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Abstract: This paper proposes an Synthetic Aperture Radar (SAR) imaging and detection model of
multiple targets at the maritime scene. The sea surface sample is generated according to the composite
rough surface theory. The SAR imaging model is constructed based on a hybrid EM calculation
approach with the fast ray tracing strategy and the modified facet Small Slope Approximation (SSA)
solution. Numerical simulations calculate the EM scattering and the SAR imaging of the multiple
cone targets above the sea surface, with the scattering mechanisms analyzed and discussed. The
SAR imaging datasets are then set up by the SAR image simulations. A modified YOLOv7 neural
network with the Spatial Pyramid Pooling Fast Connected Spatial Pyramid Convolution (SPPFCSPC)
module, Convolutional Block Attention Module (CBAM), modified Feature Pyramid Network (FPN)
structure and extra detection head is developed. In the training process on our constructed SAR
datasets, the precision rate, recall rate, mAP@0.5 and mAP@0.5:0.95 are 97.46%, 90.08%, 92.91% and
91.98%, respectively, after 300 rounds of training. The detection results show that the modified
YOLOv7 has a good performance in selecting the targets out of the complex sea surface and multipath
interference background.

Keywords: SAR imaging; YOLOv7 network; electromagnetic scattering model; maritime targets

1. Introduction

Synthetic Aperture Radar (SAR) is an all-weather and all-time remote sensing platform
that can provide high-resolution microwave radar imaging features of the target. The SAR
imaging and detections of maritime targets have significant applications in the aspects
of sea target monitoring and recognition, sea rescuing, sea crisis management, etc. [1–5].
Sea targets usually have different sizes and various scattering mechanisms. These factors
are challenges for sea target detection. In recent years, Deep Learning (DL) methods have
been introduced and show excellent performance in the image recognition and detection
domain [6–10]. You Only Look Once (YOLO) is one of those methods, which has been
developed in various series and shows good performance in image detection [11–15].
YOLOv7 is the latest version at the time of this research. It has an optimized training
process and a higher detection accuracy, as indicated in the latest studies [15–17]. In
maritime SAR detections, the DL method requires plenty of SAR datasets to serve as
training samples. The practical maritime environment varies with time, showing different
radar features for various sea states. In addition, it can take a long time to obtain extensive
SAR samples by means of practical measurements. Furthermore, SAR image samples
during high sea states are also not easy to acquire. The physical mechanisms behind
the SAR features and their influence on SAR detection performance are also not easy to
illuminate by measurement alone.
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Electromagnetic models can serve as a close-to-real tool to set up the SAR imaging
model and employ the SAR data simulations with higher efficiencies owing to their low
cost, high verisimilitude and convenient implementation. The electromagnetic scattering
calculation model needs to be set up for the sea targets. This issue has complex composite
scattering mechanisms, which include not only the individual target and sea scattering
but also the target-and-target and target-and-sea interactions. At the SAR frequencies,
the composite targets and real sea surface model are electrically very large with complex
scattering mechanisms in the radar sights. All these factors make the issue troublesome and
intriguing. The rigorous full-wave models (e.g., MoM, MLFMA, FEM, FDTD) [18–20] are
accurate, but they are mostly limited to handling relatively electrically small-scale EM sim-
ulations, which are far from practical uses. Thus, the analytical models are more attractive
in practical applications since they have more applicable formulations with computational
efficiencies. Some models have emerged in recent years, such as the Four Path Model
(FPM) [21] and Half-Space Physical Optics (HSPO) [22]. They are simple and efficient to
apply in reality. However, they generally simplify the scattering mechanisms and ignore
the local sea surface scattering and the complex high-order interactions in the compos-
ite target-sea scattering calculation, which is significant in the SAR imaging simulations.
A “facet-based” model was developed in some previous works, which can describe the local
scattering in the electrically large maritime scene accurately and efficiently. The large-scale
sea surface is meshed by the facet elements with local scattering configurations. The SAR
echo from these facet elements can be easily obtained. Franceschetti et al. [23,24] developed
the facet model with the Kirchhoff solution and applied the model in ocean SAR echo sim-
ulations. Min Zhang et al. [25,26] modified the facet model with Two-Scale Methods (TSM)
by further considering the Bragg phenomena and combining it with the four-path model for
simulating the SAR image of the composite ship–ocean scene. However, deficiencies still
exist. The two-scale method utilizes an ad hoc “cutoff” wavenumber as the selection criteria
to determine the proportion of contributions from the multi-scale sea surface structures,
which may affect the correctness of the calculation results. In addition, the facet-based
four-path model is also too approximate to fully consider the local interactions between the
multiple targets and the sea.

This paper aims to provide an SAR imaging and detection model with the EM ap-
proach and a modified CBAM-YOLOv7 neural network. The EM approach utilizes a
facet-based sea scattering description and a hybrid high-frequency electromagnetic model.
The EM approach is applied to build the SAR image simulation datasets. A modified
CBAM-YOLOv7 neural network is applied for multiple target detection in the maritime
scene. The rest part of the paper is organized as follows: The description of the EM ap-
proach to calculate the composite target and sea scattering is given in Section 2. Then, the
SAR imagery simulator is set up, and the simulations are created. Section 3 constructs the
modified YOLOv7 neural network model and accomplishes the SAR image training and
detections, with the performance of the model compared and discussed. Finally, Section 4
ends with the conclusions.

2. SAR Imaging Model with the Electromagnetic Approach
2.1. The Sea Surface Scattering Calculations

The practical sea surface has composite structures, as illustrated in Figure 1. Assume
the time-varied sea height map is ξ(r, t). The large-scale waves, z(r, t), can be generated
at each time moment as a rough surface sample by the Monte Carlo method, according to
the rough surface theory with a certain sea spectrum [27]. The Elfouhaily’s sea spectrum
and the spreading function [28] are used in this paper. In the facet model, the long waves
are meshed by large planar facets. The short waves ζc(r) serve as modifications upon the
planar facet. As indicated in the Bragg theory, the radar scattering contributions from the
short waves are mainly from its Bragg wave components [29,30], which can be represented
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by the expansion of sinusoidal waves traveling at the Bragg resonant frequency with
the form:

ζc(r) = B(κc) sin(κc · rc + ωct + ψ) (1)

where κc is the Bragg wave vector, B(κc) =
√

S(κc)/∆S is the amplitude, ψ is the ran-
dom phase, S(κc) is the short wave spectrum, ωc is the circle frequency, which is as-
sumed to follow the dispersion relationship in the deep water with ω2

c = κg and g as the
gravity acceleration.
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A Facet Small Slope Approximation (SSA) method is employed as the EM approach in
calculating the sea surface scattering. The SSA method was proposed by Voronovich et al. [31–33]
in a description of the scattering from an electrically large and complex environment. However,
it only provides an average scattering coefficient of the sea surface, which is not enough to
provide a high-resolution SAR imaging return. In the earlier studies, the SSA method was
combined with the facet model to study the local scattering of the multi-scale structures of
the complex environment, with good agreement with the measurement data of the practical
environment radar scattering [34–36]. In Figure 1, the global and local coordinates are adopted
to illustrate the scattering configurations. The Scattering Amplitude (SA) can be calculated by

SSSA =
2(qq0)

1/2

(q + q0)P1/2
inc

B(k, k0)
∫ T(r, z(r))

(2π)2 e−i(k−k0)·r−i(q+q0)ξ(r)dr (2)

where B(k, k0) is a polarization matrix [31–33], k0 and q0 are the horizontal and vertical
projections of the incident vector ki, and k and q are the horizontal and vertical projections
of the scattering vector ks. The scattering vector is q = k(ks − ki). T(r, z(r)) is the taper
wave function. Pinc is the incident power. The taper factor is set as gx = Lx/4, and gy = Ly, as
suggested by [37]. Lx and Ly are the lengths of the sea surface along the x- and y-directions.

In the classical SSA, the size of the meshed facets is requested to ensure that the
integral upon the short-wave structure is precisely solved [31–33]. It is hard for the method
to handle the electrically very large environment. The calculation also consumes a lot of
computation resources. Here, the SSA is employed on the large sea facets with the Bragg
wave modifications, which can save a lot of calculation time. The integral kernel upon the
facet can be analytically solved as:

I =
∫ T(r,z(r))

(2π)2 · e−i(k−k0)·rc−i(q+q0)(z(rc)+ζc(r))dr

= T(rc ,z(rc))

(2π)2 · ∆S
2nz
· e−i(k−k0)·rc−i(q+q0)z(rc)

·
{

B(κ+
c )

∞
∑

n=−∞
(−i)n Jn[qzB(κ+

c )]I0(κ
+
c ) + B(κ−c )

∞
∑

n=−∞
(−i)n Jn[qzB(κ−c )]I0(κ

−
c )

} (3)

where ∆S is the facet area, rc is the center of the large sea facet, Jn(·) is the Bessel function,
and only the dominant terms (n = 0,±1) are reserved in the Bessel series expansion. At the
facet, the local coordinate, I0(κc), is given by



Electronics 2023, 12, 4816 4 of 18

I0(κc) = e−i(1+n)ωctsinc
{

∆x
2 [(1 + n)κcx − qx − qzzx]

}
· sinc

{
∆y
2 [(1 + n)κcy − qy − qzzy]

}
+ e−i(1−n)ωctsinc

{
∆x
2 [(1− n)κcx + qx + qzzx]

}
· sinc

{
∆y
2 [(1− n)κcy + qy + qzzy]

} (4)

The scattering coefficient is defined as

σSSA = 4πqq0

∣∣∣SSSA
∣∣∣2 (5)

Figure 2 presents the simulated backward scattering coefficients. The simulated area
of the sea is 128 m × 128 m. The sea facets are meshed into the size of 1 m × 1 m. The
dielectric constant of the sea is calculated according to the Klein model [38] at 20 ◦C and
32.5% of salinity. The incident frequency is 13.9 GHz. The incident angle is θi = 30◦ and
ϕi = 0◦. The results are obtained by averaging the simulated scattering from 100 sea realiza-
tions. Comparisons are made between the simulated results and the measurement data in
the reference [39], the results from the SSA-2 method proposed by Voronovich [31–33], and
the two-scale method proposed by Andreas Arnold-Bos and Ali Khenchaf [40]. The sea
wind speed in Elfouhaily’s sea spectrum U10 = 5 m/s. From the results, one can see that
our method and the SSA-2 method better agree with the measurement results in the real
scene compared with the TSM results for different incident angles in both polarizations.
Additionally, the facet SSA method has a unified formula and better adaptability in the
description of the specular and diffuse scattering upon the local sea surface in different sea
conditions. This can validate the accuracy of our method.
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2.2. The Calculations of the Composite Target and Sea Model Scattering

The composite target and sea model involve hybrid scattering mechanisms. At the high
microwave radar frequencies, the scattering from the target and sea surface model becomes
localized and uncorrelated. A facet-based hybrid high-frequency scattering calculation
approach is adopted in calculating the composite EM scattering. For the illuminated target
facets, the scattering field is calculated by the Physical Optics (PO) method, as given by

EPO =
jke−jkR

4πR

x
η · k̂s×(k̂s × J(r′))ejkk̂s ·r′ds′ (6)

where k̂s is the unit scattering vector. R is the radar-to-target distance. J(r′) is the equivalent
current for the illuminated facets, which is calculated as

J
(

r’
)
= 2n̂×Hinc (7)
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Here, the tapered wave is also used as the incident wave. The integral in Equation (6)
can be solved by Gordon’s method [41]. The coupling interactions among facets are
processed by a fast ray tracing process, as shown in Figure 3.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 18 
 

 

The composite target and sea model involve hybrid scattering mechanisms. At the 

high microwave radar frequencies, the scattering from the target and sea surface model 

becomes localized and uncorrelated. A facet-based hybrid high-frequency scattering 

calculation approach is adopted in calculating the composite EM scattering. For the il-

luminated target facets, the scattering field is calculated by the Physical Optics (PO) 

method, as given by 

'ˆ 'e ˆ ˆ( ( ')) e
4

s

jkR
jkkPO

s s

jk
k k ds

R




−


=   
r

E J r  (6) 

where 
ˆ
sk  is the unit scattering vector. R is the radar-to-target distance. ( ')J r  is the 

equivalent current for the illuminated facets, which is calculated as 

ˆ( ) 2 inc
 = J r n H  (7) 

Here, the tapered wave is also used as the incident wave. The integral in Equation (6) 

can be solved by Gordon’s method [41]. The coupling interactions among facets are pro-

cessed by a fast ray tracing process, as shown in Figure 3. 

Transmitter Receiver

GO

Sea-facet 

Facet SSA

GO

GO
GO

Target facet

PO

Target facet

PO

 

Figure 3. The coupling interactions calculation. 

The incident wave is modeled by the ray tube, which traces and bounces according 

to the GO principles until it no longer intersects with any facet. Once the target or the sea 

facet is shone by the ray, the scattered field is, respectively, calculated by PO and the facet 

SSA method. The total scattering field is vector summed by the scattered field from all the 

facet elements. The ray tracing process can be further accelerated by the bi-directional ray 

tracing technique [42] and the KD-tree acceleration technique [43]. 

Apart from the surface scattering, the diffractions from the target edges also con-

tribute. They make a specific contribution to the composite scattering. These components 

are evaluated by the EEC method as follows 

0

0

j
ˆ 'd 0 ˆ ˆˆ ˆ ˆ[ ( ) +( ) ] d

4

k r
ik

e m
l

ik e
s s t I s t I e t

r

−
 =   

s r
E  (8) 

eI
 and mI

 have the form: 

2

ˆ ˆ2 2

sinsin

EEC EEC

inc e inc em

e

ii

i tD i tD
I

kk





 
= +

E H
 (9) 

ˆ2

sin sin

EECinc

m m

i s

i t
I D

k



 


=

H
 (10) 

where incE
 and incH

 are the incident fields. t̂  is the unit vector along the edges. 
EEC

eD

,
EEC

emD , 
EEC

mD  are the EEC diffraction coefficients [44]. The scattering coefficient is defined 

for the composite scattering, as given by 
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The incident wave is modeled by the ray tube, which traces and bounces according
to the GO principles until it no longer intersects with any facet. Once the target or the sea
facet is shone by the ray, the scattered field is, respectively, calculated by PO and the facet
SSA method. The total scattering field is vector summed by the scattered field from all the
facet elements. The ray tracing process can be further accelerated by the bi-directional ray
tracing technique [42] and the KD-tree acceleration technique [43].

Apart from the surface scattering, the diffractions from the target edges also contribute.
They make a specific contribution to the composite scattering. These components are
evaluated by the EEC method as follows

Ed =
ik0

4π

e−jk0r

r

∫
l
[ŝ× (ŝ× t̂)Ie+(ŝ× t̂)Im]eik0ŝ·r′dt′ (8)

Ie and Im have the form:

Ie =
i2Einc · t̂DEEC

e

k sin2 βi
+

i2ηHinc · t̂DEEC
em

k sin βi
(9)

Im =
i2ηHinc · t̂

k sin βi sin βs
DEEC

m (10)

where Einc and Hinc are the incident fields. t̂ is the unit vector along the edges. DEEC
e , DEEC

em ,
DEEC

m are the EEC diffraction coefficients [44]. The scattering coefficient is defined for the
composite scattering, as given by

σ = lim
r→∞

4πr2|Esca|2/|Einc|2 (11)

The bistatic scattering coefficients are shown in Figure 4.
Figure 4a shows the different polarization scattering coefficients of the multiple targets

above the sea surface, which consisted of a long cone (cone length is 5 m, base radius is
1 m) and a short cone target (cone length is 3 m, base radius is 1 m). Figure 4b calculates
the bistatic scattering from a group of two long cones and two short cones. The cones are
5 m high above the sea. The incident angle wave is θi = 40◦, ϕi = 0◦. One can see that
the composite scattering has the strongest value in the specular direction, which is mainly
contributed by the sea surface scattering. The reflection from the cone surface, as well
as the coupling between the sea and the cone, also causes peak values in the backward
directions. One can also see that the coupling effect for the four-cone group is stronger,
which disperses the scattering energy into other diffuse directions.
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2.3. The SAR Imaging Model

The SAR image model is set up based on the airborne strip mode in this section, as
shown in Figure 5.
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Figure 5. Sketch of the synthetic aperture radar imaging model.

The SAR carrier platform is flying at a velocity of v along the y-axis. θi is the radar
squint angle. R is the distance from the radar to the scatter in the simulated scene. The SAR
raw echo is set up at the coordinate system in Figure 5, given by

s
(
y′, r′, t

)
=

x
σ(y, r, t)g(r′ − r, y′ − y)dydr (12)

where

g(r′ − r, y′ − y) = rect
[

2(r′ − r− ∆R)
cτ

]
·ω2(

y′ − y
Y

) e−j 4π
λ l · e−j 4π

λ {(r
′−r−∆R)2+(y−y′−∆y)2}

1
2

(13)

where ∆R and ∆y are the range and azimuth position alterations of the scatterers. f is the
radar working center frequency. ∆ f is the frequency bandwidth. τ is the pulse duration.
λ is the wavelength. rect(·) is the rectangular window function. c is the propagation speed
of the electromagnetic waves. ω(·) is the antenna directionality function. Y = λR0/L is
the azimuth width of the antenna beam footprint. σ is the backscattering coefficient of the
scatterer in the scene. l is the length of the radar wave traveling. The sea height maps are
generated, and σ for each scatterer is calculated at each slow time moment. Through image
focusing [45], the ensemble-averaged SAR image intensity is obtained by
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I(x, y) = B
x

dx′dy′
〈∣∣σ(x′, y′, t)σ∗(x′, y′, t)

∣∣〉 · ρaN
ρ′aN(x′, y′)

· fr(x− x′) · e
−( π

ρ′aN (x′ ,y′) )
2·[y−y′− R

v ·ur(x′ ,y′)]
2

(14)

where 〈·〉 refers to the average of the scattering coefficients in the integration time. ur
refers to the orbital velocity. fr(·) refers to the range resolution function. ρaN = Nρa is the
azimuth resolution after N times of SAR incoherent illuminations. ρaN

′ is the degraded
azimuth resolution because of the target and sea scatter movements.

In the following simulations, the SAR image characteristics of the low-flying cone tar-
gets at the maritime scene are investigated. The targets fly along the negative x-axis
direction with a constant velocity of 100 m/s. The velocity of the SAR platform is
v = 100 m/s. The radar incident angle θi = 30◦. The carrier frequency is 10 GHz. The
base-band bandwidth is 1 GHz.

Figure 6 presents the simulated SAR images for the two-cone group targets at different
sea states (U10 = 3 m/s and U10 = 10 m/s). The long and short cone targets, as well as the
distribution characteristics of the wave propagations along the wind directions, can all be
clearly identified. The color bar indicates the radar scattering intensities. The shadow areas
of the sea images are the targets’ shadows under the radar wave illuminations. One can
also identify the artificial target images caused by the multipath echo responses, which can
also be clearly observed in Figure 6a. These images are quite similar to the images from the
direct target responses, but they have weaker intensities, shifts and distortions compared
with the target images in both the range and azimuth directions. They are caused by the
phase delay of the multipath interactions. These phenomena are also observed and referred
to as “multipath ghosts” in other related studies [46,47]. One can also observe in Figure 6b
that the intensities of the multipath response images can become even weaker at the higher
sea state and are not easily identified.
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In Figure 7, the SAR characteristics of the four-cone group targets are further inves-
tigated. It can be seen that the artificial targets are distributed in a broader area. At the
high sea state in Figure 7b, more artificial images exist, but their intensities are weaker.
From the above simulations, one can see that the SAR images of the targets at maritime
scenes are much more complex than those of targets in the free space. In this scenario,
the target detections can suffer more influence from the sea clutter and the multipath
interactions between the target and the sea surface. This issue is also indicated in many
references [46–49].
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3. SAR Image Detections with the YOLOv7 Neural Network
3.1. Modified CBAM-YOLOv7 Neural Network

YOLOv7 neural network is an effective target detection method in the YOLO
series [11–15]. In comparison with the earlier version of the YOLO series, the YOLOv7
network introduces a multi-scale testing technique that shows good potential in complex
SAR image target detections [15–17]. To handle the difficulties in the issue of the SAR
detections of the targets in the complex maritime scene, a modified YOLOv7 method is
adopted, the structure of which is shown in Figure 8.
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Figure 8. The modified Convolutional Block Attention Module–You Only Look Once version 7
(CBAM-YOLOv7) structure.

The YOLOv7 structure has three main parts: the backbone network, the Feature Pyra-
mid Network (FPN) and the Detection head. The backbone network has four CBS modules.
The CBS module extracts the underlying target features by means of the composite convolu-
tional module, the batch normalization (BN) module and the SiLU module. The Max Pool
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(MP) module and the Efficient Layer Aggregation Network (ELAN) are used for feature
fusion [15]. Their structures are shown in Figure 9.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 8. The modified Convolutional Block Attention Module–You Only Look Once version 7 

(CBAM-YOLOv7) structure. 

The YOLOv7 structure has three main parts: the backbone network, the Feature 

Pyramid Network (FPN) and the Detection head. The backbone network has four CBS 

modules. The CBS module extracts the underlying target features by means of the com-

posite convolutional module, the batch normalization (BN) module and the SiLU mod-

ule. The Max Pool (MP) module and the Efficient Layer Aggregation Network (ELAN) 

are used for feature fusion [15]. Their structures are shown in Figure 9. 

 

Figure 9. The structures of the CBS, Max Pool (MP) and Efficient Layer Aggregation Network 

(ELAN) in the You Only Look Once version 7 (YOLOv7) backbone. 

The Spatial Pyramid Pooling Connected Spatial Pyramid Convolution (SPPCSPC) 

module is used in the original YOLOv7 [15], which performs down-sampling through 

parallel pooling operations, as in Figure 10. The SPPCSPC has three differently sized 

convolution kernels, which can greatly improve network calculations. A Spatial Pyramid 

Pooling Fast Connected Spatial Pyramid Convolution (SPPFCSPC) module is used in 

this study instead of the SPPCSPC module [50], whose structure is shown in Figure 10. 

In the SPPFCSPC module, the serial maximum pooling operations are adopted in the 

parallel maximum pooling operation, which can raise the computation efficiency while 

maintaining the receptive field. 

Figure 9. The structures of the CBS, Max Pool (MP) and Efficient Layer Aggregation Network (ELAN)
in the You Only Look Once version 7 (YOLOv7) backbone.

The Spatial Pyramid Pooling Connected Spatial Pyramid Convolution (SPPCSPC)
module is used in the original YOLOv7 [15], which performs down-sampling through
parallel pooling operations, as in Figure 10. The SPPCSPC has three differently sized
convolution kernels, which can greatly improve network calculations. A Spatial Pyramid
Pooling Fast Connected Spatial Pyramid Convolution (SPPFCSPC) module is used in this
study instead of the SPPCSPC module [50], whose structure is shown in Figure 10. In the
SPPFCSPC module, the serial maximum pooling operations are adopted in the parallel
maximum pooling operation, which can raise the computation efficiency while maintaining
the receptive field.
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Figure 10. The structures of the Spatial Pyramid Pooling Connected Spatial Pyramid Convolution
(SPPCSPC) and the Spatial Pyramid Pooling Fast Connected Spatial Pyramid Convolution (SPPFCSPC).

On the basis of the original YOLOv7 network, the Convolutional Block Attention
Module (CBAM) [51–53] is employed to highlight the important target features. It can
enhance the important features while suppressing non-important features. The spatial
features are added together through the average pooling and the maximum pooling. The
structure of the CBAM is presented in Figure 11.
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It contains the Channel Attention Mechanism (CAM) module and the Spatial Attention
Mechanism (SAM) module [51]. The channel attention concerns the meaningful information
in a given image. The spatial attention concerns the location of the meaningful area in the
image. The input feature F is transferred into the feature map of F ∈ RC×H×W , where C
refers to the channel number and H and W refer to the height and width of the feature map.
The channel attention map Mc ∈ RC×1×1 is calculated by the CAM module by squeezing
the feature maps of the pooling layers with the activation function given by

Mc(F) = Signmoid(MLP(AvgPool(F)) + MLP(MaxPool(F))) (15)

where Signmoid() refers to the sigmoid activation function [53]. MLP is the parameterized
multilayer perceptron function, which can integrate the channel information and output the
weighted map. The spatial attention is acquired by the average pooling and max pooling
operations along the channel. Then, the spatial attention map Ms ∈ R1×H×W is obtained
by concatenation and convolution operations as given by

Ms(F) = Signmoid
(

f 7×7([AvgPool(F); MaxPool(F)])
)

(16)

where 7× 7 denotes the 7× 7 filter-sized convolution operation. The output feature map
can be obtained by

Fout = Ms(Mc(F)⊗ F)⊗ (Mc(F)⊗ F) (17)

The target-sea image has multi-scale image features. The target features decrease with
the increase in the convolutional layers. The Feature Pyramid Network (FPN) structure
is adopted to mix the shallow and high-level features [54–56]. The semantic features are
transferred from the top to the bottom by up-sampling. The localization feature fusion
is conducted by the down-sampling of the feature map. On the basis of the traditional
FPN layers, an extra 160 × 160 feature layer is added to fuse the information of the
smaller feature layers before down-sampling. Correspondingly, an extra detection head is
introduced in the modified YOLOv7, as presented in Figure 8. The added prediction head
is produced from the low-level and high-resolution feature maps to improve the capability
of target feature extractions in the complex environment. The ELAN-H [57] is employed to
increasingly improve the training and learning ability of the network, whose structure is
given in Figure 12.
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3.2. SAR Imaging Training and Detection Process

The SAR imaging training and detection process is given in Figure 13.
Firstly, the SAR dataset is constructed. The SAR images are obtained by the SAR

imaging model with the EM calculations of the scattering from the long and short cone
targets, and sea surface samples are generated at different times in different sea states and
radar incident conditions. Then, the SAR image data are framed and labeled by well-trained
researchers with the help of the image annotation tool labelImg [58]. The SAR images are
then preprocessed, resized into 640 × 640 and input into the backbone structure of the
YOLOv7 network. The Stochastic Gradient Descent (SGD) optimizer is employed to train
YOLOv7. The batch size for the optimization is set at 16. The training epoch is 300. There
are 1024 SAR image samples used to establish the training datasets; 1/3 of the 1024 training
samples are randomly selected to establish the validation dataset. The initial training was
conducted using the pre-trained weights for YOLOv7 on the COCO dataset [59]. The
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best weights can be obtained after the whole training process, which is used in the final
SAR imaging detections. The numerical simulations are conducted on a WorkStation with
Intel(R) Core(TM) i9-10885H CPU @ 2.40 GHz. The GPU version is NVIDIA GeForce GTX
1650Ti with Max-Q Design.
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The precision rate, recall rate and Mean Average Precision (mAP) are employed to
evaluate the training performance of the network according to the comparisons with the
Intersection-Over-Union (IOU) value [60]. TP (True Positive) represents the number of
correctly detected targets. The IOU of the predicted result is no less than 0.5 with the actual
label. Otherwise, it is regarded as a False Positive (FP) detection. False Negative (FN)
represents the number of missed targets. The precision rate and recall rate refer to the
proportion of the correct detected targets in the total detected targets and the total number
of targets, respectively, as given by

Precision =
TP

(TP + FP)
(18)

Recall =
TP

(TP + FN)
(19)

The Average Precision (AP) can be calculated by the integration of the average value
of the highest precision under different recall conditions. The mean Average Precision
(mAP) is the mean value of AP for each category, given by

AP =
∫ 1

0
P(r)dr (20)

mAP =
1
M

M

∑
k=1

AP(k) (21)

There are two kinds of commonly used mAPs, mAP@0.5 and mAP@0.5:0.95. The
mAP@0.5 is the mAP with the IoU set at 0.5; mAP@0.5:0.95 has an average mAP at different
IoU thresholds from 0.5 to 0.95 with a step size of 0.05. Figure 14 compares the evaluation
metrics of the original YOLOv7 and the modified YOLOv7 when training on the SAR image
datasets constructed by the numerical simulations. One can see from the comparison results
that the precision and recall rates of the modified YOLOv7 are 97.46% and 90.08% after
300 rounds of training, which are 4.04% and 3.71% higher than those of the original YOLOv7
network. In addition, the value of the precision and recall for the modified YOLOv7 can
stabilize with much fewer training times. The values of mAP@0.5 and mAP@0.5:0.95 of the
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modified YOLOv7 model are 92.91% and 91.98%, which are 3.94% and 14.26% higher than
those of the original YOLOv7 model.
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Figure 15 shows the comparisons of the bounding box loss and object loss curves for
the two networks. It can be seen that the loss value of the modified YOLOv7 network is
lower and decreases more quickly than the original one.
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In the training process, the hyperparameters of the networks were fine-tuned as well.
The default hyperparameters were used in the first training to establish a performance
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baseline. Then, the random search method was adopted to find the hyperparameters with
better performance than the baseline. By doing so, the fine-tuned neural network and
desired precision, recall and mAP values are achieved. The above comparisons show that
the modified YOLOv7 can obtain a great performance improvement in the training. These
results are consistent with the fact that modules, like CBAM and FPN in references [61–63],
are effective in improving the performance of neural network models.

In the following simulations, the detections are employed on the SAR images of
the multiple cone targets in the maritime environment with the two YOLOv7 networks.
Figures 16 and 17 show the comparisons of the SAR detection results for a long-cone and
short-cone target above the sea surface when U10 = 3 m/s and U10 = 10 m/s by means
of the original YOLOv7 network and the modified YOLOv7 network. In the detected
images, the targets need to be selected from the sea surface background and the multipath
echo interference.
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Figures 16a and 17a show the detection results by the original YOLOv7 network. From
the results, one can see that the detection performance of the original YOLOv7 network
worsens in the higher sea state conditions. According to the aforementioned analysis,
the backscattering intensities of the sea surface can be stronger at the higher sea state.
In this condition, the target detection can be more severely affected by the sea surface
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background. Additionally, it can be seen that the detections of the smaller cone target are
more easily affected by the sea background. It means that smaller target detections in large
maritime scenes are more difficult. Figures 16b and 17b show the detection results by the
modified YOLOv7 network. One can also see that in comparison with the results of the
original YOLOv7 network, the modified YOLOv7 network apparently improves the ability
to extract the multi-scale features from the complex background. Thus, a better detection
performance can be obtained.

Figures 18 and 19 show the detection results in a more complex environment. SAR
detections are employed for the SAR images of the two long-cone targets and two short-cone
targets in the maritime scene.
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From the above results, one can see that the interference of the sea background and
the artificial targets caused by the multipath interactions between the targets, as well as the
target and sea surface, are more severe. The detection performance of the original YOLOv7
network suffered more loss. In Figure 18a, the target detection performance is mainly
affected by the artificial target image caused by the multipath echo at the low sea state. In
this condition, the backscattering intensity of the multipath echo is apparently very strong.
The detections of the nearby targets can be affected. In Figure 19a, the target detection
performance is mainly affected by the sea surface when the sea wind speed is strong. The
reason is similar to the analysis of the results in Figures 16 and 17. In Figures 18b and 19b,
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an apparent improvement in the detection performance of the modified YOLOv7 network
has been seen in the same detection condition. It further proves that the modified YOLOv7
network has a stronger ability to extract accurate multi-scale features and detect the targets
in the complex maritime environment.

4. Conclusions

SAR imaging and detection of maritime targets play a significant role in many fields,
but a reliable and convenient way to obtain SAR datasets is still lacking. This paper proposes
an SAR imaging model of the multiple targets in the maritime scene based on a hybrid
electromagnetic approach. A facet SSA is derived to evaluate the local scattering with the
Bragg phenomenon upon the electrically large sea environment with great accuracies and
efficiencies, which is validated through a comparison with methods in previous studies
and the measurement data [39,40]. The coupling interactions among the target and sea
surface scatterers are calculated by a fast ray tracing process with the bidirectional tracing
technique and the KD-tree acceleration method. The model is well applied in handling
the SAR imagery simulations of the multiple targets in the maritime scene with different
sea wind speeds. Numerical simulations show the distribution characteristics of the
sea wave propagations as well as the multipath artificial images caused by the coupling
interactions. The target image has a relatively distinct profile. The images caused by the
multipath interference are obscure and weaker. The phenomena are also indicated in
the references [46–49]. A modified YOLOv7 neural network with the SPPFCSPC module,
CBAM, FPN structure and the extra detection head is developed for the SAR image target
detections. The dataset is constructed by the simulated SAR images of the short-cone and
long-cone targets above the sea surface in the various sea and target conditions. In the
training process, the modified YOLOv7 network shows apparent better performance in the
precision rate, recall rate and average precision. The modules used in the modified YOLO
network were also used in other research fields and showed good performance [61–63],
which further demonstrates the improvement effect of the modified YOLOv7 network. In
references [61–63], the SAR image simulations provide diverse samples to train the neural
network model. Thus, the overfitting to a specific dataset of the target features will have a
limited influence on the generalization of the target detections in different maritime scenes
and conditions. The modified YOLOv7 network also shows a stronger ability to extract the
features from the multiple targets in the maritime scene at different sea states. However, it
also needs to be admitted that the real sea surface structures and scattering mechanisms are
very complex. It’s hard for a model to wholly characterize the geometry features of various
kinds of real sea surfaces. In this article, the non-Bragg scattering mechanisms from the
sea surface structures in some complex sea states, such as breaking waves, whitecaps and
internal waves, as indicated in references [33], are not included. In addition, the practical
measurement experiments in the scenarios described in this article have not been carried
out yet. These can be further researched and serve as improvements to the existing model
to make it more robust in future studies.
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