DQNBS

4

6

8

M
B

Figure 8. Average of sub-action B.

P-DQNBS BDQBS DQNBS

4

5

6

7

s

Figure 9. Average of sub-action T.

Sub-action K represents the number of shards. In Figure 7, the average value of sub-
action K in the BDQBS is 21% higher than in the DQNBS, indicating that BDQBS can shard
blockchain nodes into more shards and more transactions can be process in parallel within
the shards. The average sub-actions K of the P-DQNBS are 29% and 7% higher than the
DQNBS algorithm and BDQBS, respectively. Subaction B represents block size. In Figure 8,
the average number of subactions B in the BDQBS is about 5% higher than in the DQNBS,
which indicates that the BDQBS handles more transactions than the DQNBS. The average
number of subactions B in P-DQNBS is approximately 8% higher than in BDQBS and 12%
higher than in DQNBS, indicating that P-DQNBS can enable the blockchain to handle more
transactions. The subaction T represent the block generation time. In Figure 9, the average
number of subactions T of BDQBS is 7% smaller than that of DQNBS, indicating that using
the BDQBS to process data is faster. The average number of subactions T in P-DQNBS is 7%
and 13% less than in BDQBS and DQNBS, respectively, which indicates that P-DQNBS can
process transactions in the shortest time and has the fastest processing speed. In summary,
the BDQBS can improve the throughput of the blockchain compared to the DQNBS. The use
of P-DQNBS can improve the performance of blockchain systems the best.

Electronics 2023, 12, 4915 16 of 20

The average execution times per step of the DQNBS, BDQBS and P-DQNBS are 0.27 s,
0.31 s and 0.35 s, respectively. Since the execution times of the algorithms are very short,
we output the execution times of twenty consecutive steps and calculate the average value
to obtain the average execution time of each step of the algorithm.

5.2.2. Impact of Malicious Node Ratio

A malicious node rejects an honest block in the consensus process or creates a malicious
block. Figure 10 shows the TPS under various malicious node ratios. When all nodes in the
network are honest, the TPS of P-DQNBS is 1.12 and 1.17 times higher than BDQBS and
DQNBS, respectively. As malicious nodes emerge, the performance of all algorithms drops,
because Kt has to decrease to satisfy constraint C1 and C2 for increased Pt, and the number
of transactions processed is concurrently reduced. We also observe that P-DQNBS is more
robust to malicious nodes since it achieves higher TPS in all simulations.

0 5 10 15
0

1

2

3

4

5

·104

Malicious node probability(%)

TP
S

P-DQNBS
BDQBS
DQNBS

Figure 10. TPS vs. malicious node ratio.

5.2.3. Average Latency Comparison

To improve the throughput, an obvious approach is to increase the number of shards
and the block size while maintaining a small block interval. However, arbitrarily large
Kt and Bt values result in longer consensus time TKt

con, and together with a small Tt, will
make constraint C1 and C2 easily violated. It can be shown in Figure 11 that all policies
find feasible actions which keep the transaction latency under the threshold, but P-DQNBS
learns the best policy with the highest throughput.

5.2.4. Throughput under Different Average Transaction Sizes

Figure 12 shows the throughput using different algorithms under different average
transaction sizes. It can be seen that with the increase in transaction size, throughput
significantly decreases because of the decreasing number of block packaged transactions.
However, the P-DQNBS outperforms the BDQBS and DQNBS in any scale of transac-
tions. When the average transaction size is 100MB, the throughput using the P-DQNBS
algorithm is approximately 1.11 and 1.14 times that of the BDQBS and DQNBS. When
the average transaction size reaches the maximum value of 500MB, the throughput using
the P-DQNBS is approximately 60% and 89% higher than the BDQBS and DQNBS. This
indicates that the P-DQNBS can provide better action for blockchains compared to BDQBS

Electronics 2023, 12, 4915 17 of 20

and DQNBS when processing transactions of any scale, resulting in an improvement in
blockchain performance.

0 0.5 1 1.5
·104

25

30

35

40

Step

A
ve

ra
ge

la
te

nc
y(

s)

DQNBS
BDQBS

P-DQNBS
DQNBS threshold
BDQBS threshold

P-DQNBS threshold

Figure 11. Average latency under different algorithms.

100 200 300 400 500

2

4

6

·104

Step

TP
S

P-DQNBS
BDQBS
DQNBS

Figure 12. TPS vs. average transaction size

6. Conclusions and Future Work

According to the experimental analysis of P-DQNBS, BDQBS and DQNSB in
Section 5.2, the throughput of the three algorithms is obtained in the blockchain sim-
ulation environment, and the average action of the three algorithms is compared and
analyzed. The experimental comparison shows that the performance of the P-DQNBS
is better than that of the BDQBS and the DQNSB. The average TPS of P-DQNBS is 28%
and 11% higher than DQNBS and BDQ, respectively. When all nodes in the network
are honest, the TPS of P-DQNBS is 1.12 and 1.17 times higher than BDQBS and DQNBS,

Electronics 2023, 12, 4915 18 of 20

respectively. When the average transaction size reaches the maximum value of 500 MB,
the throughput using the P-DQNBS is approximately 60% and 89% higher than the BDQBS
and DQNBS. Under a stochastic environment, the throughput of the three algorithms is
compared, and the experimental results show that the P-DQNBS can provide the best
strategy for the blockchain system and obtain the highest throughput under the condition
of satisfying security. In addition, the average latency of the three algorithms is compared,
and the experimental results show that the P-DQNBS algorithm has the smallest delay, in-
dicating that the P-DQNBS algorithm can process transactions faster, so that the blockchain
can achieve the highest throughput. Finally, the performance of the three algorithms is
compared in terms of different average transactions, and the experimental results show
that the P-DQNBS can provide the most accurate action strategies for the blockchain and
make the blockchain’s performance the best.

We proposed the BDQBS and the P-DQNBS as the optimal blockchain sharding policy.
Compared with DQNBS and other algorithms, P-DQNBS does not need to discretize the
continuous actions and thereby provides a higher-quality sharding policy for the OBCS
problem. This topic mainly studies the research on blockchain performance optimization
method based on sharding technology. Traditional blockchain sharding usually takes a
static approach, which is not in line with a dynamic blockchain environment. Therefore,
DRL is applied to the blockchain sharding problem to provide dynamic sharding decisions
for the dynamic blockchain system, so as to improve the performance of the blockchain
while establishing the blockchain sharding process as an MDP. The most common DRL
algorithm used in the blockchain environment is the DQN, which solves the problem of
state space explosion but does not solve the problem of action space explosion. This leads
to difficulty in neural network training.

In view of the above problems, we used the BDQ and P-DQN in the blockchain shard-
ing problem and proposed the BDQBS and P-DQNBS. The BDQBS algorithm solves the
problem of action space explosion and provides a better action strategy for the blockchain
system, thereby improving the blockchain’s performance. The action space of the blockchain
sharding problem is a discrete–continuous hybrid action space, and the BDQBS algorithm
mainly solves the problem of discrete action space, so the continuous action is discretized
to obtain the discrete action space. However, this approach ignores more precise action,
so we applied the P-DQN to solve the problem, and proposed the P-DQNBS algorithm.
The P-DQNBS algorithm provides a more accurate sharding strategy for the blockchain
system, which further improves the performance of the blockchain.

This project takes optimizing the blockchain performance based on sharding technol-
ogy as the main goal, and designs a blockchain sharding selection strategy based on DRL.
Although certain results have been achieved, due to limitations on time and experimental
conditions, there are still some shortcomings which need more in-depth research and
improvement in the later stage. The experimental algorithm verifies the implementation
based on the built blockchain shard simulation environment. However, the real blockchain
system will inevitably have more dynamic changes. For example, the transmission rate
between nodes and the computing power of nodes must be different. Due to the lim-
ited experimental conditions, it is necessary to perform algorithm verification in the real
blockchain environment in the future. We use network sharding to partition blockchain
nodes, and there is a problem of transaction cross-sharding when using network sharding,
which leads to the problem of double spending. So, in the future, it will be necessary to
supplement and improve the research on blockchain transaction sharding and state shard-
ing. Blockchain transaction sharding and state sharding are research trends in improving
blockchain throughput in the future.

Author Contributions: Conceptualization, L.L.; methodology, J.W.; software, C.L.; validation, B.Y.;
formal analysis, B.Y.; writing—original draft preparation, C.L.; writing—review and editing, J.W.;
supervision, L.L. All authors have read and agreed to the published version of the manuscript.

Electronics 2023, 12, 4915 19 of 20

Funding: This research was funded in part by the scientific research project of the National Nat-
ural Science Foundation of China (62362055), the Inner Mongolia Autonomous Region Key R&D
and Achievement Transformation Program Project (2022YFSJ0013, 2023YFHH0052, 2023KJHZ0001),
the Research Program for Young Talents of Inner Mongolia Colleges (NJYT22084, NJYT23055), the Nat-
ural Science Foundation of Inner Mongolia (2023MS06008), the Key Research & Development Program
of Erdos (YF20232328), the Scientific Research Program for Inner Mongolia Colleges (JY20220061,
JY20230119, JY20230019), and the Basic Scientific Research Expenses Program of Universities directly
under the Inner Mongolia Autonomous Region (JY20220078, 2022ZY0169).

Data Availability Statement: Due to the nature of this research, participants of this study did not
agree for their data to be shared publicly, so supporting data are not available.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

TPS Transactions Per Second
OBCS Optimal Blockchain Sharding
MDP Markov Decision Process
DRL Deep Reinforcement Learning
BDQBS Branching 9 Dueling Q-Network Blockchain Sharding
P-DQN Parameterized 13 Deep Q-Networks
P-DQNBS Parameterized Deep Q-Networks Blockchain Sharding
DQNBS Deep Q-Network enabled Shard-based Blockchain
DQN Deep Q-Network
BDQ Branching Dueling Q-Network
PoW Proof of Work
PBFT Practical Byzantine Fault Toll
DC Directory Committee
PK Public Key

References
1. Guo, S.; Hu, X.; Guo, S.; Qiu, X.; Qi, F. Blockchain meets edge computing: A distributed and trusted authentication system. IEEE

Trans. Ind. Inform. 2019, 16, 1972–1983. [CrossRef]
2. Wan, J.; Li, J.; Imran, M.; Li, D.; Fazal-e-Amin. A blockchain-based solution for enhancing security and privacy in smart factory.

IEEE Trans. Ind. Inform. 2019, 15, 3652–3660. [CrossRef]
3. Yun, J.; Goh, Y.; Chung, J.M.; Kim, O.; Shin, S.; Choi, J.; Kim, Y. MMOG user participation based decentralized consensus scheme

and proof of participation analysis on the bryllite blockchain system. KSII Trans. Internet Inf. Syst. (TIIS) 2019, 13, 4093–4107.
4. Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An overview of blockchain technology: Architecture, consensus, and future trends.

In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30 June 2017;
pp. 557–564.

5. Yao, H.; Mai, T.; Wang, J.; Ji, Z.; Jiang, C.; Qian, Y. Resource trading in blockchain-based industrial Internet of Things. IEEE Trans.
Ind. Inform. 2019, 15, 3602–3609. [CrossRef]

6. Wood, E. A secure decentralised generalised transaction ledger, Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
7. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,

Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15.

8. Nguyen, L.N.; Nguyen, T.D.; Dinh, T.N.; Thai, M.T. Optchain: Optimal transactions placement for scalable blockchain sharding.
In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA,
7–10 July 2019; pp. 525–535.

9. Luu, L.; Narayanan, V.; Zheng, C.; Baweja, K.; Gilbert, S.; Saxena, P. A secure sharding protocol for open blockchains. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October
2016; pp. 17–30.

10. Kokoris-Kogias, E.; Jovanovic, P.; Gasser, L.; Gailly, N.; Syta, E.; Ford, B. OmniLedger: A Secure, Scale-Out, Decentralized Ledger
via Sharding. In Proceedings of the IEEE Symposium on Security and Privacy, Francisco, CA, USA, 20–24 May 2018; pp. 583–598.

11. The Zilliqa Team. The Zilliqa Technical Whitepaper. 10 August 2017. pp. 1–14. Available online: https://docs.zilliqa.com/
whitepaper.pdf (accessed on 4 December 2023).

http://doi.org/10.1109/TII.2019.2938001
http://dx.doi.org/10.1109/TII.2019.2894573
http://dx.doi.org/10.1109/TII.2019.2902563
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf

Electronics 2023, 12, 4915 20 of 20

12. Zamani, M.; Movahedi, M.; Raykova, M. RapidChain: Scaling Blockchain via Full Sharding. In Proceedings of the the 2018 ACM
SIGSAC Conference, Toronto, ON, Canada, 15–19 October 2018.

13. Yun, J.; Goh, Y.; Chung, J.M. DQN-based optimization framework for secure sharded blockchain systems. IEEE Internet Things J.
2020, 8, 708–722. [CrossRef]

14. Zhang, J.; Hong, Z.; Qiu, X.; Zhan, Y.; Guo, S.; Chen, W. Skychain: A deep reinforcement learning-empowered dynamic blockchain
sharding system. In Proceedings of the 49th International Conference on Parallel Processing-ICPP, Edmonton, AB, Canada, 17–20
August 2020; pp. 1–11.

15. Gervais, A.; Karame, G.O.; Wüst, K.; Glykantzis, V.; Ritzdorf, H.; Capkun, S. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
24–28 October 2016; pp. 3–16.

16. Castro, M.; Liskov, B. Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 2002, 20, 398–461.
[CrossRef]

17. Sukhwani, H.; Martínez, J.M.; Chang, X.; Trivedi, K.S.; Rindos, A. Performance modeling of PBFT consensus process for
permissioned blockchain network (hyperledger fabric). In Proceedings of the 2017 IEEE 36th Symposium on Reliable Distributed
Systems (SRDS), Hong Kong, China, 26–29 September 2017; pp. 253–255.

18. Syta, E.; Jovanovic, P.; Kogias, E.K.; Gailly, N.; Ford, B. Scalable Bias-Resistant Distributed Randomness. In Proceedings of the
2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 444–460.

19. Yao, B.; Wan, J.; Shan, J.; Li, L.; Ma, Z.; Liu, C. Optimal Sharding for Dynamic Throughput Optimization in Blockchain Systems
with Deep Reinforcement Learning. In Proceedings of the 2023 IEEE Conference on Systems, Man, and Cybernetics, Honolulu,
HI, USA, 1–4 October 2023; pp. 1–5.

20. Król, M.; Ascigil, O.; Rene, S.; Sonnino, A.; Al-Bassam, M.; Rivière, E. Shard scheduler: Object placement and migration in sharded
account-based blockchains. In Proceedings of the 3rd ACM Conference on Advances in Financial Technologies, Arlington, VA,
USA, 26–28 September 2021; pp. 43–56.

21. Xiong, J.; Wang, Q.; Yang, Z.; Sun, P.; Han, L.; Zheng, Y.; Fu, H.; Zhang, T.; Liu, J.; Liu, H. Parametrized deep q-networks learning:
Reinforcement learning with discrete-continuous hybrid action space. arXiv 2018, arXiv:1810.06394.

22. Sutton, R.; Barto, A. Reinforcement Learning: An Introduction; The MIT Press: Cambridge, MA, USA, 1998.
23. Paul, L.T.; James, H.J.; David, S.; Tom, E.; Yuval, T.; Otto, H.N.M.; Pieter, W.D.; Alexander, P. Continuous control with deep

reinforcement learning. arXiv 2018, arXiv:1509.02971.
24. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
25. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2020.3006896
http://dx.doi.org/10.1145/571637.571640
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

	Introduction
	Related Work
	Static Sharding Technology
	Dynamic Sharding Technology

	System Overview
	System Model
	Blockchain Sharding Mechanism
	Markov Decision Process Formulation for Optimal Blockchain Sharding Problem
	The Optimal Blockchain Sharding Problem

	The Blockchain Sharding Algorithm
	The BDQBS Algorithm
	Algorithm Design
	Approximation Architecture

	The P-DQNBS Algorithm
	Algorithm Design
	Approximation Architecture

	Simulations
	Parameter Settings
	Parameters for the Blockchain Environment
	Parameters for the Algorithms

	Performance Comparison
	Throughput Analysis
	Impact of Malicious Node Ratio
	Average Latency Comparison
	Throughput under Different Average Transaction Sizes

	Conclusions and Future Work
	References

