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Abstract: Fine-grained classifiers collect information about inter-class variations to best use the
underlying minute and subtle differences. The task is challenging due to the minor differences
between the colors, viewpoints, and structure in the same class entities. The classification becomes
difficult and challenging due to the similarities between the differences in viewpoint with other
classes and its own. This work investigates the performance of landmark traditional CNN classifiers,
presenting top-notch results on large-scale classification datasets and comparing them against state-of-
the-art fine-grained classifiers. This paper poses three specific questions. (i) Do the traditional CNN
classifiers achieve comparable results to fine-grained classifiers? (ii) Do traditional CNN classifiers
require any specific information to improve fine-grained ones? (iii) Do current traditional state-of-the-
art CNN classifiers improve the fine-grained classification while utilized as a backbone? Therefore,
we train the general CNN classifiers throughout this work without introducing any aspect specific to
fine-grained datasets. We show an extensive evaluation on six datasets to determine whether the
fine-grained classifier can elevate the baseline in their experiments. We provide ablation studies
regarding efficiency, number of parameters, flops, and performance.

Keywords: fine-grained visual classification; traditional classification; systematic evaluation; deep
learning; experimental review; baselines

1. Introduction

Fine-grained visual classification (FGVC) refers to the task of distinguishing the cate-
gories of the same class. Fine-grained classification differs from traditional classification, as
the former models intra-class variance, while the latter is about the inter-class difference. Ex-
amples of naturally occurring fine-grained classes include birds [1,2], dogs [3], flowers [4],
vegetables [5], plants [6], etc., while human-made categories include airplanes [7], cars [8],
food [9], etc. Fine-grained classification is helpful in numerous computer vision and image
processing applications such as image captioning [10], machine teaching [11], instance
segmentation [12], etc.

Fine-grained visual classification is a challenging problem, as there are minute and
subtle differences within the species of the same classes, e.g., a crow and a raven, compared
to traditional classification, where the difference between the classes is quite visible, e.g.,
a lion and an elephant. Fine-grained visual classification of species or objects of any
category is a Herculean task for human beings and usually requires extensive domain
knowledge to correctly identify the species or objects.

As mentioned earlier, fine-grained classification in image space aims to reduce the
high intra-class and low inter-class variance. We provide a few sample images from the
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dog and bird datasets in Figure 1 to highlight the problem’s difficulty. The examples in
the figure show the images with the same viewpoint. The colors are also roughly similar.
Although the visual variation is minimal between classes, all of these belong to different
dog and bird categories. In Figure 2, we provide more examples of the same mentioned
categories. Here, the differences in the viewpoint and colors are prominent. The visual
variation is more significant than the images in Figure 1, but these belong to the same class.

Many approaches have been proposed to tackle the problem of fine-grained classi-
fication; for example, earlier works converged on part detection to model the intra-class
variations. Next, the algorithms exploited three-dimensional representations to hand multi-
ple poses and viewpoints to achieve state-of-the-art results. Recently, with the advent of
CNNs, most methods have exploited the modeling capacity of CNNs as a component or as
a whole.

This paper aims to investigate the capability of traditional CNN networks compared
to specially designed fine-grained CNN classifiers. We strive to answer whether cur-
rent general CNN classifiers can achieve comparable performance to fine-grained ones.
To show competitiveness, we employ several fine-grained datasets and report top-1 ac-
curacy for both classifier types. These experiments provide a proper place for general
classifiers in fine-grained performance charts and serve as baselines for future comparisons
of FGVC problems.

Malamute Husky Eskimo

Crow Raven Jackdaw

Figure 1. The difference between classes (inter-class variation) is limited for various classes.

Figure 2. The intra-class variation is usually high due to pose, lighting, and color.

Our Contributions: We claim the following contributions in this article.
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• We present an overview of Fine-Grained Visual Classification (FGVC) CNN algo-
rithms, which leverage deep learning for nuanced object classification within closely
related categories.

• We provide a comprehensive review of state-of-the-art traditional classification algorithms,
highlighting their limitations in addressing the subtleties of fine-grained distinctions.

• We systematically compare, investigate, and evaluate traditional classifiers against
FGVC methods across six diverse fine-grained datasets, providing insights into their
respective performances across varying complexities and offering a valuable resource
for benchmarking and further exploration.

• We further provide a forward-looking perspective suggesting a future direction for
FGVC algorithms by exploring the integration of traditional classifiers as the backbone.

This paper is organized as follows. Section 2 presents related work about the fine-
grained classification networks. Section 3 introduces the traditional state-of-the-art al-
gorithms, which will be compared against fine-grained classifiers. Section 4 shows the
experimental settings and datasets for evaluation. Section 5 offers a comparative evaluation
between the traditional classifiers and fine-grained classifiers; finally, Section 7 concludes
the paper. Train models and codes are available at https://github.com/saeed-anwar/FGSE
(accessed on 20 October 2023).

2. Fine-Grained Classifiers

Fine-grained visual classification is an important and well-studied problem. Fine-
grained visual classification aims to differentiate between subclasses of the same category
instead of the traditional classification problem, where discriminative features are learned
to distinguish between classes. Some of the challenges in this domain are the following.
(i) The categories are highly correlated, i.e., small differences and small inter-category vari-
ance to discriminate between subcategories. (ii) Similarly, the intra-category variation can
be significant due to different viewpoints and poses. Many algorithms, such as [13–19], are
presented to achieve the desired results. In this section, we highlight the recent approaches.
The FGVC research can be divided into the following main branches, reviewed in the
paragraphs below.

Part-Based FGVC Algorithms. The part-based category of algorithms relies on the
distinguishing features of the objects to leverage the accuracy of visual recognition, which
includes [20–25]. These FGVC methods [26,27] aim to learn the distinct features present
in different parts of the object, e.g., the differences present in the beak and tail of the
bird species. Similarly, the part-based approaches normalize the variation present due to
poses and viewpoints. Many works [1,28,29] assume the availability of bounding boxes
at the object level and the part level in all the images during the training as well as
testing settings. To achieve higher accuracy, Refs. [22,30,31] employed both object-level and
part-level annotations. These assumptions restrict the applicability of the algorithms to
larger datasets. A reasonable alternative setting would be the availability of a bounding
box around the object of interest. Recently, Ref. [21] applied simultaneous segmentation
and detection to enhance the performance of segmentation and object part localization.
Similarly, a supervised method is proposed [16], which locates the training images similar
to a test image using KNN. The object part locations from the selected training images are
regressed to the test image.

Bounding Box-Based Methods. The succeeding supervised methods take advantage
of the annotated data during the training phase while requiring no knowledge during
the testing phase and learning on both object-level and object-part-level annotation in the
training phase. This approach is furnished in [32], where only object-level annotations are
given during training, while no supervision is provided at the object part level. Similarly,
Spatial Transformer Network (STCNN) [33] handles data representation and outputs vital
regions’ locations. Furthermore, recent approaches focused on removing the limitation of
previous works, aiming for conditions where the information about the object part location

https://github.com/saeed-anwar/FGSE
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is not required in the training or testing phase. These FGVC methods are suitable for
deployment on a large scale and help the advancement of research in this direction.

Attention Models. Recently, attention-based algorithms have been employed in FGVC,
which focuses on distinguishing parts via an attention mechanism. Using attention,
Ref. [25] presented two attention models to learn appropriate patches for a particular
object and determine the discriminative object parts using deep CNN. The fundamental
idea is to cluster the last CNN feature maps into groups. The object patches and object
parts are obtained from the activations of these clustered feature maps. Ref. [25] needs the
model to be trained on the category of interest, while we only require the general trained
CNN. Similarly, DTRAM [34] learns to end the attention process for each image after a fixed
number of steps. Several methods are proposed to take advantage of object parts. However,
the most popular one is the deformable part model (DPM) [35], which learns the constella-
tion relative to the bounding box with Support Vector Machines (SVM). Ref. [36] improved
upon [37] and employed DPM to localize the parts using the constellation provided by
DPM [35]. Navigator–Teacher–Scrutinizer Network (NTSNet) [38] uses informative regions
in images without employing any annotations. Another teacher–student network was
proposed recently as Trilinear Attention Sampling Network (TASN) [39], composed of a
trilinear attention module, attention-based sampler, and a feature distiller.

No Bounding Box Methods. Contrary to utilizing the bounding box annotations,
current state-of-the-art methods of fine-grained visual categorization avoid incorporating
the bounding boxes during testing and training phases altogether. Refs. [24,40] used a
two-stage network for object and object part detection and classification, employing R-CNN
and Bilinear CNN, respectively. Part Stacked CNN [18] adopts the same strategy as [24,40]
of a two-stage system; however, the difference lies in the stacking of the object parts at the
end for classification. Ref. [41] proposed multiple-scale RACNN to acquire distinguishing
attention and region feature representations. Moreover, HIHCA [42] incorporated higher-
order hierarchical convolutional activations via a kernel scheme.

Distance metric learning Methods. An alternative approach to part-based algorithms
is distance learning algorithms, which aim to cluster the data points/objects into the same
category while moving different types away from each other. Ref. [43] trained Siamese
networks using deep metrics for signature verification and, in this context, set the trend
in this direction. Recently, Ref. [44] employed a multi-stage framework that accepts pre-
computed feature maps and learns the distance metric for classification. The pre-computed
features can be extracted from DeCAF [45], as these features are discriminative and can
be used in many tasks for classification. Ref. [46] employs pairwise confusion (PC) via
traditional classifiers.

Feature Representation-Based Methods. These methods utilize the features from CNN
methods to capture the global information. Many works, including [24,25,32,47], utilized
the feature representations of a CNN and employed them in many tasks, such as object
detection [48], understanding [49], and recognition [50]. CNN captures global information
directly instead of traditional descriptors that capture local information and require man-
ual engineering to encode global representation. Destruction and Construction Learning
(DCL) [51] takes advantage of a standard classification network and emphasizes discrim-
inative local details. The model then reconstructs the semantic correlation among local
regions. Ref. [49] illustrated the reconstruction of the original image from the activations
of the fifth max-pooling layer. Max-pooling ensures invariance to small-scale translation
and rotation; however, global spatial information might achieve robustness to larger-scale
deformations. Ref. [52] combined the features from fully connected layers using VLAD
pooling to capture global information. Similarly, Ref. [53] pooled the features from con-
volutional layers instead of fully connected layers for text recognition based on the idea
that the convolutional layers are transferable and are not domain-specific. Following in the
footsteps of [52,53], PDFR by [17] encoded the CNN filter responses, employing a picking
strategy via the combination of Fisher Vectors. However, considering feature encoding as
an isolated element is not an optimum choice for convolutional neural networks.



Electronics 2023, 12, 4877 5 of 15

Feature Integration Algorithms. Recently, feature integration methods combine fea-
tures from different layers of the same CNN model. This technique is becoming popular
and is adopted by several approaches. The intuition behind feature integration is to take
advantage of global semantic information captured by fully connected layers and instance-
level information preserved by convolutional layers [54]. Ref. [55] merged the features
from intermediate and high-level convolutional activations in their convolutional network
to exploit low-level details and high-level semantics for image segmentation. Similarly,
for localization and segmentation, Ref. [56] concatenated the feature maps of convolutional
layers at a pixel as a vector to form a descriptor. Likewise, for edge detection, Ref. [57]
added several feature maps from the lower convolutional layers to guide CNN and predict
edges at different scales.

3. Traditional Networks

To make the paper self-inclusive, we briefly provide the basic building blocks of
the modern state-of-the-art traditional CNN architectures. These architectures can be
broadly categorized into plain, residual, densely connected, inception, and split-attention
networks. We review the most prominent and pioneering traditional networks that fall in
each mentioned category and then adapt these models for the fine-grained classification
task. The five architectures we investigate are VGG [58], ResNet [59], DenseNet [60],
Inception [61], and ResNest [62].

3.1. Plain Network

Pioneering CNN architectures such as VGG [58] and AlexNet follow a single path,
i.e., without any skip connections. The success of AlexNet [63] inspired VGG. These
networks rely on the smaller convolutional filters because a sequence of smaller ones
achieves the same performance compared to a larger convolutional filter. For example,
when four convolutional layers of 3 × 3 are stacked together, it has the same receptive field
as two 5 × 5 convolutional layers in sequence. However, the large receptive field has fewer
parameters than the smaller ones. The basic building block of the VGG [58] architecture is
shown in Figure 3.

Figure 3. Basic building block of the VGG [58], where no skip connections are used.

VGG [58] has many variants; we use the 19-layer convolutional network, which has
shown promising results on ImageNet. As mentioned earlier, the block structure of VGG
is planar (without any skip connection), and the number of feature channels is increased
from 64 to 512.

3.2. Residual Network

To solve the vanishing gradient problem, the residual network employed network
elements with skip connections known as identity shortcuts, as shown in Figure 4a. The pi-
oneering research in this direction is ResNet [59].

The identity shortcuts help to propagate the gradient signal back without being
diminished. The identity shortcuts theoretically “skip” over all layers and reach the
network’s initial layers, learning the task at hand. Because of the summation of features at
the end of each module, ResNet [59] learns only an offset, and therefore, it does not require
the learning of the full features. The identity shortcuts allow for successful and robust
training of much deeper architectures than previously possible. We compare ResNet50 and
ResNet152 variants with fine-grained classifiers due to successful classification results.
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(a) (b)

(c) (d)

Figure 4. (a) ResNet [59] utilize skip connections inside each module. (b) Basic block of the
DenseNet [60], where each layer gets a connection from previous layers of the block. (c) Basic
building block of the Inception-v3 [61], where many paths are used for feature extraction and con-
catenated. (d) Basic building block of the ResNest [62], where different paths are used for feature
extraction and concatenated.

3.3. Dense Network

Building upon the success of ResNet [59], DenseNet [60] concatenates each convolu-
tional layer in the modules, replacing the expensive element-wise addition and retaining
the current features from the previous layers through skipped connections. Furthermore,
there is always a path for information from the last layer backward to deal with the gradi-
ent diminishing problem. Moreover, to improve computational efficiency, DenseNet [60]
utilizes 1 × 1 convolutional layers to reduce the number of input feature maps before each
3 × 3 convolutional layer. Transition layers are applied to compress the number of channels
that result from the concatenation operations. The building block of DenseNet [60] is shown
in Figure 4b.

The performance of DenseNet on ILSVRC is comparable with ResNet. However, it has
significantly fewer parameters, thus requiring fewer computations, e.g., DenseNet with
201 convolutional layers with 20 million parameters produces a comparable validation
error to a ResNet with 101 convolutional layers having 40 million parameters. Therefore,
we consider DenseNet a suitable candidate for fine-grained classification.

3.4. Inception Network

Here, we present Inception-v3 [61], which utilizes label smoothing as a regularization
with 7 × 7 convolution factorization. Similarly, to propagate label information in the
deepest parts of the network, Inception-v3 [61] employs an auxiliary classifier along with
batch normalization help with sidehead layers. Figure 4c shows the proposed block in
the Inception-v3 [61] architecture used on 8 × 8 grids of the coarsest level to promote
high-dimensional representations.

3.5. Split-Attention Network

Lastly, we present the split-attention network in Figure 4d, which employs attention
and residual block, called ResNest [62], an extension of the Resnet. The cardinal group
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representations are then concatenated along the channel dimension. The final output of
other split-attention blocks is produced using a shortcut connection similar to standard
residual blocks, considering that the input and output feature maps have the same shape.
Moreover, to align the outputs of blocks having a stride, an appropriate transformation is
implemented to the shortcut connection, e.g., transformation can be convolution, strided
convolution, or convolution with pooling.

4. Experiments
4.1. Experimental Settings

Stochastic Gradient Descent (SGD) [64] optimizer and a decay rate of 10−4 are used.
We choose a batch size of 32, with an initial learning rate of 0.01 for 200 epochs, where the
learning rate is decreased linearly by 0.1 after every 30 epochs for all datasets. The networks
are fine-tuned from ImageNet [65] training weights. According to each dataset, the last
fully connected layer is also re-mapped from 1k to the number of classes.

4.2. Datasets

This section provides the details of the six most prominent fine-grained datasets used
for evaluation and comparison against the current state-of-the-art algorithms.

• Birds: The bird datasets that we compare include Caltech-UCSD Birds-200-2011,
abbreviated as CUB [1], composed of 11,788 photographs of 200 categories, which are
further divided into 5994 training and 5794 testing images. The second dataset for fine-
grained bird classification is North American Birds, generally known as NABirds [2],
the largest in this comparison. NABirds [2] has 555 species found in North America,
with 48,562 photographs.

• Dogs: The Stanford Dogs [3] is a subset of ImageNet [65] gathered for the task of
fine-grained categorization. The dataset is composed of 12k training and 8580 test-
ing images.

• Cars: The cars dataset [8] has 196 classes with different make, model, and year. It has
a total number of 16,185 car photographs, where the split is 8144 training images and
8041 testing images, i.e., roughly 50% for both.

• Airplanes: A total of 10,200 images with 102 variants having 100 images for each
are present in the fine-grained visual classification of aircraft, i.e., the FGVC-aircraft
dataset [7]. Airplanes are an alternative to objects considered for fine-grained catego-
rization, such as birds and pets.

• Flowers: The number of classes in the flower [4] dataset is 102. The training images
total 2040, while the testing images total 6149. Furthermore, there are significant
variations within categories, while there are similarities to other categories.

Table 1 summarizes the number of classes and the number of images, including
the data split for training, testing, and validation (if any) for the fine-grained visualiza-
tion datasets.

Table 1. Details of six fine-grained visual categorization datasets to evaluate the proposed method.

No. of Images

Dataset Classes Train Val Test

NABirds [2] 555 23,929 - 24,633
Dogs [3] 120 12,000 - 8580
CUB [1] 200 5994 - 5794
Aircraft [7] 100 3334 3333 3333
Cars [8] 196 8144 - 8041
Flowers [4] 102 2040 - 6149
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5. Evaluations
5.1. Performance on CUB Dataset

We present the comparisons on the CUB dataset [1] in Table 2. The best performer
on this dataset is DenseNet, which is unsurprising because the model concatenates the
feature maps from preceding layers to preserve details. The worst performing among the
traditional classifiers is inception-v3 [61], maybe due to its design, which is more inclined
towards a specific dataset (i.e., ImageNet [65]). The ResNet models perform relatively better
than NasNet, which shows that networks with shortcut connections surpass in performance
those with multi-scale representations for fine-grained classification. DenseNet offers higher
accuracy than ResNet because the former does not fuse the feature and carry the details
forward, unlike the latter, where the features are combined in each block.

Table 2. Comparison of the state-of-the-art fine-grained classification on CUB [1] dataset.

CNN Methods Acc.

Fi
ne

-G
ra

in
ed

MGCNN [27] 81.7%
STCNN [33] 84.1%
FCAN [66] 84.3%
PDFR [17] 84.5%
RACNN [41] 85.3%
HIHCA [42] 85.3%
BoostCNN [67] 85.6%
DTRAM [34] 86.0%
BilinearCNN [40] 84.1%
PC-BilinearCNN [46] 85.6%
PC-DenseCNN [46] 86.7%
Cui et al. [68] 86.2%
MACNN [26] 86.5%
NTSNet [38] 87.5%
DCL-VGG16 [51] 86.9%
DCL ResNet50 [51] 87.8%
TASN [39] 87.9%

Tr
ad

it
io

na
l

VGG19 [58] 77.8%
ResNet50 [59] 84.7%
ResNet152 [59] 85.0%
Inception-v3 [61] 76.2%
NasNet [69] 83.0%
ResNest50 [62] 82.3%
EfficientNet-B0 [70] 78.0%
EfficientNet-B4 [70] 84.7%
EfficientNet-B7 [70] 85.6%
DenseNet161 [60] 87.7%

The fine-grained classification literature considers CUB-200-2011 [1] as a standard
benchmark for evaluation; therefore, image-level labels, bounding boxes, and different
types of annotations are employed to extract the best results on this dataset. Similarly,
multi-branch networks focusing on various parts of images and multiple objective functions
are combined for optimization. On the contrary, the traditional classifiers [59,60] use a
single loss without any extra information or other annotations. The best performing fine-
grained classifiers for CUB [1] are DCL ResNet50 [51], TASN [39], and NTSNet [38], where
merely 0.1% and 0.2% gain is recorded over DenseNet [60] for [51] and [39], respectively.
Furthermore, NTSNet [38] lags by a margin of 0.2%. The improvement over DenseNet is
insignificant, keeping in mind the different computationally expensive tactics employed to
learn the distinguishable features by fine-grained classifiers.
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5.2. Quantitative Analysis on Aircraft and Cars

Table 3 shows the performances of fine-grained classifiers on car and aircraft datasets.
Here, we also observe that the performance of the traditional classifiers is better than
the fine-grained classifiers. DenseNet161 has an improvement of about 1.5% and 3% on
aircraft [7] compared to best performing NTSNet [38] and MACNN [26], respectively. Simi-
larly, an improvement of 0.6% and 1.4% is recorded against NTSNet [38] and DTRAM [34]
on the car dataset, respectively. The fine-grained classifiers such as [34,38,39] fail to achieve
the same accuracy as the traditional classifiers, although the former employ more image-
specific information for learning.

Table 3. Experimental results on FGVC aircraft [7] and cars [8].

Datasets

CNN Methods Aircraft Cars

Fi
ne

-G
ra

in
ed

FVCNN [71] 81.5% -
FCAN [66] - 89.1%
BilinearCNN [40] 84.1% 91.3%
RACNN [41] 88.2% 92.5%
HIHCA [42] 88.3% 91.7%
BoostCNN [67] 88.5% 92.1%
Cui et al. [68] 88.5% 92.4%
PC-BilinearCNN [46] 85.8% 92.5%
PC-ResCNN [46] 83.4% 93.4%
PC-DenseCNN [46] 89.2% 92.7%
MACNN [26] 89.9% 92.8%
DTRAM [34] - 93.1%
TASN [39] - 93.8%
NTSNet [38] 91.4% 93.9%

Tr
ad

it
io

na
l

VGG19 [58] 85.7% 80.5%
ResNet50 [59] 91.4% 91.7%
ResNet152 [59] 90.7% 93.2%
NasNet [69] 88.5% -
Inception-v3 [61] 85.4% 85.8%
ResNest50 [62] 89.9% 89.6%
EfficientNet-B0 [70] 80.9% 82.8%
EfficientNet-B4 [70] 86.8% 86.9%
EfficientNet-B7 [70] 92.0% 90.2%
DenseNet161 [60] 92.9% 94.5%

5.3. Comparison on Stanford Dogs

The Stanford dogs [3] is another challenging dataset where the performance is com-
pared in Table 4. Here, we utilize ResNet and DenseNet from the traditional ones. The per-
formance of ResNet, composed of 152 layers, is similar to DenseNet with 161 layers; both
achieved 85.2% accuracy, which is 1.4% higher than PC-DenseCNN [46], the best per-
forming method in fine-grained classifiers. This experiment suggests that incorporating
traditional classifiers in the fine-grained ones requires more insight than just utilizing
them in the framework. It is also worth mentioning that some of the fine-grained classi-
fiers employ a large amount of data from other sources in addition to the Stanford dogs
training data.

5.4. Results of Flower Dataset

The accuracy of DenseNet on the flower dataset [4] is 98.1%, which is around 5.5%
higher as compared to the second best performing state-of-the-art method (PC-ResCNN [46])
in Table 4. Similarly, the other traditional classifiers outperform the fine-grained ones
significantly. It should also be noted that the performance on this dataset is approach-
ing saturation.
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Table 4. Comparison of the state-of-the-art fine-grained classification on dogs [3], flowers [4], and
NABirds [2] dataset.

Datasets

CNN Methods Dogs Flowers NABirds

Fi
ne

-G
ra

in
ed

Zhang et al. [72] 80.4% - -
Krause et al. [73] 80.6% - -
Det.+Seg. [74] - 80.7% -
Overfeat [50] - 86.8% -
Branson et al. [47] - - 35.7%
Van et al. [2] - - 75.0%
BilinearCNN [40] 82.1% 92.5% 80.9%
PC-ResCNN [46] 73.4% 93.5% 68.2%
PC-BilinearCNN [46] 83.0% 93.7% 82.0%
PC-DenseCNN [46] 83.8% 91.4% 82.8%

Tr
ad

it
io

na
l

VGG19 [58] 76.7% 88.73% 74.9%
ResNet50 [59] 83.4% 97.2% 79.6%
ResNet152 [59] 85.2% 97.5% 84.0%
Inception-v3 [61] 85.8% 93.3% 68.4%
ResNest50 [62] 87.7% 94.7% 80.4%
EfficientNet-B0 [70] 84.9% 91.4% 63.7%
EfficientNet-B4 [70] 92.4% 92.8% 77.0%
EfficientNet-B7 [70] 93.6% 96.2% -
DenseNet161 [60] 85.2% 98.1% 86.3%

5.5. Performance on NABirds

Relatively fewer methods have reported their results on this dataset. However,
for the sake of completeness, we provide comparisons on the NABirds [2] dataset. Again,
the leading performance on NABirds is achieved by DenseNet161, followed by ResNet152.
The third best performer is a fine-grained classifier, i.e., PC-DenseCNN [46], which inter-
nally employs DenseNet161, lagging by 3.5%. This shows the superior performance of the
traditional CNN classifiers against state-of-the-art fine-grained CNN classifiers.

5.6. Ablation Studies

Fine-tuned vs. Scratch: Here, we present two strategies for training traditional CNN
classification networks, i.e., fine-tuning the weights via ImageNet [65] and training from
scratch (randomly initializing the weights) for the car dataset. The accuracy presented
for each is given in Table 5. The ResNet50 achieves higher accuracy when fine-tuned as
compared to the randomly initialized version. Similarly, ResNet152 performed better for
the fine-tuned network but failed when trained from scratch. The reason may be due to a
large number of parameters and smaller training data.

Table 5. Different strategies for initialing the network weights, i.e., fine-tuning from ImageNet and
random initialization (scratch) for car [8] dataset.

Initial Methods

Weights ResNet50 ResNet152

Scratch 83.4% 36.9%
Fine-tune 91.7% 93.2%

Backbone Improvement Over Standalone Classifiers: Some fine-grained state-of-the-
art methods use ResNet50 as the backbone and achieve higher accuracy than the standalone
ResNet50. To be precise, Table 6 shows the backbones used by state-of-the-art methods
in their algorithm. One can observe that many algorithms employ the same backbones
more than once, increasing the overhead and doubling or tripling the number of param-
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eters. Besides utilizing traditional classifiers as backbones, state-of-the-art fine-grained
methods rely on specialized techniques to extract fine-grained features, hence adding more
parameters and computation. Therefore, the improvement achieved by the state-of-the-art
fine-grained methods comes at the cost of extra considerations and the number of parame-
ters, while the traditional classifier, like DenseNet, does not require such tricks to achieve
the same accuracy.

Table 6. The comparison of backbone and number of parameters in fine-grained methods regarding
classification accuracy on the CUB dataset. The input to all methods is 448 × 448.

Methods Backbone Parameters Accuracy

MGCNN [27] 3× VGG16 429 M 81.7
STCNN [33] 3× Inception-v2 71.5 M 84.1
RA-CNN [42] 3× VGG19 429 M 85.3
MACNN [26] 3× VGG19 144 M 85.4
TASN [39] 1× VGG19 140 M 87.1
MAMC [75] 1× Resnet50 434 M 86.5
NTSNet [38] 3× Resnet50 25.5 M 87.3
TASN [39] 1× Resnet50 35.2 M 87.9

DenseNet [60] 1× DenseNet161 28.7 M 87.7

Parameters, FLOPs, and Performance: We provide comparisons in terms of the number
of parameters, FLOPs, and performance on the ImageNet for the traditional classifiers em-
ployed in our experiments in Table 7. The ResNet50 [59] approximately has the same param-
eters as DenseNet161 [60] numerically, but the performance of DenseNet161 [60] is much
higher than ResNet50 [59]. It should also be noted that DenseNet169 and DenseNet201 have
fewer parameters but higher performance on imageNet; hence, we argue that backbones
in the fine-grained methods should be updated to appropriate ones, as suggested by our
experimental analysis.

Table 7. Traditional classifier comparison on ImageNet [65] regarding the number of parameters,
FLOPS, and accuracy.

No. of Accuracy

Methods Parameters FLOPS Top-1 Top-5

ResNet18 [59] 11.69 M 1819.06 M 69.76% 89.08%
ResNet34 [59] 21.97 M 3671.26 M 73.3% 91.42%
ResNet50 [59] 25.60 M 4111.51 M 76.15% 92.87%
ResNet101 [59] 44.60 M 7833.97 M 77.37% 93.56%
ResNet152 [59] 60.20 M 11,558.83 M 78.31% 94.06%
Densenet121 [60] 7.98 M 2865.67 M 74.65% 92.17%
Densenet161 [60] 28.68 M 7787.01 M 77.65% 93.80%
Densenet169 [60] 14.15 M 3398.07 M 76.00% 93.00%
Densenet201 [60] 20.01 M 4340.97 M 77.20% 93.57%
Inception-v3 [61] 23.83 M 5731.28 M 77.45% 93.56%

6. Discussions

Based on the results obtained in our experiments, we would like to answer the three
questions raised in the abstract. We observed that the results obtained by the state-of-the-art
traditional CNN classifiers are comparable to the fine-grained classifiers. This is because
the fine-grained classifiers employ the basic version of the state-of-the-art traditional CNN
classifiers, such as Resnet18, ignoring the higher counterparts that provide sophisticated
results. Furthermore, the traditional classifiers can focus on the minute differences between
the images and learn from them; however, it is also essential to note that these differences
can be highlighted via techniques employed in fine-grained classification. As a final
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observation, we concluded that the traditional backbones help improve the fine-grained
classification as the number of images for fine-grained datasets is limited; hence, a pre-
trained model will help improve the results, as shown in Table 5.

7. Conclusions

In this paper, we compared state-of-the-art traditional CNN classifiers and fine-grained
CNN classifiers. It has been shown that conventional models achieve state-of-the-art
performance on fine-grained classification datasets and outperform the fine-grained CNN
classifiers or achieve similar results on the fine-grained datasets. Therefore, updating
the baselines for comparisons in the fine-grained CNN classifiers is necessary to take
full advantage of traditional CNN classifiers. Based on our ablation studies, it is also
important to note that the performance increase is due to the initial weights trained on the
ImageNet [65] datasets. Furthermore, we have established that the DenseNet161 model
achieves state-of-the-art or similar results to fine-grained classifiers for all datasets without
adding significant overhead; hence, DenseNet161 can be considered a better backbone than
those employed in fine-grained classifiers.
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