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Abstract: Deep Reinforcement Learning is a key technology for the diagnosis-oriented medical
dialogue system, determining the type of disease according to the patient’s utterances. The existing
dialogue models for disease diagnosis cannot achieve good performance due to the large number of
symptoms and diseases. In this paper, we propose a knowledge-enhanced hierarchical reinforcement
learning model for strategy learning in the medical dialogue system for disease diagnosis. Our
hierarchical strategy alleviates the problem of a large action space in reinforcement learning. In
addition, the knowledge enhancement module integrates a learnable disease–symptom relationship
matrix and medical knowledge graph into the hierarchical strategy for higher diagnosis success rate.
Our proposed model has been proved to be effective on a medical dialogue dataset for automatic
disease diagnosis.

Keywords: automatic disease diagnosis; medical dialogue system; hierarchical reinforcement learning;
deep Q network; medical knowledge graph

1. Introduction

Intelligent medical technology is gaining more and more attention because of its ability
to relieve physicians’ work pressure and improve work efficiency, and has achieved excel-
lent results in various fields such as medical text summarization [1–3], medical QA [4–6]
and biomedical information extraction [7–9]. At present, machine learning models have
been widely used in disease diagnosis. Siddhartha et al. [10] and Finale et al. [11] have
achieved promising results on disease recognition using electronic medical records and
supervised learning models.

With the development of deep learning techniques, task-oriented dialogue has been
widely used in restaurant reservation [12], movie reservation [13] and online shopping [14].
In the medical realm, scholars have proposed dialogue models for automatic disease
diagnosis. Specifically, the disease diagnosis is regarded as a Markov decision process, and
a dialogue model is employed to collect symptoms through interacting with the patient,
and thus reducing the great efforts of building an electronic medical record for each disease.
The dialogue system can not only provide convenience for patients, but also provide
preliminary diagnosis for doctors’ consultation.

Policy learning is the key technology for dialogue-based disease diagnosis, and it
is also widely used in task-oriented dialogue systems [15–17]. However, the previous
methods have the following drawbacks.

Firstly, most existing models are based on single-layer reinforcement learning strate-
gies that treat all the diseases and their associated symptoms equally. Wei et al. [18] regards
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the symptom acquisition process of multiple rounds of consultation between the agent
and the patient as a Markov decision process, and utilizes the reinforcement learning
algorithm for training. But when the number of diseases and symptoms is too large, the
single-layer strategy that mixes symptom inquiry action and disease diagnosis action will
lead to an excessively large action space of the agent, which negatively affects the diagnosis
success rate.

Secondly, when the agent selects symptoms for inquiry, the existing methods may
not pre-classify the possible symptoms in the current state, resulting in more irrelevant
symptoms involved.

Thirdly, a few approaches that consider hierarchical reinforcement learning strate-
gies [19,20] propose a hierarchical reinforcement learning model that integrates two-level
hierarchical strategy into dialogue strategy learning. The high-level strategy consists of a
model called master, which is responsible for triggering the low-level model. The low-level
strategy consists of several symptom checkers and a disease classifier. Although the strat-
egy of hierarchical reinforcement learning is adopted, it ignores the medical knowledge
and disease–symptom relationships that are closely related to the diagnosis task, which
brings in irrelevant symptoms and may harm the success diagnosis rate of disease.

In this paper, we propose a hierarchical reinforcement learning (HRL) model KNHRL
that integrates medical knowledge and disease–symptom relations into a dialogue model
for disease diagnosis. Compared with the previous HRL model for disease diagnosis,
KNHRL incorporates a learnable disease–symptom relation matrix and knowledge graph to
assist the agent for decision making. By incorporating co-occurrence probabilities between
symptoms, the model can quickly and comprehensively ask for implicit symptoms that are
more relevant to known symptom information, rather than asking for irrelevant symptoms.
The knowledge of the relationship between disease and symptoms further ensures the
accuracy of the diagnosis. Moreover, KNHRL conducts pre-classification before the low-
level strategy makes decisions, separating the action of asking about symptoms from the
action of diagnosing a disease. This way, the agent can collect symptoms more likely to be
associated with the disease that users are suffering from. The major contributions of this
paper can be summarized as follows.

• We incorporate the learned medical knowledge into the low-level strategy of an HRL
model, which can further improve the symptom matching rate and the diagnosis
success rate.

• Inspired by the process of the doctor’s consultation in real life, we leverage a classifier
to feed the user’s disease probabilities into system states, and propose a new decision-
making method by considering the medical knowledge graph and the learned disease–
symptom relation matrix.

• The proposed KNHRL model outperforms strong baseline methods on a public avail-
able medical dialogue dataset for automatic disease diagnosis.

2. Related Work

Hierarchical reinforcement learning (HRL) methods are employed to decompose a
huge action space, and have been applied in visual navigation, natural language processing,
recommendation systems, video description generation and other daily life domains [21–28].
Jain et al. [29], for a four-legged robot path tracking task, took full advantage of the hier-
archical structure features and timing decoupling scheme of HRL to use different state
representations for the upper and lower controllers. The model emphasized the different
concerns of position estimation and motion control to ensure the reusability of the lower
layer strategies. Li et al. [30] in a multi-goal-oriented task for an 18-degree-of-freedom
robot, pre-trained skills to obtain skills that could achieve simple goals, and then planned
the learning of the skills.

Budzianowski et al. [31] utilized the strong transfer ability of HRL to build a cross-
domain dialogue system, which learned shareable information in similar subdomains of
different main domains to train a general underlying policy. Saha et al. [32,33] leveraged
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the HRL framework to learn a multi-intent dialogue policy. The proposed algorithm
introduced emotion-based instant rewards into the basic rewards of the dialogue system,
making the question-answering robot adaptive so as to obtain maximum user satisfaction.
Saleh et al. [34] devised a variational sequence model, which no longer simply considered
word-level information, but built a reward model at the discourse level to improve the
global vision of the model.

Reinforcement learning (RL) has become the mainstream method for automatic disease
diagnosis in dialogues [35–37]. Wei et al. [18] leveraged a DQN from conversations with
patients to select additional symptoms, which could greatly improve the accuracy of
diagnosis. Hou et al. [36] proposed a multi-level reward RL-based model that could
improve both the performance and the speed of convergence. Teixeira et al. [37] customized
the settings of the RL leveraging the dialogue data. The existing hierarchical reinforcement
learning strategies [19] usually ignore knowledge and disease–symptom relationships
that are closely related to the diagnosis task, which has negative impacts on the success
diagnosis rate of the disease.

In addition, there is work on knowledge enhancement for diagnosis. Xu et al. [38]
proposed a Knowledge Routing Dialogue System, referred to as KR-DS for short, which
embedded the rich medical knowledge into topic switching in the dialogue management
module to assist agent decision-making. Liu et al. [39] introduced a supervised diagnostic
model (mapping between symptoms and diseases) in the external environment, thereby
improving the agent’s ability to collect symptoms that were more helpful for diagnosis.
However, these models could not effectively incorporate the knowledge-enhanced disease–
symptom relation into the HRL models.

3. Model Overview

The task of reinforcement learning is to learn how to take actions based on the current
environmental state in order to maximize the expected return. As for RL-based models for
automatic diagnosis, the action space of agent is A = D∪ S, where D is the set of all diseases
and S is the set of all symptoms associated with these diseases. Given the state st ∈ S at turn
t, the agent takes an action according to its policy at ∼ π(a|st) and receives an immediate
reward rt = R(st, at) from the environment. If at ∈ S , the agent chooses a symptom
to inquire the user. Then the user responds to the agent with True/False/Unknown. If
at ∈ D, the agent informs the user of the corresponding disease as the diagnosis result
and the dialogue session will be terminated, marking the success or failure in terms of the
correctness of the diagnosis.

Scholars introduce Markov Decision Process to simplify the model. They assume that
the state transition model exhibits the Markov property, meaning the transition of states
depends solely on the current state. Consequently, the problem of reinforcement learning
can be formulated as a Markov Decision Process.

The disease diagnosis model can be expressed as Markov Decision Process M =

〈S, A, R, P, γ〉. S = Sh ∪
{

Sli
}nl

i=1
is a set of all states, Sh is the status of the agent in the

high-level strategy (dubbed as the high-level agent). Sli is the status of the agent in the ith
low-level strategy (dubbed as the low-level agent). nl is the number of low-level agents.

A = Ah ∪
{

Ali
}nl

i=1
is the set of all actions, Ah is the high-level agent action, Ali is the

ith low-level agent action, and nl is the number of low-level agents. R is a collection of
dialogue rewards. A policy π is a mapping between a state set S and a state transition
model set P. γ is the discount rate used to compute the Q value function. The goal of the
model is to optimize the Markov Decision Process M = 〈S, A, R, P, γ〉 and find the policy
π that maximizes the cumulative discount reward for all 〈S, A〉.

This paper proposes a knowledge-enhanced hierarchical reinforcement learning model
KNHRL for the disease diagnosis task. In order to reduce the action space, KNHRL divides
the strategies of the disease diagnosis task into two levels, namely high-level strategy
and low-level strategy. This idea was inspired by hospital consultations in the real world.
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Figure 1 demonstrates the framework of the KNHRL model. The high-level agent receives
the current initial state st and selects a low-level agent to talk to the user simulator for
symptom collection. The low-level strategy consists of multiple agents, and each agent is
responsible for collecting relevant symptoms of different diseases. Each low-level agent
consists of a disease classifier and a deep Q network (DQN) with knowledge embeddings.

Disease classifier

Knowledge-based 

DQN

Disease classifier

Knowledge-based 

DQN

Disease classifier

Knowledge-based 

DQN

High-level policy

User simulater

......

......

Low-level rewards High-level rewards

Disease classifer

st

Figure 1. The structure of KNHRL.

Considering that when a doctor asks about a patient’s symptoms, they will first con-
sider that the patient may have a certain disease, and then ask the related symptoms of
the disease. According to this process, before using the knowledge-embedded DQN for
decision-making, we first use the disease classifier to obtain the probability distribution
of the disease in the low-level agent in the current state, and to assist the subsequent
DQN in decision-making. The doctors will combine their own medical experience and
knowledge when asking about symptoms, so we add information on past diseases, depen-
dencies between symptoms and disease–symptom knowledge graphs that can be learned
during training based on the basic DQN. The above DQN strategy is called DQN for
knowledge embedding.

The collection of symptoms by the low-level agent is achieved through a dialogue
with a user simulator that gives feedback (True/False/Unknown) about the symptoms
asked by the agent, and the model rewards the agent based on the feedback from the user
simulator, namely low-level reward. The low-level agent then decides whether to continue
symptom collection according to the reward obtained. If the low-level agent continues to
collect symptoms, it will update the policy and continue to select symptoms to interact with
the user simulator. When the low-level agent no longer collects symptoms, the previous
low-level rewards are accumulated as the reward of the high-level agent, and the high-level
agent updates the policy according to the obtained reward, so as to select the low-level
agent to collect symptoms or to choose a disease classifier to make a diagnosis.

4. Knowledge Construction

This paper leverages disease–symptom relation modules and medical knowledge
graphs to assist decision-making in low-level policies. The medical knowledge graph is
constructed by diseases and their related symptoms, as shown in Figure 2, for example.
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brain edema

no consciousnessknee pain vomit

encephalitis memory disorder

Figure 2. An excerpt of medical knowledge graph.

In Figure 2, the blue entity is the disease, and the green entity is the symptom. Each
edge between the disease entity and the symptom entity contains two weights, which
are the symptom probability (sym|dis) under the disease condition and the disease prob-
ability (dis|sym) under the symptom condition. The two probabilities are calculated by
occurrences of diseases and symptoms in the dataset, which forms a disease–symptom
relation matrix.

The elements in the dis_sym matrix are the symptom probability (sym|dis) under
the disease condition, and the elements in the sym_dis matrix are the disease probability
(dis|sym) under the symptom condition. It is worth noting that the establishment of the
medical knowledge graph is based on the disease and its related symptoms that each
low-level agent is responsible for. In this paper, a total of nine medical knowledge graphs
are established, each of which has a corresponding disease–symptom relation matrix.

We can learn the disease–symptom relation matrix from the dataset. Note that the rela-
tion matrix is also built at the unit of each lower-level agent. The disease–symptom relation
matrix is a concatenation of the disease–disease matrix (recorded as dis_dis), disease–
symptom matrix (recorded as dis_sym), symptoms–disease matrix (recorded as sym_dis),
and symptoms–symptom matrix (sym_sym), shown below:

matrix1 = Cat(sym_sym, dis_sym) (1)

matrix2 = Cat(sym_dis, dis_dis) (2)

relation_matrix = Cat(matrix1, matrix2) (3)

Formulas (1) and (2) are spliced on the first dimension, and Formula (3) is spliced on
the 0th dimension. Since the diseases in each low-level agent are in the same department,
this paper does not consider the relationship between diseases and diseases, that is, the
dis_dis matrix is set to a 0 matrix of size Rndis×ndis .

5. Knowledge-Enhanced Hierarchical Reinforcement Learning Model
5.1. Deep Reinforcement Learning Model for Disease Diagnosis

The use of DQN-based models for disease diagnosis is one of the most popular
methods. In the problem of automatic disease diagnosis, the main elements of the DQN-
based model include current state st, strategy π, current action at, and immediate reward
rt. Among them, the current state st is spliced by the 3-dimensional one-hot vector zi of
each symptom, and each dimension of the one-hot symptom vector represents the different
states of the symptom, where zi = (1, 0, 0) means that the patient has the symptom (True),
zi = (0, 1, 0)means the patient does not have the symptom (False) and zi = (0, 0, 1) means
the patient does not know whether the patient has the symptom (Unknown). For symptoms
not asked by the agent, we denote it as zi = (0, 0, 0). Therefore, the current state st
contains not only the information of the current round, but also the action information of
the previous agent and the patient and the symptom information that has been collected.
According to the described definition, the current state st can be expressed as Formula (4).

st =
[
z1

t , z2
t , . . . , zns

t

]
(4)
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where ns is the number of symptoms. The policy π is used to describe the action of the
agent. When the current state st is known, the policy π can be expressed as π(a|st) , which
obtains the probability distribution of all possible agent actions in the state st. The current
action at is the action of the agent obtained according to the policy (a|st) under current
state st, and the process can be expressed as Formula (5).

at ∼ π(a|st) (5)

The action space A of the agent is the union of all disease sets D and their associated
symptom sets S, that is, A = D ∪ S. The instant reward rt is the reward obtained from
the user simulator when the agent is in a state st and makes an action π according to the
strategy at, to update the strategy.

According to the above elements, the process of disease diagnosis using a deep rein-
forcement learning model is described as follows: in the state of st, the agent selects an
action at according to the policy π. Note that the agent follows the ε greedy policy when
selecting an action; that is, in the case of 1− ε, the agent chooses the optimal action; in
the case of ε the agent chooses the action randomly. When at ∈ S, the agent will choose
a symptom to talk to the user simulator, and the user simulator will give the agent feed-
back (True/False/Unknown) and the corresponding reward. According to the feedback
information, the agent assigns the value at the location of the corresponding symptom in
st, and updates the strategy to select the next action; when at ∈ D, the agent will choose a
disease to inform the user simulator, and the dialogue will be judged as success or failure
according to whether the informed disease is correct or not, and the agent will get different
rewards and continue to update the strategy.

The goal of the agent is to find a policy that maximizes the expected cumulative
discounted reward (called the optimal policy). The Q value function is used to calculate
the expected reward generated by selecting the action at according to the policy π in the
state st. The calculation method is shown in Formula (6):

Qπ(st, at|θ) = rt + γQπ
(
st+1, at+1|θ′

)
(6)

where the Qπ(st+1, at+1|θ′) is the Q function of the target network, θ is the parameter of
the current network, θ′ is the parameter of the target network obtained from the previous
iteration, and γ ∈ [0, 1] is the discount factor. When γ = 0, only the rewards of the current
round are considered. When γ = 1, the rewards of the current round and subsequent round
are treated equally. When γ ∈ (0, 1), the rewards of the current round rewards are more
important than the subsequent round. The agent wants to find the policy that maximizes
the cumulative discount reward, then the optimal Q value function Q∗ is the maximum
value of the Q value function under all strategies, namely

Q∗(st, at|θ) = rt + γ max
at+1

Q∗
(
st+1, at+1|θ′

)
(7)

When the value of the Q value function obtained for all states and actions under a
policy π∗ is the largest, then the policy π∗ is called the optimal policy.

Notably, the DQN parameterizes the policy so that the policy is updated by training
the DQN. Each iteration of DQN takes the current state as input and outputs the computed
Q value of the current network. DQN updates the parameter θ at each iteration of training
by minimizing the error between the computed Q value of the current network and the Q
value of the target network, (that is, the Q value obtained from the Bellman equation), to
train the network.

5.2. High-Level Strategy for HRL

In the dataset for the dialogue-based disease diagnosis constructed by Liao et al. [19],
the diseases are divided into nine subsets based on the department, and each subset
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contains ten diseases. The diseases in different subsets are different from each other, and
the relationship between each subset is shown as follows:

D = D1 ∪ D2 ∪ . . . ∪ D9, Di ∪ Dj = ∅ (8)

Di = D1 ∪ D2 ∪ . . . ∪ D10 (9)

where Di represents the disease set in the ith subset, and dk represents the kth disease in
the ith disease subset. In hierarchical reinforcement learning (HRL), an agent in a low-level
policy is responsible for collecting its associated symptoms for each disease subset, and a
high-level policy is responsible for selecting which agent in a certain low-level policy to
work. The process of the model informing the user simulator disease to make a diagnosis
is carried out by a disease classifier that is selected by a high-level policy at the same level
as a low-level policy.

According to the task content of the high-level policy, the action space of the high-level
agent is shown in Formula (10):

Ah = l1 ∪ l2 ∪ . . . ∪ l9 ∪ dl (10)

where li is the ith agent in the low-level policy, and d is the disease classifier. After receiving
the current state st, the high-level agent selects an action ah

t according to the current policy
πh, ah

t is a 10-dimensional vector (nine for low-level agents and one for a disease classifier)
to indicate which low-level agent is selected for symptom collection, or which disease
classifiers are selected for disease informing. When the high-level agent triggers the work
of a certain low-level agent, the high-level agent will proceed to the next step, only when
the low-level agent finishes the work. After the low-level agent finishes working, the
rewards received from the user simulator for each round will be accumulated as the reward
of the high-level agent, which is called the high-level reward. This is calculated as follows:

rh
t =

{
∑T

t′=1 γht′rl
t+t′ ah

t = li

rdl
t ah

t = dl
(11)

t′ is the dialogue rounds of the agent in the low-level policy, T is the total number of
dialogue rounds of the agent in the low-level policy, γh is the discount factor, rl

t+t′ is the
reward that the low-level agent gets from the user simulator in the current round, and rdl

t is
the reward from the user simulator for the disease classifier. The goal of the advanced agent
is to maximize the expected cumulative discounted advanced reward. The Q value function
is used to represent the expected reward of the advanced agent. Its Bellman Equation can
be written in the form of Formula (12):

Qπ
h

(
st, ah

t |θh
)
= rh

t +E{st+1,ah
t+1}

[
γT

h Qπ
h

(
St+1, ah

t+1|θh′
)]

(12)

θh is the parameter of the current advanced policy network, st+1 is the next dialogue state
observed by the advanced agent after taking an action ah

t according to the policy π in
the state of st, and ah

t is the action taken by the high-level agent under st+1, and γh is
the discount factor. The high-level policy network consists of a three-layer DQN, and
the network parameters θh are updated during training by reducing the mean squared
error between the Q value calculated in the current network and the Q value of the target
network obtained from the Bellman equation. Therefore, the above mean square error is
used as the loss function of the advanced policy network, as shown in Formula (13):

L
(

θh
)
= E

{[(
rh

t + γT
h maxah

t+1
Q∗h
(

St+1, ah
t+1|θh′

))
−Qπ

h

(
St+1, ah

t+1|θh′
)]2
}

(13)
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The first term in the squared difference is the Q value of the target network obtained
from Bellman equation, and the second term is the calculated Q value of current network.

5.3. Low-Level Strategy for Knowledge Enhanced Decision-Making

The low-level agent is responsible for collecting symptoms by talking to the user
simulator, which is triggered by the high-level agent. Figure 3 shows the process in which a
low-level agent is selected for work by a high-level agent. l1, l5 in Figure 3 as well as dl is the
action of the high-level agent, l1 and l5 represent that the high-level agent has selected the
first and fifth low-level agents, respectively, and dl represents that the high-level agent has
selected a disease classifier for diagnosis. Taking the working process of the first low-level
agent as an example, a1

k is the action of the k conversation of the first low-level agent. When
the low-level agent repeatedly asks the same symptom or the number of dialogue rounds
reaches the specified upper bound, the low-level agent’s work ends. The reward obtained
by the low-level agent for each round of dialogue (low-level rewards) are accumulated and
returned to the high-level agent, and the high-level agent makes the next selection. The
disease set contained in the low-level agent is Di, and the associated symptom set Si is the
action space of the ith low-level agent.

dl

repeat inquiry/t=tsub_max repeat inquiry/t=tsub_task

termination terminationn nn interactions m interactions

1l
5l

1 1

1 ... na a® ®
5 5

1 ...n n ma a
+ +
® ®

Figure 3. The working process of hierarchical model.

Next, we illustrate how medical knowledge assists low-level agents in decision-making
in the low-level strategy of decision-making, as shown in Figure 4.

The si
t in the Figure 4 is the current state extracted by the ith low-level agent from

st. The extraction process proceeds as follows: when the low-level agent li is selected by
the high-level agent, the high-level agent will pass the current state st to the low-level
agent li. li will extract the corresponding states of these symptoms from st according to the
symptoms of the disease they are responsible for, considering it as the current state of the
low-level agent. The specific extraction method is shown in Formula (14):

Si
t = Extract(St, i) =

[
Zi

1, Zi
2, · · · , Zi

nSi

]
(14)

where nSi is the number of associated symptoms of the disease in the ith low-level agent.
zi

k is the one-hot vector of the kth symptom in the ith low-level agent. We hope to pre-
liminarily screen the diseases that patients may have in the current state, so that when
collecting symptoms, it is easier for low-level agents to collect symptoms related to possible
diseases, and thus improve the success rate of diagnosis. Therefore, we design a disease
pre-classification module for each low-level agent, which contains a disease classifier con-
sisting of a two-layer MLP. Specifically, before the DQN makes a decision, the current state
is input into the disease classifier, and the disease classifier outputs a 10-dimensional vector
dli, which represents the predicted probability fraction of each disease in the agent. We
concatenate the output vector dli with the current state Si

t according to Formula (15)

Si′
t = C

(
Si

t, dli
)

(15)
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Si′
t is the newly obtained current state containing disease information, and the output

obtained by inputting it into the DQN is the original action of the low-level agent aid
t in the

current state Si′
t , as shown in Formula (16).

aid
t = MLP

(
Si′

t

)
. (16)

i

t
a

i

t
s

Figure 4. The structure of knowledge-enhanced low-level policy.

We hope to use the relation information between diseases and symptoms in the
dialogue history as “experience” to assist decision-making in the current state. Therefore,
we design a relation module to capture the “experience” in the dialogue history. The
relation module contains a matrix R ∈ RAi×Ai

, where Ai = Di ∪ Si, which can learn the
relation between each symptom and disease during training. Specifically, the original action
aid

t obtained by the lower-level agent is multiplied by the relation matrix R, as shown in
Formula (17).

air
t = aid

t · R · air
t (17)

air
t is the action of the low-level agent augmented by the relation matrix, where the elements

are the weighted sum of the original action and the relation matrix. The matrix R is
initialized by the relation matrix established in Section 4 relation_matrix, which contains
the dependency of diseases and symptoms in the dataset. During model training, the
relation matrix R learns the dependencies between diseases and symptoms during the
dialogue between the low-level agent and the user simulator through backpropagation.

We also hope to simulate the real-world situation of doctors combining their own
medical knowledge for diagnosis, so a medical knowledge graph module is designed to
assist the agent in making decisions. In Section 4, we have established a disease–symptom
medical knowledge graph for each low-level agent. When the ith low-level agent works, the
weight matrices Pi(dis|sym) and Pi(sym|dis) on each edge of the ith medical knowledge
graph are used to compute the weight matrix for the medical knowledge graph module.

According to the conditional probability, Formulas (18) and (19) can be obtained:

Pi(dis) = Pi(dis|sym) · Pi(sym) (18)

Pi(sym) = Pi(sym|dis) · Pi(dis) (19)
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where the symptom Pi(sym) is the final desired weight matrix. Since both Pi(dis) and
Pi(sym) are unknown, and the prior probability of symptoms can be obtained from the
dataset. The disease probability Pi(dis) is first calculated using the prior probability of
symptoms; that is, Formula (18) can be rewritten in the form of Formula (20):

Pi(dis) = Pi(dis|sym) · Pi
prior(sym) (20)

where Pi
prior (sym) ∈ RnSi is the prior probability of symptoms, and nSi is the number of

symptoms corresponding to the ith low-level agent. For the symptoms that have been
collected under the current state si

t, the value of the prior probability of the symptoms that
the patient does exist (the response of the user simulator is True) is set to 1; the value of the
prior probability of the symptoms that the patient does not exist (the response of the user
simulator is False), the prior probability is set to −1; the prior probability of symptoms that
the patient does not know exists (the user simulator’s response is Unknown) is set to the
value calculated from the user goals in the dataset. For the symptoms that have not been
collected in the current state si

t, the prior probability is also set to the value calculated from
the user goals of the dataset. Formula (21) is a method for calculating the prior probability
of symptoms from the user goals in the dataset.

Pi
prior (sym) =

[
n
(

Si,1
true

)
, n
(

Si,2
true

)
, · · · , n

(
S

i,nSi
true

)]
ni

(21)

where n(Si,m
true) is the number of real symptoms in the mth symptom in the data correspond-

ing to the ith low-level agent, and ni is the number of user targets in the ith low-level agent.
After obtaining the prior probability of the symptom, the symptom probability Pi(sym) can
be obtained by Formulas (19) and (20).

After multiplying the obtained symptom probability by the current state element-wise,
it is sent to DQN, as shown in Formula (22).

aik
t = MLP

[
si

t � Pi(sym)
]

(22)

where � stands for element-wise multiplication, aik
t is the action selected by the low-level

agent after the enhancement of the medical knowledge graph, and the final action of the
low-level agent is the sum of the above three actions:

ai
t = aid

t + air
t + aik

t (23)

When the low-level agent makes an action, the user simulator will give a reply and
corresponding reward according to the symptoms inquired by the low-level agent, and
the dialogue will be updated to the next state. Since the action of the low-level agent
is symptom collection, in the process of training and prediction, the index value of the
predicted action should be obtained and judged whether it is less than nSi . If the predicted
action index is not less than nSi , the task of the current low-level agent is terminated directly.
We call the reward received by the lower-level agent as the lower-level reward. Thus, the
goal of the lower-level agent is to find a policy that maximizes the expected cumulative
discount of the lower-level reward. The Bellman Equation of the ith lower-level agent can
be expressed as Formula (24):

Qi
l

(
si

t, ai
t|θi
)
= ri

t +E{si
t+1,ai

t+1}
[
γi

lQ
i
l

(
si

t+1, ai
t+1|θi′

)]
(24)

where γi
l is the discount factor for the ith low-level agent. The low-level policy network

is a three-layer DQN, and its network parameters θi are optimized by minimizing the
loss function of the network. The mean squared error between the current network of
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the low-level policy and the target network is used as the loss function of the network, as
shown in Formula (25):

L
(

θi
)
= E

{[(
ri

t + γi
lmaxai

t+1
Qi

l

(
si

t+1, ai
t+1|θi′

))
−Qi

l

(
si

t, ai
t|θi
)]2
}

(25)

5.4. User Simulator

The user simulator is the component that talks to the agent and contains the user goals
in the dataset. In each simulated dialogue, the user simulator extracts a user target for model
training, and the explicit symptoms in the user target are used to initialize the dialogue
state. For the symptoms inquired by the agent, the user simulator provides feedback
according to the extracted symptom information in the user target: for the symptoms that
are True in the user target, the user simulator sets the corresponding symptoms in the state
to (1, 0, 0), and gives a +1 reward; for the symptom of False in the user’s goal, the user
simulator will set the corresponding symptom in the state to (0, 1, 0) and give a −1 reward;
for the symptom of Unknown in the user’s goal and the symptoms that do not exist in the
user target, the user simulator sets the corresponding symptoms in the state to (0, 0, 1) and
gives a 0 reward. Notably, when the user simulator receives symptoms that the agent has
already asked about, or the maximum number of dialogue turns with the agent is reached,
a −2 reward is given and the dialogue with the agent is ended. For the disease notified
by the agent, when the value of the disease label in the user target extracted by the user
simulator is the same, the diagnosis is determined to be successful and a +22 reward is
given; otherwise, it is determined to be a failure and a −44 reward is given.

6. Experiments and Analysis
6.1. Experimental Data and Settings

We select the artificially synthesized dialogue dataset for the disease diagnosis pro-
posed by Liao et al. [19]. It contains user goals based on patient self-descriptions and
conversations with physicians. This synthetic dataset is based on the SymCat database,
which contains disease–symptom relations. From the 21 groups (departments) of diseases
and their related symptoms classified according to the International Classification of Dis-
eases, nine groups of the most representative diseases were selected and used to generate
user goals for disease diagnosis. Each department selects the top 10 diseases with the
highest incidence rate in the department.

This paper utilizes the experience playback mechanism [20] to train the high-level
policy network and the low-level policy network. Specifically, during training, the “experi-
ence” of the high-level policy network

(
st, ah

t , rh
t , st+1

)
and the low-level policy network(

st, al
t, rl

t, st+1

)
are put into their respective buffers Bh and Bl . The capacities of the two

buffers is fixed, and each round of training is to extract mini_batch “experiences” from
the buffer. The current network will be evaluated after each round of training, and when
the performance of the current network is the best, the buffer is flushed. Note that the
high-level policy network and the low-level policy network are not trained synchronously.
The low-level policy is trained once for every 10 rounds the high-level policy network
is trained.

6.2. Baseline Models

Flat-DQN is a model of a single-layer strategy proposed by Wei et al. [18], which treats
all diseases and their related symptoms equally; KR-DQN [38] also treats all diseases and
their associated symptoms equally; REFUEL is a single-layer policy reinforcement learning
model combining reward remodeling and positive remodeling mechanisms proposed by
Peng et al. [35]; GAMP [40] is a single-layer reinforcement learning model optimized by
the policy gradient framework of generative adversarial networks; HRL-pretrained [41]
is a hierarchical reinforcement learning model that pre-trains low-level policies and then
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trains high-level policies; HRL [19] is a hierarchical reinforcement learning model, which
utilizes a disease classifier to separate symptom collection

The above baselines are the reinforcement learning model for disease diagnosis. In
this paper, SVM is selected as the multi-class classification baseline model, and two experi-
ments are designed based on the SVM model, namely SVM-ex trained only with explicit
symptoms, and SVM-ex-im trained with explicit symptoms and implicit symptoms at the
same time. Since the deep reinforcement learning models for disease diagnosis-oriented
dialogues all initialize states with overt symptoms, the results of multi-classification mod-
els SVM-ex-im trained with both explicit and implicit symptoms can be used as an up-
per bound on the performance of deep reinforcement learning models on the synthetic
dialogue datasets.

6.3. Experimental Results and Analysis

We select success rate, average number of dialogue turns and matching rate as the
metrics to evaluate the performance of the models. Each session between the agent and
the user simulator ends with the agent notifying the user simulator of the disease. If the
notified disease is consistent with the disease label of the user target in the user simulator,
the session is recorded as a success. The success rate is the ratio of the number of successful
sessions to the total number of sessions. Average dialogue turns are the average number of
turns in the session. The matching rate is the symptom matching rate, which is calculated
as the ratio of the number of implicit symptoms in the user target inquired by the agent to
the total number of symptoms inquired in a session.

In Table 1, The results of the KR-DQN, REFUEL and GAMP models are reproduced
on this dataset. For the rest of the baselines, we adopt the reported results from the related
papers published in recent years [40]. Note that the results for the KNHRL model are the
average of the results obtained from three experiments with the same experimental settings
on this dataset.

Table 1. Evaluation results of KNHRL and other baselines on synthetic dataset.

Success Rate Average Dialogue Turns Match Rate

SVM-ex 0.321 / /

DQN 0.343 2.455 0.045
KR-DQN 0.395 7.120 0.067
REFUEL 0.416 8.551 0.089
GAMP 0.409 3.535 0.057

HRL-pretrained 0.452 6.838 /
HRL 0.504 12.959 0.105

KNHRL 0.558 20.984 0.333

SVM-ex-im 0.732 / /

In Table 1, the performance of the KNHRL model is better than that of the SVM-ex
model, and the success rate of other deep reinforcement learning models is also higher than
that of SVM-ex. This shows that when only explicit symptoms are used for training, deep
reinforcement models perform better on the task of disease diagnosis than the multi-class
classification model. For the other models in Table 1, DQN, KR-DQN, REFUEL, and GAMP
are deep reinforcement learning models with single-layer strategies. Among them, REFUEL
and GAMP introduce additional mechanisms to optimize the reinforcement learning model
based on the basic DQN; KR-DQN adds medical knowledge to the basic DQN to assist
decision-making, and the disease diagnosis success rate of the KR-DQN model is higher
than that of the DQN model, which indicates the medical knowledge can improve the
performance of disease diagnosis models.
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Compared with KR-DQN, the performance of KNHRL has been greatly improved in
terms of success rate and matching rate. This proves the necessity of a stratified strategy
in the case of a large number of diseases and symptoms. HRL-pretrained and HRL are
deep reinforcement learning models with hierarchical strategies. KNHRL has greatly
outperformed these two models. Note that compared with the current state-of-the-art
hierarchical strategy reinforcement learning model HRL, KNHRL has an improvement of
5.4% and 22.8% in the success rate and matching rate, respectively. This result shows that
medical knowledge plays an important role in disease diagnosis, especially in improving
the symptom matching rate of the model. The performance of KR-DQN is inferior to the
HRL-pretrained and HRL. This indicates that in the disease diagnosis task, in the case of a
large number of diseases and symptoms, the hierarchical strategy plays a greater role in
improving model performance.

In Table 1, KNHRL outperforms all other baseline models in the success rate, and
is the closest to the upper bound (SVM-ex-im) of the deep reinforcement learning model
performance on this synthetic dataset. Compared with KRDQN and HRL, KNHRL has a
great improvement in the matching rate. However, the average number of dialogue turns
of KNHRL is higher than the rest of the baseline models, which may be caused by the
hierarchical strategy and medical knowledge that bring more information to the model. In
future work, how to reduce the number of dialogue turns without reducing the success
rate and matching rate will be the key issue of research.

Figure 5 illustrates the learning curves of the KNHRL model and the recurrent KR-
DQN model on the synthetic dataset, which respectively show the changes in the success
rate for the dataset during the learning process of the two models. Both models are used
for 3000 simulated dialogues. From the learning curve, the learning curve of the KNHRL
model reaches a plateau at about 1500, while the learning curve of the KR-DQN model
reaches a plateau at about 2000, which shows that KNHRL learns faster than KR-DQN.
Therefore, the disease diagnosis success rate of the KNHRL model is better than that of the
KR-DQN model.

Figure 5. Learning curve of KNHRL and KR-DQN on the synthetic dataset.

6.4. Further Analysis

In order to prove that in the KNHRL model, each component has a positive effect on
the improvement of performance, this paper designs ablation experiments, as shown in
Table 2. The results of each ablation experiment are the average of the results obtained from
three experiments at the same setting.



Electronics 2023, 12, 4896 14 of 16

Table 2. Evaluation results of ablation experiments.

Success Rate Average Number of Dialogue Turns Match Rate

KNHRL 0.558 20.984 0.333

-dl 0.545 20.102 0.315
-rel 0.522 18.334 0.179
-kg 0.526 19.568 0.186
-hrl 0.426 6.105 0.082
-all 0.343 2.455 0.045

In Table 2, -dl is the result obtained by removing the disease classifier in the low-
level strategy on the basis of the complete model; -rel is the result obtained by removing
the relation module; -kg is the result obtained by removing the relation module; -hrl
is the result of the experiment without using the hierarchical strategy; -all is the result
of removing all the above modules. In Table 2, the model performance of all ablation
experiments is lower than the full model in terms of success rate and matching rate, which
verifies the effectiveness of all components in KNHRL. In addition, the success rate and
matching rate of -hrl are lower than those of -rel and -kg, which further proves that when
the number of diseases and symptoms is large, the hierarchical strategy plays a greater role
in improving the model performance of the disease diagnosis task. Note that the success
rate and matching rate of -hrl are both higher than the results of the KR-DQN model in
Table 1, which shows that the knowledge embedding method in KNHRL is better than the
knowledge embedding method in KR-DQN.

7. Conclusions

This paper proposes a hierarchical reinforcement learning model KNHRL for
knowledge-enhanced automatic disease diagnosis in medical dialogue systems. Based on
the hierarchical reinforcement learning strategy, a medical knowledge graph is incorporated
into each low-level agent to assist decision-making. The learnable relationship matrix and
disease classifier are used to assist the low-level agent to make policy. The effectiveness of
KNHRL is validated on a publicly available dataset for disease diagnosis. In future work,
we hope to collect a real-world medical dialogue dataset for disease diagnosis, and further
verify the performance of the KNHRL model.

7.1. Limitations

This work mainly focuses on a knowledge-enhanced hierarchical reinforcement learn-
ing model in the medical dialogue system for disease diagnosis. We have identified two
key limitations that can be further examined in future research. The first limitation is that
the KNHRL model tends to have a relatively higher average number of dialogue turns due
to the hierarchical strategy and the incorporation of medical knowledge, which provides
the model with more information. In the future, a key research focus will be on reducing
the number of dialogue turns without compromising the success rate of diagnosis and
symptom matching. Additionally, due to the limited availability of real diagnostic datasets,
we utilized an artificially synthesized dialogue dataset for disease diagnosis. In future
work, we aim to collect a real-world medical dialogue dataset, specifically designed for
disease diagnosis. We intend to utilize this dataset to validate and improve the performance
of the KNHRL model.

7.2. Ethics Statement

This paper aims to investigate hierarchical reinforcement learning-based approaches
for automatic disease diagnosis, with the objective of reducing the burden on doctors and
promoting the advancement of automatic diagnosis systems. It is crucial to emphasize that
the proposed methods are designed solely for research purposes and are not suitable for
direct clinical application due to the potential risks associated with the misuse of automatic
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diagnosis systems. Furthermore, the dataset used in our experiments is synthetic; therefore,
there are no issues related to ethics and privacy concerns.
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