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Abstract: With the advancements in utilizing Artificial Intelligence (AI) in embedded safety-critical
systems based on Field-Programmable Gate Arrays (FPGAs), assuring that these systems meet their
safety requirements is of paramount importance for their revenue service. Based on this context, this
paper has two main objectives. The first of them is to present the Safety ArtISt method, developed
by the authors to guide the lifecycle of AI-based safety-critical systems, and emphasize its FPGA-
oriented tasks and recommended practice towards safety assurance. The second one is to illustrate
the application of Safety ArtISt with an FPGA-based braking control system for autonomous vehicles
relying on explainable AI generated with High-Level Synthesis. The results indicate that Safety
ArtISt played four main roles in the safety lifecycle of AI-based systems for FPGAs. Firstly, it
provided guidance in identifying the safety-critical role of activities such as sensitivity analyses for
numeric representation and FPGA dimensioning to achieve safety. Furthermore, it allowed building
qualitative and quantitative safety arguments from analyses and physical experimentation with
actual FPGAs. It also allowed the early detection of safety issues—thus reducing project costs—and,
ultimately, it uncovered relevant challenges not discussed in detail when designing safety-critical,
explainable AI for FPGAs.

Keywords: artificial intelligence; decision tree; explainable AI; field-programmable gate array (FPGA);
high-level synthesis; random forest; safety; safety-critical system

1. Introduction

The recent effervescence surrounding Artificial Intelligence (AI) has led to a significant
increase, especially from the mid-2010s onwards, in research on its usage within the core
of safety-critical systems [1]. One of the most relevant concerns on applying AI in safety-
critical applications is the safety assurance of these systems, which comprises “(. . .) the set
of activities, means, and methods that shall be considered, throughout the lifecycle of a system, to
produce results towards building arguments that confidently support the safety requirements/targets
of such a system have been met” [1–7]. This is taken into account not only at the design time
but also throughout operation, notably when online learning is at play [1,8–12].

In the Internet of Things (IoT) era, safety-critical systems have also been growingly
more distributed and based on embedded modules [13–15], such as those used in the control
functions of Unmanned Ground Vehicles (UGVs) [16–24], Unmanned Aerial Vehicles
(UAVs) [25–27], and in a new generation of distributed Communication-Based Train Control
(CBTC) systems for metro and railway signaling [28,29]. Furthermore, the increased
flexibility and processing capability provided by recent Field-Programmable Gate Arrays
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(FPGAs) and other Programmable Logic Devices (PLDs) allows these elements to play
an even more important role in cutting-edge safety-critical systems than today [30,31]
while keeping design costs reasonable for achieving the needed efficiency and performance
levels [32,33].

Consequently, the safety assurance of AI-based systems is a relevant theme for research,
especially because means and methods within pre-existing standards and research papers
feature gaps in relevant themes for their practical usage, as evidenced by a systematic
literature review covering 5090 papers published up to 2022 [1]. These include, but are not
limited to, the lack of detailed guidelines covering the dos and don’ts of safety-critical AI for
safety practitioners [34,35], constraining safety practices to a subset of AI variants [36–41],
and crafting safety practices only for specific application domains [8,9,37,40].

The safety assurance of AI-based systems becomes even more challenging when
FPGAs are within the control loop of the safety-critical functions. This is justified by
two aspects: (i.) the scarcity of research with this specific objective [1] and (ii.) specific
safety constraints that are applicable to safety-critical systems with FPGAs. For instance,
the majority of research involving safety, AI, and FPGAs altogether is solely based on
presenting FPGA-based solutions for implementing safety-critical AI, notably in vehicle
control automation [42–44] and general-purpose building blocks for FPGA design in safety-
critical systems [45–47]. Therefore, these efforts lack safety assurance aspects, such as
analyses that support whether safety requirements have indeed been met.

In addition to that, safety-critical FPGAs are inherently subject to design restrictions
regardless of AI, as explored in well-established safety standards, such as IEC61508:2010
and CENELEC EN50129:2018 [4,6]. With the embedding of safety-critical AI onto FP-
GAs, a plethora of other design constraints emerges towards ensuring that the final AI
programming is performed in such a way as to meet functional and safety requirements.

A remarkable FPGA-specific safety concern is the programming of the AI models.
Since most AI reference models are sufficiently complex to be described from scratch for
FPGAs but are readily available, with proven-in-use implementations, on several software
libraries (e.g., Python’s scikit-learn version 1.3.1), High-Level Synthesis (HLS) is a handy
means to translate AI models coded in software to an equivalent model in a Hardware
Description Language (HDL) [48]. The usage of HLS introduces the need to ensure that
the resulting HDL-coded AI meets the needed functional and safety requirements. It is
worth noting that solely ensuring that the original software-based solution meets these
requirements is insufficient to take into account a multitude of FPGA-specific aspects, such
as fault tolerance, circuitry synthesis, and signal routing, since these depend not only on
the HLS per se but also on how the FPGA programming tools are configured.

In order to deal with the safety assurance of AI-based systems as a whole, a method
called Safety ArtISt (Artificial Intelligence Structure) has been developed by the authors.
Safety ArtISt has been conceived with the objective of guiding the lifecycle of safety-critical
systems with AI with explicit recommended and not recommended practices that fill several
safety assurance gaps identified in the papers reviewed in [1]. Safety ArtISt covers a wide
range of AI models, including supervised learning, reinforcement learning, semisupervised
learning, unsupervised learning, offline learning, online learning, and explainable AI.
It has also been crafted bearing in mind concrete practice targeting the deployment of
safety-critical AI on microprocessors and on FPGAs/PLDs.

The objectives of this paper are to provide an overview of the Safety ArtISt method,
focusing on its FPGA-specific activities and practice, and to illustrate its application by
means of a case study. This case study comprises the development and analysis of a Braking
Control System (BCS) for autonomous vehicles whose safety core is based on two random
forests fully deployed in FPGAs through HLS.

The main expected novelty and contribution of this research paper are as follows:

1. Providing, with Safety ArtISt, cost-effective guidance on how to structure and spec-
ify the lifecycle of a safety-critical system with AI, with a special focus on FPGA-
implemented supervised learning;



Electronics 2023, 12, 4903 3 of 32

2. Identifying design, verification, and validation activities that are critical for building
and analyzing safety-critical AI on FPGAs, as well as illustrating how to carry them
out and showing their importance to safety;

3. Presenting an approach for building quantitative safety models for safety-critical
systems with supervised learning and exemplifying its application;

4. Providing general-purpose conclusions on the mission profile and safeguards that
allow AI to be utilized in safety-critical systems.

The remainder of this paper is structured as follows. Section 2 covers two themes: it
begins with a description of the Safety ArtISt method and continues with an overview of
the case study’s scope and justification. In Section 3, the Safety ArtISt-oriented lifecycle for
the case study’s BCS is explored in detail, including the workflow followed throughout
its project and the results obtained in each Safety ArtISt activity. Section 4 is devoted to
discussing the main results of this case study, as well as the role of Safety ArtISt in building
a safety-critical system with FPGA-implemented AI and future work. Finally, Section 5
closes the paper with a summary of the research conclusions.

2. Materials and Methods

This section is divided into three subsections. The two first ones are devoted to
detailing the Safety ArtISt method: they start in Section 2.1 with an overview of its lifecycle
and progress onto Section 2.2 with FPGA-specific activities and techniques.

Finally, Section 2.3 aims to define the scope of the BCS case study. It includes not
only the functionalities and constraints imposed on the AI- and FPGA-based autonomous
vehicles’ BCS but also how the Safety ArtISt method was applied in the case study.

2.1. Description of the Safety ArtISt Method

The Safety ArtISt method was created as a means to guide the entire lifecycle of
safety-critical systems with at least one safety-critical function relying on AI. Its principle
is based on a safety assurance process, which allows building safety arguments from the
early design up to operation and maintenance in order to support whether the system is
safe for revenue service.

Safety ArtISt augments classic safety assurance processes, such as the ones of safety
standards CENELEC EN50129:2018 and IEC61508:2010 [4,6], with practitioner-oriented
activities. tasks, and recommended practices stemming from AI’s underlying technical
aspects that aim to assess the safety-related properties of AI. These comprise fulfilling the
objectives listed as follows, which stem from three sources: (i.) gaps from pre-existing
research on the safety assurance of AI [1], (ii.) merging sparse efforts and practice towards
the safety assurance of AI into a systematic, process-oriented approach [23,30,38,49–57],
and (iii.) the expertise of the Safety ArtISt research team on safety and AI.

1. Specifying AI safety requirements and tracing safety arguments to them throughout
the system lifecycle;

2. Providing justifiable means to define candidate AI variants for safety-critical functions,
analyze their pros and cons, and effectively select the AI variants with the best
potential to fulfill functional and safety requirements;

3. Providing systematic means to define AI failure modes and analyze their effects on
safety at specification and design time;

4. Assessing the need for redundancy and diversity of AI modules for safety-critical
functions;

5. Defining safety requirements and procedures for input datasets and evaluating how
datasets impact the safety of AI designed with them;

6. Providing justifiable means to define, for each AI variant chosen for the system design,
the domain of its hyperparameters/hyperfunctions and optimize them based on
expert knowledge, optimization processes and/or cross-validation (CV);

7. Establishing guidelines for designing safety-critical AI with FPGAs and other PLDs;
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8. Guiding the design of explainable AI and understanding its role in the safety assurance
of AI-based safety-critical functions;

9. Defining means and methods to specify, choose, and analyze AI-related development
tools and third-party libraries throughout the system lifecycle;

10. Adjusting and augmenting recommended practice for safety-critical systems without
AI to deal with safety-critical AI.

Safety ArtISt is structured as a seven-step process following the workflow represented
in Figure 1.
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Safety ArtISt starts with Step 1—System Specification—whose major aim is to build a
systems-level specification comprising two major features: (i.) requirements specification
and (ii.) system architecture. The dynamics of Step 1 include three major activities. The first
one is eliciting systems-level requirements based on the project stakeholders’ demands and
constraints. Hazard and Risk (H&R) analyses at the systems level lead to the specification
of Safety Requirements (SRs), which comprise qualitative features and the quantitative
targets of each safety-critical function. These quantitative targets are expressed by means of
the safety functions’ Safety Integrity Level (SIL), which ultimately translates into a Tolerable
Hazard Rate (THR) [4,6].

Afterward, a system architecture model is developed in such a way as to increase
the system detailing with its subsystems and their interfaces. Based on these features, AI
variants eligible for the needed functions are identified, and the SRs are ultimately refined
with AI-specific characteristics. This can be achieved, for instance, by expanding the initial
H&R analyses with a Hazard and Operability Study (HAZOP)-based approach for which
the unary and binary HAZOP keyword operators are exhaustively associated with the
potential failure modes of each candidate AI variant in order to systematically generate
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H&R analyses scenarios. The AI Refined Safety Requirements (RSRs) are then elicited from
the needed action to circumvent safety issues for each of the analyzed scenarios. It is also
worth noting that, at the end of all forthcoming Safety ArtISt steps, safety arguments are
iteratively built and traced to the SRs/RSRs on a traceability matrix.

Step 2—Input Datasets Selection and Analysis—is performed after finishing Step 1. Its
objective is to ensure that all datasets utilized throughout the design of safety-critical AI
have been properly specified, generated, and stored in order to mitigate potential systematic
faults that can be introduced within the AI designed with the datasets. Step 2 includes a
total of ten activities, labeled with the identifiers (IDs) from 2-A to 2-J and briefly described
in Table 1.

Table 1. Activities of Safety ArtISt Step 2—Input Dataset Selection and Analysis.

ID Description

2-A Analyzing data origin and domain (e.g., end application, simulated)
2-B Selecting and analyzing dataset processing tools
2-C Analyzing missing and incomplete data
2-D Analyzing safety-critical scenario representativeness (e.g., corner cases)
2-E Performing general statistics (e.g., dataset variables’ distributions)
2-F Performing additional data pre-processing (e.g., normalization)
2-G Updating statistical tests for the preprocessed dataset
2-H Defining dataset partitioning strategy for AI design and validation
2-I Analyzing underlying uncertainties on dataset variables
2-J Updating safety arguments and SR/RSR traceability matrix with Step 2 results

The activities that are part of Step 2 start at 2-A by analyzing how a dataset has been
built and to what extent datasets generated outside the target application scope (e.g., data
from similar applications or generated in a simulated environment) are faithful enough for
such an end application. It progresses to 2-B, which is related to selecting dataset processing
tools and ensuring that all these tools are robust enough to avoid introducing potential
safety issues—be they within the interpretation of the dataset per se or be they related to
inadvertently changing the dataset in an undetectable and unsafe way.

Finally, all remaining activities (2-C to 2-I) span a series of analyses that allow not only
providing a more in-depth knowledge of the datasets and their overall data quality but also
adapting their contents, in a controlled way, to leverage potentially better performance and
safety from safety-critical AI elements. Special attention is given to the representativeness of
corner cases, given their relevance in establishing the borderline behavior of safety-critical
AI, as well as to the underlying uncertainties of data records, which directly translate into
how trustworthy AI built within these data is likely to be.

Once Step 2 is finished, Safety ArtISt progresses onto Step 3—AI Preliminary Design.
This step has two major goals: (i.) deepening the detailing of the system architecture
developed in Step 1 with the hardware and software components of each subsystem and
(ii.) specifying tools, settings, and fault tolerance design guidelines for the remainder of
the lifecycle. In order to meet these objectives, Step 3 is structured with the six activities
presented in Table 2. Activities 3-Pre, 3-A, and 3-E are mapped onto objective (i.), whereas
3-B to 3-E are mapped onto objective (ii.).

Three relevant remarks on the Step 3 activities are worth highlighting. Firstly, activity
3-Pre is carried out whenever the analyses performed in Step 1 yield more than one viable
AI variant for a safety-critical function. In activity 3-Pre, the candidate AI models are
instantiated on a sandbox environment, following the applicable dataset-related design
strategies of Step 2, and their performance is assessed. Based on the results of this analysis,
the AI models with the most promising results are effectively incorporated into the system
architecture on activity 3-A, whereas the other ones are discarded.
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Table 2. Activities of Safety ArtISt Step 3—AI Preliminary Design.

ID Description

3-Pre Designing preliminary AI to choose the best-performing candidates
3-A Refining system architecture with hardware and software components
3-B Defining design tools and their safety-critical settings

3-C Defining the strategy for the detailed design of safety-critical AI
(e.g., dedicated AI modeling vs. reuse of third-party libraries)

3-D Defining guidelines for fault tolerance of safety-critical components
3-E Updating safety arguments and SR/RSR traceability matrix with Step 3 results

The second noteworthy highlight of Step 3 is related to activity 3-A. In order to lever-
age modularity and decouple application-specific AI instantiation from their underlying
general-purpose models, it is highly recommended that all safety-critical AI be split into
two different components. The first component, hereinafter referred to as “AI base model”,
encapsulates data structures and algorithms that implement an AI model (e.g., an artificial
neural network (ANN) or a support vector machine (SVM)) and provide hyperparameters
and hyperfunctions as interfaces. The second component, hereinafter called “AI instance”,
refers to each application-specific usage of the AI base model, along with its fine-tuned
hyperparameters and hyperfunctions.

Finally, the last remark on Step 3 embraces the activities 3-C and 3-D. Since they
depend on whether safety-critical AI is allocated to software or FPGAs and PLDs, the
recommended practice that supports both activities is explicitly partitioned into two subsets:
one for software- and microprocessor-based designs and another one for safety-critical AI
targeted at FPGAs and PLDs.

Step 3 is followed by Step 4—AI Detailed Design—whose goal is to implement the AI
base models and their corresponding instances. For this purpose, Step 4 comprises the
activities listed and described in Table 3. Among them, activities 4-A, 4-B, 4-G, and 4-H are
applicable regardless of the AI base models, whereas the remaining ones are performed
only for specific AI types, as detailed in the descriptions in Table 3.

Table 3. Activities of Safety ArtISt Step 4—AI Detailed Design.

ID Description

4-A Designing and implementing AI base models
4-B Defining and justifying hyperparameters/hyperfunctions and their domains
4-C Additional modeling for reinforcement learning instances
4-D Additional modeling for semisupervised and unsupervised learning instances
4-E Additional modeling for explainable AI instances
4-F Additional modeling of online learning instances
4-G Designing and implementing the generation of AI processing logs
4-H Updating safety arguments and SR/RSR traceability matrix with Step 4 results

Step 4 starts with activity 4-A, whose aim is the design and implementation of the
safety-critical AI base models that were initially identified in Step 3. Once this activity is
over, Step 4 progresses to detailing the design of each AI instance. Since the majority of AI
base models require tuning by means of hyperparameters and hyperfunctions, activity 4-B
allows the designers to formally choose and justify the hyperparameters and hyperfunctions
to be exercised for each AI instance, along with their respective domains and a strategy for
sweeping within them (e.g., steps and scales).

Activities 4-C to 4-F delve further into the design of AI instances for specific AI variants
that require more than the definitions of activity 4-B. These include reinforcement learning
(4-C), semisupervised and unsupervised learning (4-D), explainable AI (4-E), and online
learning (4-F). Finally, activity 4-G targets the design of logs that allow monitoring AI
during its operation and incorporating them into revised safety models.
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Step 5—AI Training and AI Preliminary Verification and Validation (V&V)—closes the
design of the safety-critical AI with the training of AI instances that require this procedure.
It also launches the safety-critical V&V with activities that are qualified as “preliminary”
because, despite allowing the early detection of safety issues by means of analyses and
techniques that are less demanding of V&V resources, they are still incomplete for ensuring
that a system is indeed safe. As a result, Step 5 aids in unveiling safety issues in advance
and triggering their corrections despite not being sufficient to ensure safety per se, since
its activities might still mask underlying safety issues whose detection depends on the
exhaustive, resource-demanding activities of Step 6—AI Detailed V&V.

The activities that are part of Step 5 are identified and described in Table 4.

Table 4. Activities of Safety ArtISt Step 5—AI Training and AI Preliminary V&V.

ID Description

5-A Analyzing functional adequacy of AI base models and sampling their components
for analyzing compliance to fault tolerance guidelines

5-B Training AI instances (if applicable)
5-C Assessing performance metrics and corner case behavior of AI instances
5-D Updating safety arguments and SR/RSR traceability matrix with Step 5 results
5-E Assessing potential safety issues, identifying root causes, and revising Steps 1–4

Step 5 starts with evaluating whether the AI base models designed and implemented
in Step 4 are not only functionally accurate but also to what extent the fault-tolerant
practices established in Step 3 have been followed in their design. The approach for the
fault tolerance analysis in Step 5 is sampling-based instead of exhaustive, because this
can allow earlier and quicker detection of inconsistent fault tolerance within the core
components of safety-critical AI, thus leading to the full revision of the safety-critical AI
with regard to fault-tolerant design prior to progressing with V&V activities.

Should all AI base models be deemed correct and credibly robust to tolerating faults,
the AI instances that depend on them are then generated by means of training. This is
carried out following the recommended practice for dataset partitioning and hyperparam-
eter/hyperfunction sweeping defined in Steps 2 and 4, respectively. Once the training
is finished, and optimized AI instances are obtained, their performance is then assessed
by means of the applicable performance metrics in at least two conditions: (i.) regular
operation and (ii.) worst-case scenarios defined by means of the corner cases identified
in Step 2. The results of this activity might indicate potential safety issues in two main
conditions: (i.) overly low performance, in which case the AI instances are not likely to
meet the systems-level quantitative safety requirements, and (ii.) overly high performance,
which might suggest overfitting and ultimately compromise safety should the operation
context require behavioral generalization outside the variables’ training domains.

If any issue is identified in a Step 5 activity, the remaining activities can be skipped to
avoid unnecessary analyses of safety-critical items whose design is likely to be changed.
The root causes of these safety issues are then analyzed and traced back to the Safety ArtISt
steps in which they originated. Once this troubleshooting is finished, a new iteration of the
Safety ArtISt method is performed, starting with its earliest step traced to a safety issue.

On the other hand, if Step 5 is finished without the detection of potential safety issues,
Step 6—AI Detailed V&V—is triggered. Given the exhaustiveness of the V&V activities
included in Step 6, it is considered that the safety arguments built at the end of this step are
complete for deciding whether to start a system’s revenue service should no safety issues
be identified. The full set of activities that are part of Step 6 are presented in Table 5.
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Table 5. Activities of Safety ArtISt Step 6—AI Detailed V&V.

ID Description

6-A.i Analyzing environmental compliance and hardware random failure modes
6-A.ii Analyzing functional and fault-tolerant design adequacy for safety-critical AI
6-A.iii Analyzing if FPGA/PLD tools guidelines and settings have been followed
6-A.iv Analyzing if software tools guidelines and settings have been followed
6-A.v Performing formal or semiformal AI reachability analyses
6-A.vi Performing quantitative safety analyses

6-B Updating safety arguments and SR/RSR traceability matrix with Step 6 results
6-C Assessing potential safety issues, identifying root causes, and revising Steps 1–4

The activity 6-A, which comprises “safety and V&V analyses” as a whole, is split into
six tasks, referred to as 6-A.i to 6-A.vi, in order to provide better insight into each procedure
that is carried out within its scope. The process starts with two hardware-related analyses
in 6-A.i: (a.) ensuring that the design fulfills the needed conditions for operating in its
target environment (e.g., humidity, altitude, temperature) and (b.) exhaustively analyzing
the plausible hardware failure modes and their systems-level safety effects. Item (a.) is
fully detached from AI-specific features, whereas (b.) solely depends on AI specificities in
describing the overall impacts of the hardware failure modes, since hardware failure modes
themselves are also independent from AI. Fault injection techniques, including those for
FPGAs [58], can be used at this point to check for the effectiveness of fault-tolerant design
and increase the robustness of safety arguments.

Task 6-A.ii targets proceeding with the analyses of activity 5-A by following the same
approach and expanding its scope to all safety-critical AI components. This allows ensuring
that every safety-critical AI element (base models and instances) is not only functionally
correct but also robust enough to tolerate and mitigate random faults.

Afterward, tasks 6-A.iii and 6-A.iv are devoted to analyzing if the guidelines for
utilizing the design and V&V tools selected in Step 3 for FPGAs and software, respectively,
have indeed been followed. These analyses aim to ensure that the tools have been used
and configured in such a way to support that the as-built FPGA/PLD programming and
software binary code remain faithful to their fault-tolerant design, since improper settings
(e.g., optimizations) can void these mechanisms.

Task 6-A.v has the objective of performing at least semiformal analyses on the image
set of the safety-critical AI instances in such a way as to strengthen the exhaustive under-
standing of their outputs given the domains of their inputs. For specific AI variants of
higher opaqueness (e.g., deep supervised learning), these analyses might only be feasible
in an overapproximate way by means of application-specific models built with expert
knowledge and exercised with Satisfiability Modulo Theories (SMT) [30,49,59–61].

Finally, the objective of task 6-A.vi is to utilize the information collected throughout
the remainder of the Safety ArtISt method to build quantitative safety models and analyze
whether the safety targets of each safety-critical function have indeed been met. Special care
has to be given to modeling the behavior-related failure rate of AI instances and merging it
with the random failure rates of hardware components.

Like Step 5, if a safety issue is detected at any of the 6-A activity tasks, the forthcoming
steps can be skipped for time-saving purposes. The root causes of the identified safety
nonconformities are assessed and traced back to their originating Safety ArtISt steps so that
the design is revised in a new Safety ArtISt iteration.

If Step 6 is finished with safety requirements having been accomplished, the system’s
revenue service is started, and Safety ArtISt moves to Step 7—Operation and Maintenance. In
this step, the system is periodically monitored by means of the log-generating functions
designed in Step 4, especially if the formal analyses covered in 6-A.v could not be performed
in entirety due to difficulty in building the needed models.

Moreover, special care is required for systems with online learning and whenever
maintenance actions are performed. Since systems with online learning change their own
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hyperparameters as they learn with operation-collected data, the safety arguments built up
to Step 6 are periodically reviewed in order to guarantee that the system still adheres to
its safety requirements as its learning progresses. Similarly, if maintenance actions affect
safety-critical AI, the Safety ArtISt method is rerun so that the maintenance effects on safety
are assessed.

2.2. Safety ArtISt Specificities for Safety-Critical Design with FPGAs

The Safety ArtISt method includes specific practices to guide the design and analysis
of safety-critical AI embedded in PLDs and FPGAs. Such practices are herein detailed,
along with the justification of their relevance for the safety assurance of FPGA-based AI.

In Step 1, the system architecture and the RSRs are crafted in such a way that they
comply with known FPGA-related restrictions defined in current safety standards and
remain valid regardless of whether AI is used. These restrictions comprise the following
items:

1. No SIL 4 safety-critical function is exclusively implemented within a single FPGA [4];
2. On-chip redundancy is not used as the sole fault tolerance means for SIL 3 and SIL 4

safety-critical functions exclusively implemented with PLDs and FPGAs [6];
3. It is highly recommended to implement PLD and FPGA-based SIL 3 and SIL 4 func-

tions with one of the two following approaches [6]:

a. External redundancy with multiple programmable devices of different tech-
nologies (e.g., RAM-based FPGA along with Flash-based PLD);

b. External redundancy or PLD/FPGA monitoring with other categories of hard-
ware circuitry (e.g., microprocessors and nonprogrammable hardware).

In Step 3, the architectural refinement of activity 3-A reflects the same concerns detailed
in Step 1. Moreover, specific safety principles and recommended practices are outlined in
activity 3-C in order to guide the detailed design in Step 4 and the means to perform its
V&V during Steps 5 and 6.

For instance, if the safety-critical AI relies on HLS, at least three different architectural
levels of abstraction are created. The first level, depicted in Figure 2, corresponds to
the software architecture that details the initial AI design and allows building the AI
instances. It is then followed by the HLS architecture, which is illustrated in Figure 3 and
represents how the software elements of the first block are processed towards generating
their functionally equivalent modeling in HDL. Finally, the third and final architecture
corresponds to the final PLD/FPGA-based infrastructure that is effectively deployed, as
shown in Figure 4. It utilizes the HLS-generated HDL components arranged in such a way
that the system functions are achieved.

HLS also plays an important role in defining the workflow and the recommended prac-
tice of Step 5. For instance, since HLS requires both the AI base models and their instances
to exist prior to translating software into HDL, supervised-learning-based solutions are
initially trained at the software level (activity 5-B) before the actual HDL implementations
of AI base models are assessed in activity 5-A. Hence, the training of 5-B is performed in
advance during Step 4 with HLS. Moreover, the strategy for the functional V&V activities
of Step 5 (5-A and 5-C) might also depend on how complex the HDL-coded AI instances
are. Two plausible alternatives are fully carrying out these activities in the PLD/FPGA
domain or performing them at the software level and ensuring, via exhaustive tests, that
their HDL translations are equivalent to their software-originating counterparts.

Special care also has to be given to data numeric representation. Since complex AI
models with high fixed-point or floating-point precision might require costly FPGAs with a
substantial amount of available resources (e.g., registers and logic modules), the design
takes into account a trade-off involving cost, processing capabilities, performance, and
safety requirements. As a result, sensitivity analyses on the resources for implementing an
AI model and the safety-related AI performance metrics are performed in activity 5-C. A
proven-as-correct AI implementation in software can be utilized as a baseline for checking
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to what extent an FPGA-based design deviates from it if a constrained numerical precision
is needed to meet cost restrictions.
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Other Safety ArtISt activities, which include FPGA and PLD specificities, are those
involving fault-tolerant design and project tools. They start in Step 3 (3-D) by defining
design guidelines and follow with their implementation in Step 4 and compliance checks
throughout Steps 5 (5-A) and 6 (6-A.ii).

Since fault tolerance deals with detecting random hardware faults and mitigating
them to prevent the impacts of Single-Event Upsets (SEUs), the techniques for this purpose
are not directly affected by whether AI is utilized. As a result, the recommended practices
for pre-existing safety-critical systems with FPGAs and PLDs still hold [31,62]. If HLS is
used, manual changes to the HDL-generated code might be needed, since HLS tools might
not support the native coding of fault tolerance directives.

As per the selection and the settings of the safety-critical design and V&V tools, which
start with the specifications in Step 3 (3-B) and extend to their actual usage and verification
in Steps 4 to 6, recommended practices for safety-critical systems without AI also remain
applicable for safety-related AI functions:

1. Ensuring that timing restrictions have been observed in pessimistic environmental
conditions in such a way as to prevent metastable behaviors [31,62]. This can be
achieved by means of timing analyses (e.g., maximum clock frequency constraints)
available in FPGA/PLD development suites, such as Intel Quartus Prime [63];

2. Disabling automatic optimizations during compilation, synthesis, and routing in order
to ensure that the fault-tolerant design introduced in HDL coding is not eliminated to
improve performance [31];

3. Guaranteeing that no automatic design decisions (e.g., latch inference, pinout changes)
have been taken during compilation, synthesis, and/or routing [31].

2.3. Contextualization of the Autonomous Vehicle Braking Control System Case Study

A case study involving the full lifecycle of an FPGA-based BCS solely relying on
supervised learning and explainable AI was selected to exercise the Safety ArtISt method
and assess to what extent it reaches the research’s presumed goals and contributions.
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The choice of the BCS was justified to allow the Safety ArtISt method to be utilized
and assessed in a real but not overly complex application for embedded systems. It was
assumed that the autonomous vehicle moves on a noninclined plane, in a single direction,
and along a single axis. Therefore, the vehicle can sense an obstacle ahead, anticipate a
potential collision, and brake before reaching such an obstacle. These operational context
constraints are depicted in Figure 5.
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The high-level architecture of the BCS, in turn, is presented in Figure 6. It shows that
the BCS has three inputs: (i.) the distance to its next obstacle (ahead), (ii.) the vehicle’s
current speed, and (iii.) the vehicle’s Guaranteed Emergency Braking Rate (GEBR). The
latter establishes the minimum deceleration that can be surely achieved by applying
the brakes at a given operational condition (e.g., wheel–surface adherence and braking
system integrity).
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The BCS periodically reads information from the distance and speed sensors and
decides, considering the GEBR that is applicable to the vehicle’s operation at that moment,
whether the brakes are applied so that the vehicle does not collide with an obstacle ahead.
It is assumed that the BCS receives GEBR-related information from an external safety-
critical system, referred to as “Safe GEBR Decision System” in Figure 6, which ensures that
the GEBR reflects the vehicle’s braking capacity at the given environmental and braking
integrity conditions.

Furthermore, even though BCSs are well implemented without AI by means of stan-
dardized Newtonian kinematics [64], the herein-explored AI-based solution was explored
for two reasons. Firstly, it allows comparing how safe AI is in relation to closed-form solu-
tions for the same problem. Secondly, since other types of AI variants (e.g., unsupervised
learning, reinforcement learning, knowledge-based systems) and software implementations
are covered in other ongoing case studies of the Safety ArtISt research project, focusing on
supervised learning and explainable learning on FPGAs allows evaluating the contribution
of the method towards building and ensuring the safety of systems with these AI variants.

Finally, the roles played by research team members in design and V&V activities were
attributed in such a way as to maximize the independence between designers, verifiers,
and validators, as recommended in current safety standards [4,6], while keeping each
researcher’s available workload within acceptable limits.
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3. Results

The objective of this section is to present the main results stemming from the appli-
cation of an iteration of the Safety ArtISt method on the BCS case study introduced in
Section 2.3. Each of its subsections is mapped onto one of the Safety ArtISt steps.

Further information on the case study as a whole is available in its technical research
report [65] and in the directory “EC4-FPGA_Braking” of the Safety ArtISt project’s GitHub
repository [66].

3.1. Remarks and Results of Step 1—System Specification

The initial H&R analyses of Step 1 were carried out with the quantitative risk analysis
method of IEC61508:2010, leading to the four SRs listed in Table 6 for the BCS.

Table 6. List of Safety Requirements (SR) for the BCS.

SR ID SR Description

SR 4.1 The BCS shall meet a SIL 4 target (THR < 10−8 failures per hour) in braking the
vehicle when there is a potential collision with an obstacle ahead.

SR 4.2 The BCS shall meet a SIL 3 target (THR < 10−7 failures per hour) in not applying
brakes when there is no potential collision with an obstacle ahead.

Afterward, the initial H&R analysis was refined with the HAZOP-based approach
detailed in Section 2.1. It included six different base models typical of supervised learning
with explainable AI: k-Nearest Neighbors (kNN), decision tree (DT), ANN, SVM, random
forest (RF), and other ensembles. A total of 376 scenarios involving potentially unsafe
situations from input processing and the features of each AI variant (e.g., hyperparameters
and performance metrics) were analyzed, leading to a set of 62 RSRs. These RSRs are
subdivided into eight groups:

1. Twenty-seven RSRs are applicable to the BCS regardless of the AI base model;
2. Six RSRs are applicable to the BCS only if at least one decision tree is utilized
3. Four RSRs are applicable to the BCS only if at least one kNN instance is utilized;
4. Five RSRs are applicable to the BCS only if at least one SVM instance is utilized;
5. Eight RSRs are applicable to the BCS only if at least one ANN instance is utilized;
6. Two RSRs are applicable to any ensemble (i.e., either RF or other ensemble);
7. Five RSRs are applicable to the BCS only if at least one RF is utilized;
8. Five RSRs are applicable to the BCS only if at least one ensemble except for RF

is utilized.

Among the general-purpose RSRs, it is worth highlighting that the BCS updates its
outputs at every 500 ms; otherwise, the BCS is led to a safe state. The response time of this
RSR was determined in such a way that the BCS was able to process sensing data while
still providing a fast enough response to trigger its brakes.

In addition to the RSRs, the HAZOP-based H&R analyses also allowed detailing
the internal architecture of the BCS, represented by the “BCS” black box in Figure 6, in
accordance with Figure 7. This diagram indicates that the BCS comprises a set of up to
“m” different FPGAs, each of which containing up to “nm” AI instances. Each AI instance
generates a probability for applying brakes (P(bcp(a, k)) for every AI instance a = {1, . . .,
nk} and every FPGA k = {1, . . ., m}), and a decision element collects these probabilities
and generates the FPGA’s ensemble decision (P(bcp(k)) for every FPGA k = {1, . . ., m}).
Afterward, the responses of all “m” FPGAs are combined by a majority voter, which
ultimately generates the brake command prediction (bcp) that is sent to the brake actuator.
The mandatory usage of multiple FPGAs is justified by the normative arguments and
constraints discussed in Section 2.2.
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The diagram in Figure 7 also includes a new input, referred to as “input_valid (iv)”, in
addition to those already depicted in Figure 6. The objective of this input is to indicate to
the BCS that the “distance (d)”, “speed (s)”, and GEBR “deceleration (gd)” inputs are stable
enough to be read by the BCS at a processing cycle, thus preventing unstable data from
being processed by the BCS. It is deemed that “input_valid (iv)” is obtainable by combining
control signals generated by the distance sensor, the speed sensor, and the safe GEBR
decision system in Figure 6.

3.2. Remarks and Results of Step 2—Input Datasets Selection and Analysis Specification

Given that Newtonian kinematics guide the braking of a vehicle, its equations were
chosen as the source to generate synthetic datasets for usage throughout the remainder of
the BCS lifecycle. The equations that were employed for that matter are based on the safe
braking model of IEEE 1474.1:2014 [64] for the braking of trains in metro and rail domains.

The following guidelines were followed to produce the datasets that were used in the
remainder of the case study:

1. The autonomous vehicle’s parameterization (e.g., mass, moment of inertia, aerody-
namic drag coefficient, acceleration, GEBR, and braking system behavior), as well as
environmental features (e.g., wind speed and air density), were defined for rail and
metro applications by considering the data of a train fleet of the São Paulo (Brazil)
Metro, which feature five different GEBR (gd) conditions: 1.395 m/s2, 1.1625 m/s2,
0.93 m/s2, 0.78 m/s2, and 0.65 m/s2 [65];

2. Distance and speed were constrained to typical operational conditions of the same
application domain. It was assumed that the distance between the vehicle and its next
obstacle remains within the interval [0 m; 2000 m] and that the vehicle’s speed ranges
from 0 m/s up to 29 m/s (104.4 km/h);

3. Commercial distance and speed sensors that match the domains defined in item “2”
were selected so that their measurement tolerances are also taken into account in the
dataset generation process [65].

The algorithm that describes the dataset generation is represented by the flowchart
in Figure 8. It indicates that data records are tuples of the type (d, s, gd, bcp) generated by
varying d, s, and gd within their domains, with steps of 10 m for d and 0.5 m/s steps for s,
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and exhaustively including all plausible combinations. Within the domains of d, s, and gd,
57,286 tuples are generated.
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The brake command prediction (bcp) is then set to “1” (apply brakes) if the vehicle’s
braking curve reaches the obstacle at the given conditions of d, s, and gd, or to “0” (not
apply brakes) otherwise. Afterward, positive or negative random noise of up to twice the
standard deviations (σ) of distance and speed sensors’ tolerances are added to the figures
of d and s in order to represent their intrinsic uncertainties.

Finally, another aspect of the dataset generation algorithm is the possibility of con-
figuring the proportion of data records with bcp = 0, hereinafter referred to as “pb0”. This
proportion can be set by choosing a setting “pb0_thres” within the open interval [0%; 90%),
The justification for the configurable “pb0” is to allow the fine-tuning of AI instances better
specialized in braking, since data records with bcp = 1 are scarcer than those with bcp = 0.
By decreasing pb0, data records with bcp = 0 are discarded and replaced by additional
records with bcp = 1. The upper limit of “pb0”, which is no higher than 90%, has a twofold
justification: (i.) a noise-free dataset has an 89.9% proportion of records with bcp = 0, and
(ii.) given the abundance of records with bcp = 0, it was not deemed relevant to increase pb0
even further for the BCS-related AI design.

A Python application was developed in accordance with the previous specification,
and its results were redundantly verified by another member of the Safety ArtISt team
who employed Microsoft Excel 2013 as a dual tool to perform the same processing. With
this procedure, the developed dataset generator was considered functionally correct, thus
leading the datasets generated with it to be adequate for the case study’s end application.

Another aspect that is worthy of highlighting in Step 2 is the identification of potential
corner cases in the datasets generated with the aforementioned tool. Two categories of
corner cases were considered relevant for the case study:
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1. Corner Cases (0, 1): This group includes data records classified with bcp = 0 based on
noise-free d and s, and gd but that would shift to bcp = 1 with their actual noisy d and
s figures. Data records of this corner case group are relevant in assessing whether the
SR 4.2 is indeed met by the BCS;

2. Corner Cases (1, 0): This group is the opposite of the previous one. It comprises data
records whose noise-free input data led to bcp = 1 and that would rather be classified
with bcp = 0 based on the actual noisy d and s figures. As a result, the records of this
group are important to evaluate the BCS compliance with the SR 4.1.

The percentage of records of both corner case groups varies with the proportion “pb0”.
For instance, datasets with pb0 in its upper limit of 89.9% feature shares of circa 0.18%
to 0.25% of their 57,286 records for each corner case group depending on vehicle-related
settings (e.g., mass). These proportions shift to 0.94% for (1, 0) and to 0.11% for (0, 1) if
pb0 is reduced to 50%. The increase in corner cases of the group (1, 0) and the decrease in
those of the group (0, 1) as pb0 is reduced are indeed expected. Given that more records
with bcp = 1 and fewer records with bcp = 0 will be within the dataset as pb0 is lowered, the
chance for meeting the criteria of the corner case group (1, 0) goes up whereas that for the
corner case group (0, 1) diminishes.

At the end of Step 2, 19 different datasets were generated for the remainder of the case
study. All of them share the same end application operational conditions (i.e., no changes
on vehicle and environment-related parameters) and differ on two main aspects: pb0 and
data randomness due to the inclusion of noises to d and s.

Seven datasets were reserved for 10-fold CV and AI training purposes: two different
datasets with pb0 = 89.9% (DatasetT&V and DatasetT&V2), two different datasets with
pb0 = 80% (DatasetStratified80v3 and DatasetStratified80v2), one dataset with pb0 = 65%
(DatasetStratified65), one dataset with pb0 = 55% (DatasetStratified55), and one dataset with
pb0 = 50% (DatasetStratified50).

Three additional datasets with pb0 = 89.9% were also generated to support the analysis
of corner cases: DatasetT1, DatasetT2, and DatasetT3. This proportion was chosen for this
analysis because it is deemed that, since pb0 approximates the rate of BCS processing
cycles at which brakes are applied, utilizing it would indicate that the BCS triggers the
brake commands in circa 10% of its processing cycles. This allows a reasonably better
approximation of an actual BCS for rail applications than with datasets with lower pb0.

The datasets DatasetT1, DatasetT2, and DatasetT3 are also used along with a set of
nine other datasets with other pb0 rates for two other objectives: performing the holdout
tests of the trained AI instances and providing supporting performance indicators for the
quantitative safety analysis. The nine datasets that were generated and used in addition to
DatasetT1, DatasetT2, and DatasetT3 are as follows: DatasetTestZ01 (pb0 = 1%), DatasetTestZ10
(pb0 = 10%), DatasetTestZ20 (pb0 = 20%), DatasetTestZ30 (pb0 = 30%), DatasetTestZ40 (pb0 = 40%),
DatasetTestZ50 (pb0 = 50%), DatasetTestZ60 (pb0 = 60%), DatasetTestZ70 (pb0 = 70%), and
DatasetTestZ80 (pb0 = 80%). The objective of using datasets with different pb0 rates is to
assess to what extent the SRs are affected by different operational conditions, ranging from
extremely pessimistic scenarios at which the brakes are frequently requested (pb0 = 1%) up
to scenarios at which the brake request rate is lower (pb0 = 89.9%).

3.3. Remarks and Results of Step 3—AI Preliminary Design

Activity 3-Pre was initially performed to assess the most promising AI base models
for the end application among all candidates raised in Step 1. For this purpose, these AI
base models were initially exercised in software with the infrastructure provided by the
Python-coded scikit-learn library (version 1.3.1) [67]. By means of CV and holdout tests
with the datasets defined in Step 2 (Section 3.2), it was verified that DTs outperformed
kNN, SVMs, and ANNs in accuracy, precision, recall, and specificity regardless of pb0.
These performance metrics are utilized in this research as per their definitions by James
et al. [68]. Moreover, since each DT was specialized in producing braking commands as
per the corresponding pb0 of its training dataset, building RFs by joining DTs trained with
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datasets of different pb0 settings was deemed an appropriate way to leverage the overall
BCS performance.

Activity 3-A started by assessing whether the direct HDL design or HLS would be
used in the target implementation of DTs and RFs for FPGAs. Given that HLS tools such as
Conifer [69,70] and LeFlow [71,72] are able to translate DTs and RFs coded in Python into
equivalent HDL models targeted to FPGAs, an HLS approach was chosen for the case study.
As a result, the initial BCS architecture of Figure 7 (Section 3.1) was refined considering
the three-level abstraction model advocated in the Safety ArtISt method and detailed in
Section 2.2.

Since the software and HLS levels are direct instantiations of the templates presented in
Figures 4 and 5 (Section 2.2) with BCS-specific datasets and AI features, special attention is
given to the final hardware architecture, achievable with the HLS byproducts and depicted
in Figure 9. The results obtained in 3-Pre allow defining that the BCS comprises m = 2
independent FPGAs for AI processing and that the number of AI instances for both FPGAs
(n1 and n2) is set to three, which means that each FPGA includes an RF with three DTs.
In this setup, the majority voter, referred to as “voting” in Figure 9, averages the braking
probabilities retrieved by both FPGAs, represented by “prob_mean”, and sets bcp to the
“active brakes” state whenever this probability is of at least 0.5. Given that “voting” tends
to require a simple design, it better suits a Complex PLD (CPLD) than an FPGA.
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The architecture in Figure 9 also reveals the following refinements related to FPGA
independence, processing stability, and trustworthiness:

1. Each FPGA/CPLD has its own clock signal (“clock_1”, “clock_2”, and “clock_voting”);
2. In addition to bcp, the BCS has two other outputs: “prob_mean”, which indicates the

probability that supported the bcp decision, and “prob_valid_mean”, which is detailed
in item “4”;

3. Each FPGA/CPLD enforces a safe state (by applying brakes) via Power-On Reset
(POR) and reaches an absorbing safe state whenever faults related to loss of com-
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munication with inputs (i.e., no periodic enabling of “input_valid”) and/or partner
FPGAs/CPLD. These directives exempt the need for a reset signal for all three pro-
grammable components in Figure 9, since only a cold restart is able to allow system
recovery from an availability perspective.

4. In order to cascade control flow data from the inputs up to the final “voting” stage,
all three programmable devices provide validity signals that enforce whether their
outputs have been recently updated. These include “valid_1.1” to “valid_1.3” for
each DT on FPGA 1, “valid_2.1” to “valid_2.3” for each DT on FPGA 2, “prob_valid_1”
for the FPGA 1 RF as a whole, “prob_valid_2” for the FPGA 2 RF as a whole, and
“prob_valid_mean” for “voting”. These signals allow not only detecting and mitigating
the lack of input activity on “input_valid” but also potential random faults that prevent
the proper operation of both FPGAs and the “voting” CPLD.

In activity 3-B, the tools and resources that are applicable to the remainder of the BCS
lifecycle are selected. These include the following items:

1. Anaconda 22.9.0 (with Python 3.9.15) to design the BCS DTs and RFs in software;
2. Conifer 0.3 to perform the HLS of DTs and RFs. Conifer was preferred over LeFlow

because it has straightforward, native support for translating RFs coded as instances
of Python’s scikit-learn class RandomForestClassifier into VHDL;

3. AMD/Xilinx Vivado 2022.2 to provide the needed infrastructure for built-in tests and
simulations performed by Conifer during the HLS process;

4. Intel/Altera Quartus Prime Lite 22.1 Std 0.915 for additional VHDL design (e.g., “vot-
ing” CPLD), timing analyses, and the programming of Intel/Altera devices for tests;

5. Intel ModelSim Starter Edition 20.1.1.720 for simulations. By using it along with
AMD/Xilinx Vivado, the performance of the VHDL-coded AI generated on the HLS
can be cross-checked, thus improving the confidence of the results;

6. Digilent AnalogDiscovery and Digilent Waveforms 3.20.1 to generate input signals
during physical tests.

Other relevant settings and practices defined throughout activities 3-B to 3-D, in turn,
comprise the following items:

1. Ensuring compliance with VHDL 2008 [31,62];
2. Ensuring that the final VHDL code, including the HLS-generated one, adheres to

fault-tolerant design practice defined by Lange et al. [62] and Silva Neto et al. [31].
Since Conifer was not designed with fault tolerance in mind, manual code changes
might be needed;

3. For Intel/Altera Quartus Prime, turning off optimizations at compilation, synthesis,
and routing to avoid unwanted changes to the as-designed fault-tolerant design.

3.4. Remarks and Results of Step 4—AI Detailed Design

Based on the design decisions in Step 3, the AI instances were initially developed in
software by using the scikit-learn Python library (version 1.3.1). Since its RandomForest-
Classifier only allows building DTs with the same depth, the approach that was used to
build RFs with DTs of different depths followed two steps: (i.) designing each DT as an in-
stance of scikit-learn’s DecisionTreeClassifier class and (ii.) creating instances of the scikit-learn
RandomForestClassifier class with the DTs mapped onto each RF based on their respective
performance metrics. The second step is needed to allow the HLS via Conifer, since Conifer
does not support HLS straight from instances of the DecisionTreeClassifier class. A Python
function called “convert_tree_to_random_fores” was developed for this purpose [65].

The design of the DTs was carried out with 10-fold CV with the corresponding datasets
of Step 2 (Section 3.2) and by performing an exhaustive grid search on the domains of
eight hyperparameters: criterion, splitter, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, and max_features [73]. Special attention was given
to limiting the depth of the DTs to up to 10 in such a way as to convey DTs that re-
main explainable and with reasonable resource requirements for FPGA synthesis after the
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HLS. Preliminary tests with Conifer also indicated that, on a computer with Intel i7-7700
(3.6 GHz × 4 cores; 8 threads) and 12 GB RAM, the HLS succeeded only for RFs with DTs
no deeper than 15 levels; otherwise, Conifer crashed.

A total of eight different DTs, shown in Table 7, were designed with the previous
workflow by advancing activity 5-B to Step 4. DTs 1 and 5 were iteratively discarded
due to overly high depths and were ultimately replaced by DT 6, which had a similar
performance [65] for the same “pb0” setting. Furthermore, Table 7 also indicates that, by
means of software-based holdout tests with DatasetT3 (“pb0” = 89.9%), the DTs designed
with datasets of lower “pb0” have higher recall than those designed with datasets of higher
“pb0”. This indicates that the latter DTs tend to apply brakes more frequently than the ones
with higher “pb0”, which is expected given the higher abundance of data records leaning
towards the need for brakes. On the other hand, and for a complementary reason, the DTs
of higher “pb0” are significantly better in precision, which plays a relevant role in avoiding
unneeded brake applications posed by the lower “pb0” counterparts.

Table 7. DTs, CV, and Training Datasets and Holdout Test Performance with DatasetT3.

DT ID CV and Training Dataset (“pb0”) Precision Recall Depth

1 DatasetT&V (89.9%) 96.9% 96.9% 16
2 DatasetStratified80v3 (80%) 92.1% 97.8% 8
3 DatasetStratified65 (65%) 90.6% 99.0% 8
4 DatasetStratified55 (55%) 79.7% 99.5% 6
5 DatasetT&V (89.9%) 96.6% 96.3% 13
6 DatasetT&V2 (89.9%) 97.0% 96.7% 9
7 DatasetStratified80v2 (80%) 94.2% 98.5% 9
8 DatasetStratified50 (50%) 55.3% 99.6% 3

Based on the results presented in Table 7, the RFs of each of the two BCS FPGAs
depicted in Figure 9 (Section 3.3) were designed with the principle of maximizing the overall
recall while still achieving good precision. This was reached through experimentation
and led to making each RF comprise one DT with high recall and low precision, one DT
with average recall and average precision, and one DT with low recall and high precision.
Therefore, the RF of FPGA 1, hereinafter referred to as “RF 1”, includes DTs 2, 3, and 4,
whereas the RF of FPGA 2, hereinafter referred to as “RF 2”, comprises DTs 6, 7, and 8.

Holdout tests with DatasetT3 yielded a precision of 90.4% and a recall of 99.4% for
RF 1, as well as a precision of 94.2% and a recall of 98.8% for RF 2. These results indicate
that the recall of both RFs is significantly close to that of the DTs with the highest recalls,
whereas the precision approached that of the middling DT.

Step 4 also comprised the VHDL design of the “voting” CPLD in accordance with the
functions and safety principles detailed for it in Step 3 (Section 3.3). However, since the
design of voting is not based on AI nor contains any other cutting-edge techniques except
for classic safety-critical design for CPLDs, it is not further detailed in this paper.

3.5. Remarks and Results of Step 5—AI Training and AI Preliminary V&V

Step 5 started with the HLS of the RFs generated in Step 4. The HLS was performed
with the aid of Conifer’s “Python to VHDL” module, which translates Python-coded RFs
into VHDL and simulates the resulting VHDL code with AMD/Xilinx Vivado with a given
input dataset so that both implementations can be compared.

In order to feed Conifer with the BCS RFs coded as instances of scikit-learn’s Random-
ForestClassifier class, one of the needed settings for Conifer is the fixed-point precision
employed to translate the numeric inputs and outputs into VHDL numerical and logical
types. The notation hereinafter utilized for the fixed-point precision is ap_fixed<n,i>, with
n representing the sum of bits for both the integer and decimal parts and i depicting the
integer part’s bit width. As a result, the width of the decimal part equals n-i.
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Conifer imposes two restrictions in setting ap_fixed<n,i>: the most significant bit of the
integer part represents the number’s sign (i.e., positive or negative), and the settings of n
and i are the same for every variable. Based on these restrictions and on the domains of all
BCS inputs and outputs, the integer part mandatorily features i = 12 bits, since 11 bits are
needed to represent the upper range of the distance (d) measurements within [0 m; 2000 m]
and an additional bit is needed for the sign. The decimal part n-i, in turn, was defined with
the aid of a sensitivity analysis at which it was varied within the range [6; 12] in order to
analyze the following performance indicators:

1. Number of Wrong Predictions (#WP): This indicator represents the number of predictions
for which the HLS-generated VHDL produced an outcome that differs from the
originating software implementation;

2. Percentage of Wrong Predictions (%WP): This indicator represents the percentage of the
test dataset records that were added to #WP, as defined in Equation (1):

%WP =
#WP

# Records on Test Dataset
(1)

3. The 75th Percentile Absolute Error (AE75): This indicator represents the 75th percentile
of the absolute errors in the braking output probability generated by the RF. It was
chosen with the objective of assessing the degree to which the RF output probability
is affected at a given n-i decimal bit width.

The results presented in Table 8 by exercising RF 1 with DatasetT3 indicate that
ap_fixed<24,12> provides no prediction errors at minimum AE75 ratings and, thus, repre-
sents an optimal setting in achieving the same performance of its software counterpart
while keeping the needed resources for FPGA synthesis at a minimum for this perfor-
mance. With all other ap_fixed<n,i> settings, #WP is not null, thus indicating that the HLS
introduced additional errors with regard to the original software implementation.

Table 8. Performance Results to Optimize ap_fixed<n,i>—Tests with RF 1 and DatasetT3.

ap_fixed<n,i> #WP %WP (%) AE75

ap_fixed<18,12> 44 0.077% 0.01346
ap_fixed<19,12> 25 0.044% 0.00727
ap_fixed<20,12> 19 0.033% 0.00346
ap_fixed<21,12> 6 0.010% 0.00157
ap_fixed<22,12> 5 0.008% 0.00078
ap_fixed<23,12> 2 0.003% 0.00042
ap_fixed<24,12> 0 0% 0.00020

The analysis of ap_fixed<n,i> also allowed identifying that the quantity of FPGA Look-
Up Tables (LUTs) and registers linearly increases with n and i = 12, as shown in Figure 10
with synthesis data generated with AMD/Xilinx Vivado for the FPGA AMD/Xilinx Spartan
7 XC7S100FGGA484. Furthermore, Intel Quartus Prime also evidenced that the Intel/Altera
FPGA Cyclone V 5CEBA4F23C7N, available at terasIC’s DE0-CV experimental board,
would suffice in fitting RF 1, RF 2, and voting with ap_fixed<24,12>, provided the occupancy
rates presented in Table 9 are sufficiently low.

After the HLS was performed with ap_fixed<24,12>, the source code generated by
Conifer was inspected in order to assess its functional adequacy and its robustness in
dealing with fault tolerance. Each RF was structured in the seven VHDL entities depicted
in Figure 11. In this diagram, an arrow directed from “A” to “B” indicates that “A”
instantiates or refers to “B” at least once within its design.
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The RF design’s top entity is “BDTTop”, which instantiates two other entities: “BDT”
(Boosted Decision Tree) and “Arrays0”. “BDT” describes the overall structure of the RF,
whereas “Arrays0” comprises the numeric parameters that characterize each DT of the RF
(e.g., interconnections among nodes, input thresholds for decision-making per node, and
outputs per node). “BDT”, in turn, depends on two other VHDL entities, called “Tree” and
“AddReduce”. “Tree” represents a DT and is then instantiated three times per BCS RF along
with the corresponding parameterization obtained via “Arrays0”. “AddReduce” combines
the outputs of each DT and generates the RF ensemble outputs. Finally, all aforementioned
entities also depend on the entities “Constants” and “Types”. “Constants” provides the
top-level hyperparameters of the RF, and both also contain the definition of data types.

By means of a binary comparison of both RFs’ VHDL codes, RF 1 and RF 2 only differ
in the parameterization within the entities “Arrays0” and “Constants”. In addition to the
overlapping of five out of seven entities, the VHDL code of all entities is not overly long or
complex, thus allowing all safety assurance activities to be performed straight at the VHDL
level, as opposed to adding an intermediate step at the software level.
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In activity 5-A, code inspection allowed confirming the correctness of the VHDL code
of both RFs and obtaining a set of 790 explainable decision rules that define the behavior of
the BCS as a whole: 329 for RF 1 and 461 for RF 2. It is worth noting that these rules were
only partially optimized and still have overlapping domains that give room for further
summarization. Moreover, the compliance to fault tolerance [31,62] was checked in the
entities “Tree” and “AddReduce”, which were chosen due to their core roles within the
RFs. The results indicate that, despite coding issues such as unconnected inputs/outputs,
feedthrough, unused hardware components, and unnamed processes, these do not pose
safety-critical concerns.

Since activity 5-B was performed in advance during Step 4, Step 5 was followed with
activity 5-C. It started with analyzing the maximum clock frequencies for each component
of Figure 9 (Section 3.3) for the Intel/Altera FPGA Cyclone V 5CEBA4F23C7N after turning
off synthesis and routing optimizations on Intel Quartus Prime and considering the most
pessimistic scenario of its Timing Analysis tool, called “SLOW 1100 mV 85C”. The obtained
clock frequencies were 101 MHz for voting, 38MHz for RF 1, and 24 MHz for RF 2 after full
BCS integration. Since the VHDL code generated by Conifer requires a total of “max_depth
+ 5” clock cycles to update its outputs after reading a set of valid inputs, the lower bound
constraint of RF 2 would still allow the BCS to meet its response time RSR.

Activity 5-C also included a series of experiments to assess the overall performance
of the BCS by integrating both RFs and voting. These experiments were carried out in
two major steps. The first one was by means of simulations aided by Intel ModelSim, for
which the BCS is provided with DatasetT1, DatasetT2, and DatasetT3 so that the overall
BCS dynamics and performance ratings can be analyzed. The experiments revealed proper
functional and safety dynamics, and the performance ratings presented in Table 10 show
that, in comparison with the results of each RF (Section 3.4), the BCS reached an average
recall that nears that of the highest scoring RF (RF 2), while achieving a precision that is
the average of the indices reached by both RFs. Specificity is also significantly high and
consistent, at 99.1%.

Table 10. BCS Performance in Holdout Tests with DatasetT1, DatasetT2, and DatasetT3.

Performance
Indicator

Results
DatasetT1 DatasetT2 DatasetT3 Average

Accuracy 99.2% 99.1% 99.1% 99.1%
Precision 92.8% 92.5% 92.5% 92.6%

Recall 99.3% 99.3% 99.4% 99.4%
f1-score 0.960 0.958 0.958 0.959

Specificity 99.1% 99.1% 99.1% 99.1%

The impact of pb0 was also assessed by repeating the same simulated experiments
with the datasets DatasetTestZ01 (pb0 = 1%), DatasetTestZ10 (pb0 = 10%), DatasetTestZ20
(pb0 = 20%), DatasetTestZ30 (pb0 = 30%), DatasetTestZ40 (pb0 = 40%), DatasetTestZ50 (pb0 = 50%),
DatasetTestZ60 (pb0 = 60%), DatasetTestZ70 (pb0 = 70%), and DatasetTestZ80 (pb0 = 80%). The
results are plotted in Figure 12 along with the “average” results in Table 10, therein referred
to as scenario pb0 = 89.9%.

Figure 12 shows that recall achieved the smallest drifts with the different pb0 settings,
with a difference no higher than roundabout 0.1% across experiments. Specificity also
showed differences of approximately 0.1% from pb0 = 89.9% up to pb0 = 20% and experi-
enced an increase of circa 0.2% in the two lowest pb0 settings (10% and 1%). These results
indicate that the BCS has good confidence in effectively classifying data records that are
distant from corner cases, i.e., scenarios that certainly require brakes to be applied (recall)
and scenarios in which the brakes are certainly not needed (specificity).

On the other hand, accuracy, precision, and f1-score increased more than the other
performance metrics as pb0 decreased. The accuracy growth was fairly constant as pb0
reduced, peaking at an improvement of roundabout 0.3% from pb0 = 89.9% up to pb0 = 1%.
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The changes in precision, in turn, were not only greater in value, with an increase of
approximately 7.3% from pb0 = 89.9% up to pb0 = 1%, but the growth rate also differed
with pb0, as the precision had a steeper increase when transitioning between two high pb0
settings than between two pb0 low settings. Finally, the f1-score followed a trend that is
similar to the precision because, since it depends on both precision and recall [68], and the
latter remained virtually unchanged: precision dominated its change rate with pb0. The
behavior of all three performance metrics is expected because, since datasets with lower
pb0 sport more records indicating the need for brakes, and these are known to be typically
well classified as per the high recall ratings across all pb0, accuracy, precision, and f1-score
are also likely to increase.
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The second experimental step involved a physical test session with two main objectives:
(i.) assessing whether the simulated results are indeed observed in programmed FPGAs and
(ii.) evaluating systems-level safety-critical mechanisms unrelated to AI, such as the partial
and permanent loss of communication with at least one of the RFs. This was achieved with
a built-in test bench whose test scenarios include not only a subset of DatasetT3 but also
fault injection means that emulate communication faults related to the signals input_valid,
prob_valid_1, and prob_valid_2.

The physical tests were performed in a terasIC DE0-CV board (with Intel/Altera
FPGA Cyclone V 5CEBA4F23C7N), whose programming included the entire BCS and the
aforementioned automated test bench, along with Digilent AnalogDiscovery and Digital
Waveforms as clock-generating tools. The physical tests’ results corroborate those obtained
in simulations. It is also worth highlighting that, given the objectives of the physical tests,
it is not deemed that the usage of a single FPGA voids the validity of the collected evidence
for the distributed architecture of Figure 9 (Section 3.3).

Finally, additional simulations were also performed with the objective of assessing
how the BCS performance is affected when it is strictly subject to processing the corner case
groups “Corner Cases (0, 1)” and ‘Corner Cases (1, 0)”. For that purpose, subsets of DatasetT1,
DatasetT2, and DatasetT3 for each corner case category were generated and utilized as input
stimuli for the same test benches utilized in the holdout tests’ simulations.

The performance metrics of the corner case simulations are presented in Table 11,
which is structured in three columns: the first one for the category “Corner Cases (0, 1)”,
the second one for the category “Corner Cases (1, 0)”, and the third one for the merging of
both categories. For readability purposes, the results therein presented correspond to the
weighted averages of the corner cases from the three datasets (DatasetT1, DatasetT2, and
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DatasetT3). Performance metrics signaled as “N/A” (not applicable) correspond to indices
that cannot be mathematically calculated due to the features of the corner case categories.

Table 11. BCS Performance with Corner Case Partitions of DatasetT1, DatasetT2, and DatasetT3.

Performance
Indicator

Corner Cases Average Results
(0, 1) (1, 0) All

Accuracy 9.4% 75.7% 43.8%
Precision 0.0% 100.0% 47.3%

Recall N/A 75.7% 75.7%
f1-score N/A 0.862 0.583

Specificity 9.4% N/A 9.4%

The indices presented in Table 10 are highly suggestive of potentially unsafe behavior
for the BCS when processing input tuples (d, s, gd) that are near the boundaries of either
applying or releasing brakes. On the one hand, the low specificity with Corner Cases (0, 1)
indicates that brakes might be frequently applied when they are still not necessary. On the
other hand, the recall with Corner Cases (1, 0) suggests that the probability of not applying
brakes immediately when they are needed (24.3%) is nearly 40 times higher than that of the
overall scenarios of Table 10 (0.6%).

Taking into account that assessing whether the previous indices indeed translate into
unsafe behavior depends on how frequently the BCS is requested, a quantitative safety
analysis is performed in advance to assess whether the BCS is indeed unsafe. Since this
analysis does not take into account the unsafe events stemming from hardware failure
modes, as these would only be assessed in Step 6, the quantitative safety model herein
explored the lower bounds of the unsafe failure rates of each SR with the systematic unsafe
behavior of AI in misclassifying bcp.

Two unsafe failure rates are relevant for safety assurance purposes:

1. Unsafe AI Failure Rate for Not Applying Brakes (λU,AI, no_brake): This failure rate, ex-
pressed by Equation (2), indicates how frequently the BCS misses applying brakes
when needed. It is needed, thus, to evaluate the BCS compliance to SR 4.1;

2. Unsafe AI Failure Rate for Applying Unnecessary Brakes (λU,AI,unnec_brake): This failure
rate, described by Equation (3), quantifies how frequently the BCS applies brakes
when they are not needed. It is important, thus, to evaluate whether SR 4.2 is met.

λU,AI, no_brake = nO,h . (1 − recall)(nerr,tol+1) (2)

λU,AI, no_brake = nO,h . (1 − speci f icity)(nerr,tol+1) (3)

In both equations, “recall” and “specificity” refer to the homonymous performance
metrics at a given operational scenario. Moreover, the parameter nerr,tol indicates the
number of wrong brake control predictions (bcp) that is tolerated by the BCS at each
operating hour. This parameter was added to Equations (2) and (3) in such a way that, if
the failure rates λU,AI, no_brake and λU,AI,unnec_brake do not meet the safety requirements SR
4.1 and SR 4.2 if nerr,tol = 0, it is possible to assess to what extent a higher nerr,tol would be
acceptable from a risk perspective. Finally nO,h indicates the number of outputs generated
by the BCS per hour. It equals the inverse of its 500 ms processing cycle, i.e., 7200 outputs
per hour.

Therefore, Equations (2) and (3) were initially exercised by making nerr,tol = 0 and
utilizing the recall and specificity figures of all pb0 and corner case scenarios depicted in
Figure 12 and Table 11. Neither case allowed achieving λU,AI, no_brake and λU,AI,unnec_brake
lower than the corresponding target THRs of SR 4.1 and SR 4.2, respectively. This result
corroborates the initial remarks raised during the corner case analyses.

The minimum figures of nerr,tol that allow meeting the target THRs of both SR 4.1
and SR 4.2 are presented in Table 12, along with their corresponding unsafe failure rates
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λU,AI, no_brake and λU,AI,unnec_brake. They indicate that the BCS is potentially safe only if at
least six classification errors of each type are tolerated per operating hour regardless of pb0.
A minor exception occurs for SR 4.2 and pb0 = 1%, for which the target THR is achieved by
tolerating one less error.

Table 12. Final Results of nerr,tol , λU,AI,no_brake, and λU,AI,unnec_brake at each Operational Scenario.

Operational Scenario
SR 4.1 SR 4.2

nerr,tol λU,AI, no_brake nerr,tol λU,AI,unnec_brake

pb0 = 89.9%—Only Corner Cases 20 3.69178 × 10−9 253 9.62687 × 10−9

pb0 = 89.9%—All Data Records 6 4.77109 × 10−10 6 3.52228 × 10−9

pb0 = 80.0% 6 1.48530 × 10−10 6 3.18352 × 10−9

pb0 = 70.0% 6 2.05412 × 10−10 6 3.83331 × 10−9

pb0 = 60.0% 6 1.15057 × 10−10 6 4.10625 × 10−9

pb0 = 50.0% 6 1.37022 × 10−10 6 3.26103 × 10−9

pb0 = 40.0% 6 1.48530 × 10−10 6 3.91335 × 10−9

pb0 = 30.0% 6 1.40232 × 10−10 6 2.70740 × 10−9

pb0 = 20.0% 6 1.41257 × 10−10 6 2.49192 × 10−9

pb0 = 10.0% 6 1.80814 × 10−10 6 7.17302 × 10−10

pb0 = 1.0% 6 3.11367 × 10−10 5 2.85732 × 10−8

Finally, in a pessimistic operational scenario in which the BCS is strictly subject to
corner case data, there is a significant leap in nerr,tol . At least 20 hourly classification errors
of not applying brakes when needed are tolerated to meet SR 4.1, whereas a minimum of
253 misapplications of brakes per hour are tolerated to accomplish SR 4.2.

Given that the thresholds of nerr,tol are not deemed acceptable from a safety perspective,
notably considering that Newtonian-based BCSs implemented in commercial train control
systems that adhere to IEEE 1474-1:2004 [64] are able to achieve their safety goals without
tolerating faults on braking commands, the AI-based BCS explored in this case study is
deemed unsafe. This closes the iteration of the Safety ArtISt method and triggers the
assessment of the safety issues’ root causes so that the design is reviewed in a new iteration.
This discussion is covered, along with other themes, in Section 4.

4. Discussion

The BCS case study allowed exercising the Safety ArtISt method’s capability in guiding
the lifecycle of a system with safety-critical AI embedded in FPGAs by means of a safety-
assurance-oriented approach. The workflow and results detailed throughout Section 3
exemplify the importance of the Safety ArtISt method, along with the dynamics of its steps,
activities, and recommended practices, in iteratively building evidence-based arguments
that allow ascertaining whether a system meets its qualitative and quantitative safety
targets with the aid of analyses, simulations, and physical experiments. Hence, it goes
beyond pre-existing research efforts involving safety-critical systems with FPGA-based
AI, whose focus is on detailing AI design and functional performance while falling short
of demonstrating full compliance with safety requirements that take into account both
operational and long-term fault tolerance aspects [42–47].

Specifically with regard to AI design with FPGAs, the Safety ArtISt method unveiled
the importance of design tradeoffs that are usually not in hindsight for safety practitioners.
Since AI base models are based on models that rely on numeric processing, the representa-
tion of these numbers within the FPGA-implemented AI plays an important role in how
accurately the calculations are performed, thus affecting both performance and safety. As a
result, the numeric precision is selected in such a way as to minimize negative collateral
impact over safety while remaining within reasonable limits for synthesis at a target FPGA
that satisfies the end application cost and performance constraints.

Given that software-based implementations boast significantly high numeric precision,
they can be utilized as a reference for optimizing the settings for their FPGA-targeted ver-
sions. This becomes an easier and even more natural path if HLS is used, as well-established
AI software models are mandatorily built beforehand. For instance, if fixed-point precision
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is chosen, the recommended practice is that the bit width is increased in such a way that
calculation errors are minimized by comparing the results of holdout tests carried out both
in software and in programmable hardware. In the BCS case study, the results presented in
Section 3.5 (Table 8) evidence that the discrepancies among reference implementations at
software and their VHDL-translated counterparts were sharply reduced by increasing the
size of fixed-point precision decimal part from 6 to 12 bits while keeping the integer part at
12 bits due to the domain of variables. With 12 bits for decimal representation, the VHDL-
coded AI led to the very same outputs predicted at the software level, and the underlying
probabilities that back these results up deviated circa 0.2% from the software results at the
75th percentile of the entire holdout test dataset. The needed resources for synthesizing
the BCS FPGAs experienced a linear increase with the better decimal resolution—still well
within the limits for the target FPGAs.

The Safety ArtISt guidelines in HLS have also been evidenced as a relevant contribu-
tion towards building safety-critical systems with FPGA-based AI and justifying whether
they are safe. In addition to the aforementioned benefits of supporting the fine-tuning of
numeric representation on FPGAs, HLS also allows a quicker assessment of different AI
base models that are preliminarily feasible for the project design, so that the most promising
alternatives are indeed selected for an in-depth, hardware-oriented design. Once HLS
tools such as Conifer, utilized in the BCS case study, translate projects coded in software
with well-established AI libraries (e.g., Python’s scikit-learn) to HDLs, prototyping the
safety-critical can be performed in a rather straightforward way.

On the BCS case study, six different AI base models were initially considered for the
design: kNN, DT, SVM, ANN, RF, and ensembles of components of different types. The
HLS allowed exercising all alternatives in the early design, and DTs and RFs were chosen
as the preferable candidates for the detailed FPGA-oriented hardware design due to their
overall better performance and intrinsic explainability. The better performance achieved
with DTs and RFs when compared with the other candidates translates into a smaller
exposure rate of the BCS to the two types of unsafe scenarios the BCS is subject to, i.e., not
applying brakes when necessary and applying brakes excessively when unnecessary.

Finally, the BCS case study also revealed a relevant tradeoff between the frequency
at which an AI-based safety-critical function is requested and the performance that is
achieved by the safety-critical AI. This relationship is that, given a target SIL/THR, the
higher the request rate of a safety function is, the further the performance requirements of
safety-critical AI are pushed.

Since the studied BCS is demanded rather intensively, at a rate of one new output
per 500 ms, not even the high performance ratings of the BCS allowed for meeting its
safety requirements. Despite the BCS boasting at least 99.4% recall, 99.1% specificity, 99.1%
accuracy, and 92.6% precision, it would only meet its safety requirements if at least six
braking classification errors of each type were acceptable per operation hour.

Furthermore, the situation becomes even more challenging considering the significant
performance drop when the BCS is subject to corner case inputs. For these, the BCS
reaches only 75.7% recall, 47.3% precision, 43.8% accuracy, and 9.4% specificity, leading to
a pessimistic scenario at which 20 improper lacks of braking commands and 203 unduly
brake applications per hour should be tolerated so as to accomplish the SRs.

The previous results indicate not only a subpar performance when compared with non-
AI, Newtonian-kinematics-based solutions utilized for the same purpose in commercial
train control systems [64] but also a major conclusion on using safety-critical AI—be it
within FPGAs or processor-based.

The usage of AI for safety-critical functions with high SIL/THR targets and high
demand might not be even technically feasible, given that an exceedingly high performance
may either not be achievable, or may be attainable without proper generalization due to
e.g., overfitting to specific scenarios. It is also worth noting that the BCS case study with
Safety ArtISt allowed reaching this general conclusion with evidence collected early in the
V&V process, thus saving resources in exhaustive and time-consuming activities that had
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not been performed up until the detection point (e.g., effects of hardware failure modes,
exhaustive compliance to fault tolerance, and formal AI reachability).

The design and the safety analysis of AI-based BCSs were also covered in the recent
literature. Most references focus on BCSs relying on neural networks verified by means of
reachability analyses and miss the demonstration of compliance to long-term quantitative
safety targets. In the research papers by Tran et al. [74] and Xiang et al. [75], BCSs relying
on reinforcement learning and deep neural networks were formally analyzed and led to
conclusions that supported the BCSs provided a safe-by-design response given a time
window before the brakes were applied (e.g., 5 s). Socha et al. [76], in turn, utilized a safe
envelope not based on AI to cover wrong braking commands generated by neural networks.
Finally, Cleaveland et al. [77] identified that their neural network BCS remained formally
safe only if specific mathematical properties were held in the target application.

Future work stemming from this research has two main avenues. The first one com-
prises potential attempts to circumvent the safety issues of the BCS designed in Section 3
while retaining the use of AI. These include, but are not limited to, utilizing deterministic
safety envelopes [1], adding other AI elements other than the two current RFs, and, if suc-
cessful, augmenting data collection and testing strategies with a physical prototype. This
prototype would involve installing sensors on a vehicle and exercising forward movements
as per Figure 5 with initial distances and speeds chosen at random within their domains.
The second one is general to the Safety ArtISt method and involves exercising it with other
AI base models and in other application domains (e.g., medical systems, safety-critical
supervision, and other vehicle control functions).

5. Conclusions

The objectives of this paper were to present the Safety ArtISt method and illustrate
its application in a safety-critical Braking Control System (BCS) for autonomous vehicles
whose safety-critical functions rely on AI implemented in FPGAs. These objectives were
defined based on four high-level goals that outline the expected contributions of the Safety
ArtISt research project as a whole:

1. Showing the potential of the Safety ArtISt method in being a cost-effective, practitioner-
oriented safety assurance lifecycle for AI-based systems that fills gaps of pre-existing
safety assurance methods in the literature [1];

2. Defining safety assurance activities for AI-based systems and illustrating their appli-
cation and relevance for safety-critical AI relying on FPGAs;

3. Building quantitative safety models for AI-based systems and analyzing them;
4. Drawing conclusions as to what extent safety-critical AI can be utilized with regard to

AI specificities and the safety-critical application mission profile.

From a conceptual standpoint, contributions 1 and 2 stem from Safety ArtISt clearly
identifying recommended design and V&V practices for several AI variant methods, thus
going beyond technology-agnostic safety assurance approaches for AI-based systems, such
as the ANSI UL4600:2020 [34], as well as research efforts focused on specific application
domains [8,37,40] or AI variants [36–41]. Moreover, its cost-effectiveness is reflected in the
subdivision of its V&V activities into two steps: “AI Preliminary V&V”, which allows for
identifying blocking safety issues with simplified yet important analyses of AI performance
and fault tolerance sampling, and “AI Detailed V&V”, whose costly, exhaustive analyses are
triggered only if the “AI Preliminary V&V” is successful. This subdivision is not explored in
other existing safety assurance methods [8,36–41].

The BCS case study also played a relevant role in supporting the novelty related
to items 1 and 2. In order to build the BCS as a system with two FPGAs, each of which
synthesized with HLS featuring an RF with three different DTs, along with a majority voting
CPLD, several practices from the Safety ArtISt were instantiated in detail. These involved
(i.) building, parameterizing, and analyzing datasets for training and testing; (ii.) analyzing
and choosing AI variants for the safety-critical systems; (iii.) systematizing a framework
for a safe HLS; (iv.) incorporating fault-tolerant design practice; and (v.) assessing AI
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performance in regular operation and in corner cases. Specifically for FPGAs, it was
possible to analyze the role played by numeric representation (e.g., fixed-point precision)
in improving safety while meeting FPGA cost and functional constraints, as well as the
iterative refinement of FPGA design when using HLS.

The results obtained in the case study are directly mapped to contributions 3 and 4.
The quantitative safety modeling of the BCS reveals that, despite overall high performance
ratings (at least 99.4% recall, 99.1% specificity, 99.1% accuracy, and 92.6% precision), the
BCS does not meet its quantitative safety requirements due to the high rate at which the
safety-critical functions are requested (once every 500 ms). This result leads to a general
conclusion that the usage of AI in safety-critical systems depends on a tradeoff between the
safety-critical function targets and their mission profile, regardless of FPGA or processor-
based AI implementations. For safety-critical systems of high demand, the performance
goals for AI might be exceedingly high to the point of making its usage unattainable or at
least severely restricting it for specific scenarios, given the potential lack of generalization
caused by, e.g., overfitting to reach high performance. It is also worth noting that these
conclusions were all reached during the BCS “AI Preliminary V&V”, which reinforces the
cost-effectiveness of the Safety ArtISt method in an early unveiling of safety issues, as per
contribution 1.

Finally, future work related to improving the BCS design and applying the Safety ArtISt
in case studies with different AI base models and application domains was also discussed.
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