
Citation: Wilcox, C.; Giagos, V.;

Djahel, S. A Neighborhood-

Similarity-Based Imputation

Algorithm for Healthcare Data Sets:

A Comparative Study. Electronics

2023, 12, 4809. https://doi.org/

10.3390/electronics12234809

Academic Editors: Wentao Li,

Huiyan Zhang, Tao Zhan and

Chao Zhang

Received: 6 October 2023

Revised: 22 November 2023

Accepted: 23 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Neighborhood-Similarity-Based Imputation Algorithm for
Healthcare Data Sets: A Comparative Study
Colin Wilcox 1 , Vasileios Giagos 2 and Soufiene Djahel 3,*

1 Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M15 6BH, UK;
colin.r.wilcox@stu.mmu.ac.uk

2 Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK; v.giagos@essex.ac.uk
3 Centre for Future Transport and Cities, Coventry University, Priory Street, Coventry CV1 5FB, UK
* Correspondence: ae3095@coventry.ac.uk

Abstract: The increasing computerisation of medical services has highlighted inconsistencies in the
way in which patients’ historic medical data were recorded. Differences in process and practice
between medical services and facilities have led to many incomplete and inaccurate medical histories
being recorded. To create a single point of truth going forward, it is necessary to correct these
inconsistencies. A common way to do this has been to use imputation techniques to predict missing
data values based on the known values in the data set. In this paper, we propose a neighborhood
similarity measure-based imputation technique and analyze its achieved prediction accuracy in
comparison with a number of traditional imputation methods using both an incomplete anonymized
diabetes medical data set and a number of simulated data sets as the sources of our data. The aim
is to determine whether any improvement could be made in the accuracy of predicting a diabetes
diagnosis using the known outcomes of the diabetes patients’ data set. The obtained results have
proven the effectiveness of our proposed approach compared to other state-of-the-art single-pass
imputation techniques.

Keywords: healthcare; imputation algorithms; incomplete data; neighborhood similarity

1. Introduction

Due to widespread computerization, medical services have embarked on moving their
historic paper-based medical data onto computer systems [1]. This has raised a number
of technical and societal issues. Generations of paper-based medical records need to be
digitally encoded in a way that is not only capable of handling the large information backlog,
but must also be accurate, sensitive, and, most importantly for many financially stretched
services, cost effective [2,3]. Historic medical data has highlighted the inconsistencies of
the previous recording and transcription practices and processes used by both medical
practitioners and regional authorities such that, in many cases, data may be incomplete,
incorrectly encoded, or just erroneous. This is not just a legacy issue, as modern recording
techniques also suffer from similar issues of data incompleteness that emphasize the need
to find a robust solution to this wider problem [4,5].

In the future, legacy data will form the basis of a much wider medical profile describing
an individual and will include more granular and real-time information. This data may
include a person’s movements, access to medical facilities, data from personal fitness
trackers, and other biometric devices. Data from all such sources need to be recorded in a
consistent manner. By ensuring high quality and the accuracy of such data, these medical
data sources become points of truth when identifying the individual to which they relate
and can thereby be used as a means of individual identification.

Imputation is the overarching term used for describing the range of techniques used
to replace missing data in a data set. The techniques can range from very simple numerical
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replacement to more complex statistical approaches. They can be broadly split into several
types of approaches [6]:

• Normal imputation: When the data is numerical, we can use simple techniques, such
as mean or modal values for a feature, to fill in the missing data. For data that is more
categorical (i.e., they have a defined and limited range of possible values), then the
most frequently occurring modal value for this feature can be used.

• Class-based imputation: Instead of replacing missing data with a calculated value
based on existing feature values above, the replacement is done based on some internal
classification. This approach determines the replacement value based on the values of
a restricted subclass of known feature values.

• Model-based imputation: A hybrid approach where the missing value is consid-
ered as the class, and all the remaining features are used to train the model for
predicting values.

The problem we aim to address concerns the rapidly growing amount of incomplete
personal medical data that exists. The rapid increase in volume and complexity of this
data has highlighted potential problems and issues caused by our current reliance on this
incomplete or inaccurate information. Such unqualified use may lead to a loss or misinter-
pretation of critical medical information. This problem is not limited to a medical domain
and equally applies to any problem domain that uses incomplete personal information
in a technology-driven environment. The focus of this paper is on a medical context, but
the solution should be readily generalizable to other problem domains. The existence and
use of incomplete medical data may lead to a loss or misrepresentation of critical medical
information [6]. The increasing amount and variety of stored data about individuals in the
smart healthcare era only emphasizes the urgency in finding solutions to this problem [7].
Our approach will select imputed data values in a more localized manner, thus applying a
more intelligent selection of candidate values rather than one of the more simplistic, and
widely used, imputation methods.

In this paper, we propose a neighborhood-based imputation algorithm that uses the
idea of feature value similarity in similar data records to predict missing feature values
in incomplete records. This subset of candidate records is specific to a single incomplete
record and so is recreated for each incomplete record found in a data set. This differs from
other imputation techniques, which may consider all records in the data set and give a
more general and less localized result, or other approaches, which determine neighborhood
values based on other criteria such as using weighted average or variance estimation
techniques [7].

Our algorithm aims to improve on some of the limitations of existing imputation
algorithms, especially kNNs, by providing a fast, yet accurate imputation process suitable
for use on, initially, medical data, but also on more generic incomplete data sets from
other similar problem domains. The main contributions of this work can be summarized
as follows:

• Reducing the speed degradation of the algorithm as the size of the data set increases.
• The way imputed values are selected is more localized rather than potentially using

all similar values in the data set.
• Reducing the negative impact of outlying values by making imputed values selection

more localized.
• Providing a solution that can be extended for use with textual and categorical data, as

well as numeric data.

The remainder of this paper is organized as follows. In Section 2, we present the
background to understanding the problem being studied in this paper. Section 3 presents
our proposed algorithm to improve prediction accuracy, and Section 4 evaluates the perfor-
mance of our proposed technique in comparison with other imputation methods. Section 5
discusses our conclusions and findings during this work, and, finally, Section 6 indicates
some directions for future work.
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2. Background and Related Work

In this section, we present the background of incomplete medical data and the reasons
why data integrity and completeness are important.

Imputation is the name given to the range of techniques that attempt to restore missing
information in a data set with values based on the feature values of complete data records.
The complexity of this process can range from merely replacing missing values with fixed
absolute values, thus applying some mathematical function to known feature values for
a given missing feature, or, in the simplest scenario, incomplete data records may be
completely removed from consideration [6,8]. The choice of the technique used depends
on a number of factors, including the nature of the source data, the amount of missing or
erroneous data in the data set, and the time needed to create a suitably complete set of
data. More complex approaches, such as time-series-based methods, attempt to rebuild
potential structures within the data set by considering wider factors such as patterns in the
data and relationships between the values of related features rather than just individual
value replacement. Examples of such approaches include linear interpolation techniques,
which take two known feature values and use a weighted distance between these endpoints
to calculate intermediate values [9], and the use of adjacent known feature values as
candidates for replacing missing feature values [10]. Such techniques tend to be more
time consuming, and their effectiveness is reliant upon the intended use and ability to
identify suitable structures to recreate within the source data [11]. Many of these restoration
techniques have analogies in the non-digital world, which may be considered as possible
approaches for imputing sets of data. In the following section, we briefly discuss three
common approaches to single-pass imputation [12].

2.1. Imputation by Mean/Mode/Median and Others

If the missing values in a data set’s feature column are numeric, they can be imputed
by using the mean value of the existing values for that feature variable. The mean imputed
value could be replaced by the median feature value if the feature is suspected to have
outlying values. For a categorical feature, the missing values could be replaced by the
mode of the existing values for that feature. The major drawback of this method is that it
reduces the variance of the imputed variables. This method also reduces the correlation
between the imputed variables and other variables, because the imputed values are just
estimates and will not be related to other values inherently [13].

Another algorithm worthy of note is the k-nearest neighbors (kNNs) algorithm [14].
In a similar manner to our proposed algorithm, kNNs attempts to impute missing feature
values by using the mean value of the corresponding known feature values for the k-closest
records. The kNNs algorithm has a number of limitations, which our algorithm attempts to
resolve. The kNNs is a robust algorithm belonging to a family of nearest neighbor algorithms
used to predict unknown classifications based on a data set of known classifications. It
is commonly used because it is intuitive and easy to implement and is nonparametric,
meaning that it makes no prior assumptions about the nature of the data set. It may be
used for both classification and regression problems, thus making it a widely used and
popular choice of algorithm.

The kNNs algorithm has a number of disadvantages, which our solution attempts to
improve upon and include the following:

• The kNNs is a relatively slow algorithm, with its performance decreasing as the size
of the data set increases.

• The kNNs suffers from the curse of dimensionality [15]. As the number of feature
values (dimensions) per record increases, the amount of data required to predict a
new data point increases exponentially.

• The manner in which kNNs measures the closeness of a pair of records is quite simple,
by using Euclidean or Manhattan distances for example.

• The kNNs algorithm needs homogeneity such that all the features must be measured
using the same scale, since the distance is taken as an absolute measure.
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• The kNNs does not work well with imbalanced data. Given two potential choices of
classification, the algorithm will naturally tend to be biased towards a result taken
from the largest data subsets, thus leading to potentially more misclassifications.

• The kNNs is sensitive to outlying values, as the choice of closest neighbors is based
on an absolute measure of the distance.

Our algorithm aims to improve on these drawbacks, especially in the areas of outlier
sensitivity, thereby reducing the likelihood of misclassification and the choice of imputed
feature values. Since the kNNs uses the mean of the k-nearest feature values, this could lead
to a value being calculated that does not appear in any of the actual complete records; our
algorithm removes this scenario by only choosing imputed feature values from a pool of
candidate values taken from the actual feature values of the most similar complete records.

The class of nearest neighbour predictive algorithms can make accurate predictions,
which do not require a human-readable model [16]. The quality of these predictions
depends on the measure of the distance between the data values [17]. There are several
advantages to this class of algorithms, including a robustness for noisy data and the ability
to be tuned quite easily. However, the kNNs has some drawbacks, such as the need for
all the feature values for any missing value to be considered. This was a motivation and
opportunity to use a more localized approach for determining missing data values [16].

2.2. Simple Statistical Imputation Techniques

Statistical techniques are usually applied because they tend to be fast, have low
memory overhead, and are applicable in isolation to any surrounding data. These simpler
approaches involve determining the value of a missing feature by applying a simple
functional calculation on the set of known feature values [15]. In our comparison, these are
represented by the mean (MAV) and modal (MDAV) value algorithms. Calculations tend
to be linear in nature and applied independently from other data fields in the same data
set. Calculations may range from setting missing data values to a known fixed value to
finding an average of those values that exist in other records in the data sets, or some trivial
manipulation of existing data values from other records [18]. More involved algorithms
have been developed, which try to use wider information about the nature of the data
values and any relationships that may exist between features as a way of more accurately
determining missing feature values. In our discussion, we highlight two such algorithms,
kNNs imputation and empirical Bayes inference; however, there are many more that could
be considered. This approach can be extended to use multiple imputation techniques, which
involves repeatedly applying simple mathematical techniques to improve the missing
feature value prediction, as defined by the pseudo flow below:

1. Identify missing values in the source data set.
2. Iterate through the data set. For each record with missing values, replace each missing

value with a statistical measure based on values for the same field found in other
records where this field is not missing.

3. Once all the records have been completed, if the nature of the data set meets the
criteria for its intended use, then stop; otherwise, repeat Step 2.

2.3. Multistage Techniques

Multiple imputation is a general approach to the problem of missing data that is
available in several commonly used statistical packages such as R [19,20]. Single-pass
imputation is the process of “filling in” gaps representing missing values in data sets. An
imputation method is a function that takes a number of known feature values as inputs and
uses them to calculate a potential value for a missing feature value. Single-pass imputations
apply such a mapping only once to the original set of known feature values. Multiple
imputation, however, is a technique for reducing the uncertainty of missing values in a
data set by creating several different viable imputed data sets and appropriately combining
the results obtained from each of them to determine a suitable replacement value. We will
compare the performance of our N-Similarity (NSIM) algorithm against that of three simple
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single-pass imputation algorithms, which either replace the missing feature value with the
mean (MAV) and modal (MDAV) values of the known feature values or just remove all
incomplete records from the processed data set.

Using single values carries with it a level of uncertainty about which values to impute.
Multiple imputation reduces this uncertainty by calculating several different possible
values (“imputations”). Several versions of the incomplete data sets are created, which
are then combined to make the “best” value selections. Such an approach has several
advantages such as reducing bias and minimizing the likelihood of errors being introduced
to the rebuilt data sets, thus improving the validity of the data and increasing the precision
or closeness between two or more imputed values, which makes the data set more resistant
to outlying values [21,22].

The second stage is to use common statistical methods to fit the model of interest to
each of the imputed data sets. Estimated associations in each of the imputed data set will
differ because of the variation introduced in the imputation of the missing values, and
they are only useful when averaged together to give overall estimated associations. Valid
inferences are obtained because we are averaging over the distribution of the missing data
given the observed data [23,24].

Other data-focused approaches using machine learning and deep data analysis tech-
niques are being used as a means of predicting medical events from incomplete medical
data sets. The use of such automated tools in the identification and prediction of medi-
cal conditions is becoming increasingly important due to the shortage of skilled medical
professionals, as well as their ability to increase the prediction accuracy, thus reducing the
burden on medical staff [25,26].

3. Proposed Algorithm

In this section, we outline our approach to improving the effectiveness of predict-
ing binary outcomes based on a series of numerical feature values. We used a suitably
anonymized diabetes diagnosis data set, which identified whether a patient with diabetes
has been positively diagnosed (true positive) or whether one who does not have diabetes
has been negatively diagnosed (false positive).

3.1. Proposal Main Steps

Our algorithm aims to improve on a number of traditional single-pass imputation tech-
niques to achieve a higher percentage of correct predictions when applied to an incomplete
diabetes data set, D. The approach will consist of the following steps.

• Apply our imputation technique to fill in each missing attribute fi in turn, where i
corresponds to the ith feature in each patient record, for the current record r to create a
complete record in D. This will become the basis of the later comparisons. Incomplete
records r are given by

∀r ∈ D, r = ( f0, f1, f2, . . . fi − 1, fi + 1, . . .) (1)

• Use the k-fold (with k = 10) [27,28] technique to partition D into non-intersecting
subsets. In turn, each subset (fold) will be considered to be the test fold, and the
remaining folds will be used as training folds. For each record in the test fold, we
apply a comparison function F(), which is in our case the cosine similarity, to obtain
a numerical measure of how similar the test record is to the current record in the
training folds. An ordered similarity table, S, is maintained and stores details of each
training record and how similar it is to the current test record. This is repeated until
the test record has been compared against all the records in all the training folds. After
each change to the contents of S, it will be sorted in such a way that the most similar
training record will appear as the first item in the list. This could be more complicated
depending on the comparison function used, but in our case, the sort order is merely
used to maintain the n-closest items (defining the neighborhood) in S in an increasing
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cosine similarity order. The contents of S must be cleared once all the training set
records have been compared and are ready for subsequent cycles.

Folds containing a large number of records can increase the time needed to compare all
the combinations of these records against a given test record. This could result in a relatively
large similarity table. To address this issue of similarity table size, our proposed algorithm
introduces the concept of a neighborhood containing the most similar n records in the training
set. The size of this neighborhood limits the maximum size of the similarity table and is
used as a means of calculating the new replacement value for a missing attribute.

Considering St to be the set of test records and Str to be the set of training records for
a given cycle, such that t ∈ St and tr ∈ Str, we can say that

∀t ∈ St, ∀tr ∈ Str; St ∩ Str = 0, St ∪ Str = D (2)

If there are less than n records in the similarity table, then add the current training
record, tr, into the next freely available position p. If the similarity table already contains n
records and the current test record, t is more similar than the last record in the similarity
table (at position n− 1 for zero-based arrays); then, we replace the last entry in the similarity
table with the current training record tr. This can be shown with the pseudocode below.

clear SimilarityTable , S
FOR EACH t IN testFold DO

p <- 0
FOR EACH tr IN trainingFolds DO

size = count(S)
IF size < n THEN

S[p] <- F (t, tr)
ELSE

IF F(t, tr) > S[n-1] THEN
S[n-1] <- F(t,tr)

Each time the contents of the similarity table are changed, they should be immediately
sorted based on decreasing similarity value to maintain a list of the most similar training
records for the current test record. In order to build a complete data set D, we need to
calculate each of the missing data values across all the records in D. This is achieved by
comparing each row that contains missing values against all the complete rows that exist
in D. By doing this, we build up a similarity table containing the most similar complete
records from which the candidate values for the missing data values may be selected. Once
all the complete records in the data set have been compared against the current incomplete
record, we are in a position to impute the missing values for the current record in order
to make it complete. This record can then be used as a candidate record for matching the
other incomplete records in later cycles of the process. The end result will be a completely
imputed data set, which can then be used for comparison purposes with the different
imputation techniques.

3.2. Similarity Model Behavior

Our proposed model is built around the idea that patients with the same sets of
symptoms (features) will result in the same diagnosis. A patient with an unknown diagnosis
will have a number of recorded symptoms, which may or may not be complete. Our
algorithm takes those features that are known and uses them to find those diagnosed
patients (neighborhood) that are the closest match in terms of the most similar features.
This neighborhood is then used to determine what the likely diagnosis of the target patient
may be. This has the advantage over other techniques in the fact that only similar patient
records are used to build the picture of the diagnosis rather than a much wider spread of
patients who may have less correlation with the patient in question.

This similarity model is based on the splitting of the source data set as previously
described. The idea is to take the source data set and split it into two disjoint subsets—the
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training data set and the test data set. The splitting of the source data ensures that the
number of records in the test data set is a fixed proportion of the total number of records
according to the supplied parameters.

Each record in the test data subset is compared in turn with each record in the training
data subset. A comparison of each pair of records is made using the concept of cosine
similarity to obtain a measure of how similar the corresponding pairs of field attributes are
with each other, thus yielding a numeric measure of their similarity. During this process, a
similarity table is built giving a similarity measure of each training record in the training
set against a single test record. This table is maintained such that the record with the most
similar value (i.e., the most similar) is the first record in the table. The rationalization is
that the training set records that are considered to be a similar match to the test record,
and therefore the initial best-matching training record, will have very similar values for
their input arguments, and, as such, they are the best candidates to determine whether the
outcome given by the closest-matching test record was in fact valid.

Finally, a replacement value for the missing attribute, fi, is determined by applying a
prioritized set of rules to choose the most appropriate value from the candidate value set
C. This approach may be extended to include ‘categorical variables’, which describe those
features that take a value from a limited set of possible values. Since the feature value set C,
used as the pool of possible replacement values, is constructed from known feature values
of the most similar records, then the selection rules are equally applicable and will select a
suitable replacement value from C.

Considering the process diagram shown in Figure 1, the similarity modeling process
is split into two main subflows. The colors used are unimportant and just used for high-
lighting purposes. The blue flow describes the processing steps of loading external data
and standardizing it into a form that can be used by the second (green) flow through the
application of the k-fold technique to split the source data set into folds. The green flow
indicates the application of the N-Similarity algorithm. The key points of the algorithm
flow are to take each fold as a test record in turn and apply cross correlation against each of
the remaining training folds to generate the similarity table of the most similar training
records for each record in the test fold. This is repeated for each training record until all
comparison combinations have been performed. For each incomplete record, the missing
feature value is determined by considering the properties of the closest records in the
similarity table, and a candidate is selected based on a number of rules and criteria. The
results of these comparisons are shown in Table 1.

Figure 1. Main steps of the similarity modeling process.
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Table 1. Relative prediction accuracy of our N-Similarity algorithm compared to the average predic-
tion accuracy across all selected single imputation techniques for different neighbourhood sizes N.

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

Accuracy 55.64% 73.37% 58.01% 69.84% 58.84% 70.82% 60.13% 66.81% 60.74% 67.41%
Correlation 76.97% 88.91% 89.65% 89.55% 89.57% 89.06% 89.30% 89.63% 89.33% 88.99%
Precision 31.12% 58.41% 30.79% 55.59% 32.28% 59.07% 32.30% 46.98% 33.53% 48.58%
Recall 33.01% 55.13% 28.71% 39.62% 25.50% 29.73% 23.53% 32.57% 24.23% 28.60%
Specificity 66.18% 81.47% 71.34% 83.76% 74.22% 89.57% 77.04% 82.43% 77.49% 85.12%
TPR 23.03% 38.12% 20.34% 28.12% 18.19% 20.44% 16.48% 23.07% 17.10% 19.80%
FPR 33.82% 18.53% 28.66% 16.24% 25.78% 10.43% 22.96% 17.57% 22.51% 14.88%

Average MCC −0.0495 0.4582 0.0792 0.3419 0.0842 0.3069 0.0383 0.2326 0.0123 0.1771

The colour coding scheme used in Table 1 reflects how, for different neighbourhood
sizes, the prediction accuracy of our N-Similarity algorithm compares to the average
prediction accuracy of the other imputation algorithms under consideration. The green
values indicate those measures where our algorithm performs better than the average of
the other imputation algorithms, red values indicate those measures where our algorithm
performs worse, and the blue values indicate those measures where there is marginal
difference between the algorithms.

3.3. Empirical Bayes Correction

Dealing with missing data and its mechanism is of paramount importance in statis-
tics [29], and in this section, we propose a correction for imputing numerical variables
motivated by a normal-normal hierarchical model (see [30], Section 3.3.1). Let D = {Y, X}
be our observations, where Y is the part that contains missing values, and X (a NObs × NX
matrix) is fully observed. We consider the following correction term for the imputed
candidate value θ̂m given the (observable) sample mean Ȳ and the most similar value Y∗m:

θ̂m = αȲ + (1− α)Y∗m, α =
s2

y

s2
y + (τ̂2

Y|X)
+

, (3)

where s2
y is the sample variance of y = (y1, . . . , yl) for the l-most-similar observations

(comparing Xm to Xobs), and (τ̂2
Y|X)

+ is an approximation of the Empirical Bayes estimate
of [30]:

(τ̂2
Y|X)

+ = max
[
0, λ× s2

Y − s2
y

]
, (4)

where λ is a fixed hyperparameter, and s2
Y the sample variance of the observable Y.

Since 0 ≤ α ≤ 1, and (3) is a weighted average between Y∗m and Ȳ, which essentially
shrinks the proposal towards the mean Ȳ, the amount of shrinking is determined by
α. When α = 0, (3) suggests a direct imputation with Y∗m, whereas α = 1 suggests an
imputation using Ȳ. Generally, our candidate imputed value shrinks towards Ȳ when the
variance associated with Y∗m exceeds the sample variance of Y.

Motivation

We motivate (3) by considering an empirical Bayes approach to our hierarchical model.
We introduce two types of random variables: one expressing the missing values Ym and
one θm|X expressing the neighboorhood-similarity-based guesses (can also be thought of as
model-based guesses) that rely on a relation between Y and X. For each missing value Ym,
we assume that it is a normal random variable with mean θm|X and a variance σ2

m|X . This
allows us to express the “true” missing value in relation to our similarity-based guesses:
for ms with small variances (σ2

m|X), the similarity-based guesses are informative, and for
large variances, they are not.
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For each θm|x, we again assume a normal distribution with a common mean and
variance (µY|X , τ2

Y|X):

Ym

∣∣∣X, θm|X , σ2
m|X ∼ N

(
θm|X , σ2

m|X

)
(5)

θm|X

∣∣∣X, µY|X , τ2
Y|X ∼ N

(
µY|X , τ2

Y|X

)
, (6)

which expresses the overall relation of Y given X as a normal distribution with its mean and
variance varying according to X. In other words, instead of considering the similarity-based
guess of the missing value as a single point, we introduce a normal-distributed kernel
centered around it, which depends on the fully observed X. Our two-level hierarchical
model uses (5) locally to express the distribution of Ym and (6) to express the associated
mean θm|X using a global model between X and Y. Given a candidate value Y∗m, we can
impute Ym with the posterior empirical Bayes mean θ̂m|X [30], which is a point estimate
of θm|X :

θ̂m = αµY|X + (1− α)Y∗m,

where α = σ2
m|X/(σ2

m|X + τ2
Y|X). Linear and nonlinear regression models have been used

for the conditional mean µY|X in a Bayesian setting [31], whereas [32] used a nonparametric
kernel regression, but in our performance evaluations, we also considered the weighted
sample mean and sample variance, e.g., s2

y = ∑i wi(yi − ȳ)2, with weights approximated
by a Gaussian kernel with a minimal RMSE improvement. The empirical Bayes estimate
of [30] for τ2

Y|X is based on sample estimates for σ2
m|X and τ2

Y|X :

(τ2
Y|X)

+ = max(0, λτ̂2
Y|X − σ̂2

Y|X).

If we consider the case that Y and X are independent, any similarity between Xobs and
Xm provides no information about the missing Ym. This also implies that µY|X and σ2

Y|X
become the marginal µY and σ2

Y, respectively. Furthermore, the y sample becomes a random
sample of Y, with ȳ and s2

y being unbiased estimates of µ2
Y and σ2

Y, respectively. Therefore,
we can use Ȳ, s2

Y, and s2
y as approximations for µY|X, τ̂2

Y|X, and σ̂2
Y|X, respectively, which,

under independence, set α towards one and can serve as a warning for noninformative
imputation. Finally, if Y and X are not independent, y will be a conditional sample from
Y|Xm, and we expect var(Y) ≥ E[var(y)] to lead to to smaller shrinkage (α < 1) towards Ȳ.

4. Performance Evaluation

In this section, we evaluate the performance of our similarity-based approach, using
the sample diabetes data set, in comparison with a number of other imputation techniques.

4.1. Implementation Overview

The algorithm is made up of three steps: the first step is to partition the raw data set,
D, into two disjoint subsets: one containing all the complete records, Sc, and the other
containing records that are missing one or more feature values, Si. The incomplete records
are then checked in order. Whenever an incomplete record Si(k) contains a missing feature
value fk,i, the nearest N-Similarity algorithm (second step) is applied to create a similarity
table of the closest n records from Sc. The missing feature value, fk,i, is then determined by
applying a series of rules below during the third and final step.

Sc ∪ Si = D, Sc ∩ Si = ∅

Considering the corresponding feature values of the n-most-similar complete records
in the similarity table created by the stage above, the algorithm creates a set of candidate
values, C, that will be used to replace the current missing feature value. The algorithm uses
a number of simple rules, applied in strict order, to determine which of these candidate
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values is the most likely to be used as the replacement value for the missing feature in the
current incomplete record.

∀k ∈ Si, fk,i = Sc(j), 0 ≤ jn

where j is the index of the best candidate value in C.

The set of rules applied to C in determining a predicted value are derived from both
an evaluation of the corresponding feature values in the most similar diabetes records
together with the nature of the values in the candidate set C. The rules are applied in order,
with the most specific selection criteria applied first and moving down to the most general
selection criteria applied last. For the candidate value set, C, apply the following rules in
order of decreasing priority:

1. If there is a unique modal value in C, then use this value as the imputed feature value.
2. For those modal values which occur in C with equal highest frequency, if one of these

modal values has the same feature value as the actual feature value of the most similar
complete record in Sc, then select this modal value as the new imputed feature value
for the current incomplete record.

3. Determine whether one of the values in C lies closer to the median value of the
candidate set than the others. If such a value is found, select this as the imputed
feature value.

4. If none of the previous rules have been satisfied, then select the mean value of C.

By comparing the prediction accuracy of the algorithm on the training data set (training
folds), we can determine that the results are not noticeably different than the results
obtained by applying the algorithm on the test data set (test fold), and therefore, we can
ascertain that the algorithm does not overfit the diabetes data set.

This is repeated for each missing feature in the current partial record Si(k), after which
the now complete record is moved from Si to Sc to become a potential candidate for the
completion of the next incomplete record in Si.

4.2. Evaluation of RMSE

The evaluation was performed using a simulation-based approach that consists of
repeatedly using a random selection of M records from the complete data records subset
Sc. Since they were complete, each of these records had a known actual value for each
feature, which could be used later for comparison purposes. The selected M values of each
feature, fi, were ignored and imputed using our N-Similarity algorithm in order to provide
a more reliable estimate for the RMSE. These predicted values were then compared against
the actual values to provide an estimate for the root mean squared error measure (RMSE) to
determine the predictive performance of our algorithm [33]. In Sections 4.3 and 4.4.3, we
used the three methods, i.e., similarity (NSIM), similarity with empirical Bayes correction
(NSIM-EB), and k-nearest neighbors (kNNs) to repeatedly impute each feature and report
the corresponding RMSEs.

4.3. Simulated Dataset

We proceeded to simulate 1000 datasets (of 1000 observations each) based on x1, . . . , x6
(7) random variables. The x1, x2, and x3 are independent Poisson, uniform, and exponential-
distributed random variables, respectively, whereas the z1, z2, and z3 are independent
standard normal variables. The remaining (x4, x5, and x6) are functions of the previous ones,
with their relations outlined in (7). Overall, the simulated data sets contain an independent
random variable (x1), as well as noisy nonlinear relationships (e.g., x6 with x2).



Electronics 2023, 12, 4809 11 of 18

z1, z2, z3 ∼ Normal(0, 1)

x1 ∼ Poisson(1)

x2 ∼ Uniform(18, 83)

x3 ∼ Exponential(1/30) (7)

x4 = z1 × x3 + 3

x5 = x4 × 3 + z2 ∗
√

10

x6 = exp(−x2 × 0.2 + z3)

Table 2 shows the imputation RMSE of the three methods assuming 1.50 and 100 miss-
ing observations (M) per each simulated data set. Overall, the RMSE for the NSIM-EB was
consistently lower than the rest. For x1, as the number of M increased, the RMSE increased
too for all the methods, which is expected, as x1 is independent from the rest. Generally,
the RMSE of the NSIM was similar, if not slightly reduced, compared to the RMSE of the
kNNs. Both similarity-based methods were faster (NSIM performed in 126 s and NSIM-EB
performed in 167 s; both were implemented in R) compared to the kNNs (215 s) using the
implementation (with Mahalanobis distance) of the yaImpute package [34].

Table 2. Imputation of RMSE for simulated data using similarity (NSIM), similarity with empirical
Bayes correction (NSIM-EB), and k-nearest neighbors (kNNs) methods.

M Method x1 x2 x3 x4 x5 x6

NSIM 1.382 1.402 1.414 1.378 1.345 1.333
1 NSIM-EB 0.996 1.054 1.068 1.052 1.052 1.035

kNNs 1.399 1.422 1.508 1.453 1.456 1.386

NSIM 1.421 1.401 1.398 1.402 1.401 1.380
50 NSIM-EB 1.047 1.035 1.041 1.042 1.042 1.027

kNNs 1.417 1.413 1.407 1.409 1.405 1.399

NSIM 1.420 1.396 1.385 1.386 1.385 1.373
100 NSIM-EB 1.046 1.031 1.034 1.038 1.038 1.014

kNNs 1.413 1.418 1.411 1.415 1.410 1.417

4.4. Pima Indians Diabetes Data Set

Another data set that was used extensively in this paper is the Pima Indians Diabetes
data set [35], which is originally from the National Institute of Diabetes and Digestive
and Kidney Diseases. The complete data set contains information of 768 women from a
population located around Phoenix, Arizona, USA. The outcome tested was for diabetes,
with 258 testing positive and 510 testing negative. The data was structured as follows:
there was one target (dependent) variable and eight (feature) attributes: the number of
pregnancies, oral glucose tolerance test, blood pressure, skin thickness, insulin, body mass
index, age, and pedigree diabetes function. More technical details of the file used can be
seen in Table 3. The Pima population has been under study by the National Institute of
Diabetes and Digestive and Kidney Diseases at intervals of 2 years since 1965. As epi-
demiological evidence indicates that type 2 diabetes results from the interaction of genetic
and environmental factors, the Pima Indians Diabetes data set includes information about
attributes that could be related to the onset of diabetes and associated future complications.

The original data used zero as the marker for a missing feature value, because it was
deemed that this could never be a valid value based on the nature of the features being
represented. The obvious exception to this is the final binary outcome field, which may have
a value of zero (for a negative diagnosis). The diagnosis outcome was a binary integer value
indicated by a one for a positive diagnosis and a zero for a negative diagnosis, although in
actuality, any nonzero integer would equally be interpreted as a positive diagnosis. Where
it was possible, we converted this encoding convention to the programming language’s
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standard missing value mechanism (e.g., Section 4.4.3), or we adapted our implementation
(e.g., in Section 4.4.2, the similarity calculations are based only on valid feature values).

Out of the total number of records, 336 were complete (no missing feature values)
(43.75%), and there were 763 missing feature values spread across the data set out of the
total number of 6144 feature values (12.42%).

Table 3. Structure of PIMA diabetes data file.

Feature Data Type Value Range
(Zero Indicates Missing Value)

Number of Times Pregnant Positive Integer 0. . . 17

Plasma Glucose Concentration Real 0. . . 199

Diastolic Blood Pressure Real 0. . . 122

Triceps Skinfold Thickness Real 0. . . 99

Serum Insulin Levels Real 0. . . 846

Body Mass Index Real 0. . . 67.1

Diabetes Pedigree Function Real 0.078. . . 2.42

Age Positive Integer 21. . . 81

Classification Binary 1 = positive diagnosis,
0 = negative diagnosis

4.4.1. Comparison with Popular Imputation Methods

Three popular imputation techniques were used to provide a comparative baseline
for the results obtained from applying our N-Similarity algorithm [36]. Listwise deletion is
the process of removing all incomplete records from a data set prior to imputation [37].
If the original data is incomplete, then its application will naturally result in a smaller
data set being produced for analysis. Depending on the sparsity of the original data, this
may impact any ongoing analysis, thereby making it an unviable option for comparison
against other imputation techniques that attempt to restore missing feature values without
removing data. The statistical power [38] relies in part on a high sample size, and this is
helped by having a relatively complete data set with few incomplete records. The other
possible drawback to using listwise deletion is when the missing feature values may not
be randomly distributed. For example, this occurs if a certain feature has missing values
based on the nature in which the values for that feature were collected (questions aiming
to extract sensitive information that the individual just skipped). As a result, and again
depending on the level of sparsity of such missing data, the results may introduce bias
into later analysis. One possible way to address these limitations and reduce the bias is
to use multiple imputation techniques [39,40]. An extension of this approach, which was
considered as a technique for comparison, was pairwise deletion [41]. This approach allows
for the use of incomplete data but only allows for analysis on those features that have
complete data. This introduces bias and makes like-for-like analysis more difficult, so it
was was rejected as an option.

Some analysis has been undertaken [42] to determine the most popular imputation
methods since 2000 (Figure 2). Popularity has been measured based on the number of times
each imputation algorithm is mentioned in Google Scholar articles and papers. The results
are somewhat surprising, since simpler, older techniques seem to be more popular than
more recent approaches:

• Remove Incomplete Records (Listwise Deletion): Any records in D that have one
or more missing feature values are removed from the data set prior to processing.
The removal of any incomplete records will lead to a smaller but complete data set
D. It is not recommended that this technique is used arbitrarily as a means of direct
comparison with other techniques used in the paper, since factors, such as the initial
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completeness of D, need to be assessed. It has been included due to its general
popularity only (Figure 2).

• Replace Missing Data With Mean Attribute Value: Any missing feature values are
replaced with the average value calculated from the corresponding feature values in all
the complete records in the data set.

• Replace Missing Data With Modal Attribute Value: Any missing feature values are
replaced with the most common value gathered from the corresponding feature values
from all the complete records in the data set.

• Replace Missing Data Using Empirical Bayes Algorithm: This method is for statisti-
cally inferring missing feature values using a prior distribution of known values in a
data set.

• Replace Missing Data With N-Similarity Algorithm: Any missing feature values are
replaced with the best candidate value calculated from the corresponding feature values
in the N-most-similar complete records in the data set.

Figure 2. Google Scholar search results (Statistics Globe 2019).

Cross validation is a sampling procedure used to evaluate models that use a limited
data sample. The procedure has a single parameter called k that refers to the number of
equal sized groups (or folds) over which the data sample will be equally divided. The
procedure is often called k-fold cross validation and is used to estimate the ability of a machine
learning model to make predictions based on unseen data; it uses a limited sample in order
to estimate how the model is expected to perform in general when used to make predictions
on data not used during the training of the model.

The average cross validation over n folds is given by

1
n

k=n

∑
k=1

Similarityk

where Similarityk is the measure of similarity between the current test and the training

folds for the session run k.
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4.4.2. Results, Limitations, and Discussion

Table 1 shows the improvement in predicting true positive cases when using our pro-
posed N-Similarity algorithm compared against several other single-pass imputation algo-
rithms. Entries highlighted in green show the improvement achieved by our algorithm over
other popular techniques. Those highlighted in red show a worsened prediction accuracy.
Those entries highlighted in blue indicate no or negligible change in the prediction accuracy.

The testing process splits the data sets into ten approximately equally sized folds. The
arbitrary partitioning of records in each fold, in any given run, meant that each fold could
contain a combination of complete and incomplete records. The proportion of incomplete
records was allowed to vary so as to not impose any potentially restrictive classification on
the fold contents. Should we have wanted to impose a limiting proportion of incomplete
records in a fold, for some reason, then a stratified k-fold approach or similar would have
been used. When applying cross correlation techniques, some of the ratio calculations
shown in Table 1 had no correctly predicted positive outcomes (TP = 0), thus leading to
incomplete runs being produced. Similarly, in some folds, it may also be possible that the
number of true positive (TP) and true negative (TN) training records are not predictable for
a given fold, thus meaning that the precision metric was indeterminate for specific pairings
of test and training data folds, since TP + TN = 0. The likelihood of these eventualities could
be reduced somewhat by reducing the number of folds for the given data sets, thereby
increasing the number of records in each fold. However, the missingness of the data sets
(proportion of incomplete to complete records) will be the ultimate determinate of how
likely such scenarios were to occur. By introducing an error tolerance, indicated in blue
for those results that varied by less than ±5.0%, we can see that the only metric where the
other techniques produced better results than our algorithm was Correlation; the results
for TPR and Recall changed marginally, and the other metrics showed good improvements
achieved by our algorithm. Applying the MAV and MDAV imputation techniques shows
very similar results, which may have been caused by the relatively sparse data sets, the size
of the data sets, or the nature of the data itself.

As shown in Table 4, the results differed depending on which imputation method
was used. When incomplete records were removed as part of the imputation process prior
to the application of our N-Similarity algorithm, all of the metrics, apart from accuracy,
were worsened, albeit on a restricted data set. The results of using either the mean or
modal replacement approaches were very similar and could be due to the relatively small
data sets used in our tests. What can be taken from this is the importance of fine tuning
expectations based on which metrics are the most important to the end user. Considering
our neighborhood-similarity-based approach (Table 4), we obtained better results for
accuracy (+9.33%), precision (+9.67%), specificity (+13.84%), and FPR (13.86%), but this has
to be tempered against worse results for correlation (−6.07%). The recall and TPR were
roughly unchanged and remained within a 5% tolerance. What has become apparent is
that the metrics used are very susceptible to the neighborhood size (N) and nature of the
data to which they are being applied. The best results may be achieved by balancing the
size of the neighborhood considered against the imputation algorithm that will be used to
identify the most suitable compromise between true positive and true negative outcomes.
In our testing, we ran our algorithm using different-sized neighborhoods and found that
a neighborhood of size four (N = 4) gave the most balanced results. For comparison, the
results obtained using other neighborhood sizes can be seen in Table 1.
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Table 4. Performance of our proposed N-Similarity algorithm compared against other single imputa-
tion techniques.

Remove Incomplete
Records

(Listwise Deletion)

Replace Missing Data
with MAV

Replace Missing Data
with MDAV

Average N-Similarity
Algorithm

(N = 1. . . 10)

Number Of Perfect Tests 10 10 10 10

Accuracy 54.76% 54.85% 54.88% 64.16% (+9.33%)
Correlation 92.48% 94.92% 95.00% 88.06% (−6.07%)
Precision 36.94% 31.31% 31.32% 42.86% (+9.67%)
Recall 31.26% 36.65% 37.35% 32.06% (−3.03%)
Specificity 68.96% 63.28% 62.82% 78.86% (+13.84%)
True Positive Rate (TPR) 22.23% 25.17% 25.21% 22.47% (−1.73%)
False Positive Rate (FPR) 31.04% 36.72% 37.18% 21.12% (−13.86%)

Average MCC 0.0891 0.0160 −0.0413

4.4.3. Benchmarking with kNN

Using the PIMA dataset (Table 3), we also compared our similarity-based imputation
(NSIM), its enhanced version NSIM-EB (with the empirical Bayes (EB) correction, λ = 1),
and the Mahalanobis distance based k-nearest neighbors (kNNs) [34] (See Table 5 for the
obtained RMSEs). Both the kNNs imputation and NSIM are nonparametric and rely on the
k-nearest and N-similar observations, respectively. Apart from the use of neighborhood
observations, the Mahalanobis distance uses the covariance matrix, while our EB correction
(3) uses two estimates of sample variance as the weight of the imputed proposal. We used
the three schemes (i.e., NSIM, NSIM-EB, and kNNs) for 1000 imputations per variable—for
a total of M combinations (Table 5). As seen in Table 5, the RMSE performance of the NSIM
was comparable to the kNN imputation, whereas the NSIM-EB outperformed both in all
scenarios with minimal computational time overhead (the NSIM, NSIM-EB, and kNNs
took approximately 68, 103, and 477 s, respectively, in our R implementation).

Table 5. Imputation RMSEs for simulated data using our similarity method (NSIM), our similarity
method with empirical Bayes correction (NSIM-EB), and the k-nearest neighbors (kNNs) method.

M Method Pregnancy Glucose BP Triceps Insulin BMI DPf Age

NSIM 0.875 0.963 1.051 0.937 0.942 0.892 1.103 0.848
1 NSIM-EB 0.737 0.770 0.777 0.816 0.726 0.782 0.791 0.752

kNNs 0.872 0.948 1.101 1.043 0.896 0.968 1.013 0.884

NSIM 1.134 1.114 1.275 1.128 1.148 1.065 1.288 1.089
5 NSIM-EB 0.900 0.899 0.962 0.948 0.882 0.899 0.937 0.894

kNNs 1.343 1.328 1.265 1.315 1.230 1.322 1.272 1.289

NSIM 1.172 1.149 1.335 1.167 1.235 1.096 1.372 1.125
10 NSIM-EB 0.942 0.928 0.992 0.958 0.956 0.927 0.984 0.891

kNNs 1.382 1.356 1.331 1.406 1.293 1.360 1.349 1.263

NSIM 1.177 11.54 1.350 1.181 1.249 1.109 1.388 1.140
15 NSIM-EB 0.944 0.940 1.004 0.971 0.961 0.936 1.030 0.917

kNNs 1.419 1.370 1.376 1.418 1.333 1.359 1.404 1.379

NSIM 1.187 1.167 1.356 1.185 1.269 1.121 1.393 1.160
20 NSIM-EB 0.959 0.942 1.006 0.969 0.995 0.950 1.014 0.928

kNNs 1.399 1.359 1.378 1.397 1.336 1.367 1.345 1.372

Our algorithm performed better when the source data set had a small percentage of
missing data values, due to our blind random selection of data values across all the folds.
The larger the number of missing data values, the higher the likelihood would be that
some of the folds would be more sparsely populated. The choice of the number of data
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partitions in the k-fold step needs to be carefully selected; otherwise, we risk the possibility
of introducing bias into the selection of data values put in any given fold. We settled on
k = 10, as much of the academic literature indicated that this was a commonly used value.
One way of limiting the impact of this problem is to use a stratified approach as mentioned
above. We left this direction as a line of potential future work. The choice of the size of the
neighborhood, N, and, as a direct result, the number of candidates in the set of values for
selecting imputed values, was also sensitive. We spent considerable trial-and-error effort
looking for the best selection for this parameter against the PIMA data set; we tried a much
wider range of potential values for N than are shown. The results for these higher values
were negligibly different in our case.

Table 1 shows that N = 4 was the best choice in our case, although this could vary for
different data sets. Further research is required to determine whether the choice of value
for N could be automated by looking at all the possible potential values for N and whether
this approach would even be practical for large data sets in terms of processing time and
improvements in the results.

5. Conclusions

Our neighborhood-based algorithm was able to provide noticeably improved results
when compared against other techniques, but the degree of this improvement was sensitive
to the size of the neighborhood, with some features being more readily improved than
others for smaller neighborhood sizes and other metrics being noticeably less well predicted
as the size of the neighborhood increased. This paper proposes a technique to provide a
more accurate prognosis of possible patient diabetes based on a number of key patient
characteristics. Our approach creates a similarity neighborhood using the most similar
diagnosed patient records and uses the feature set values of these patients to help with
the diagnosis of undiagnosed patients. By comparing our N-Similarity algorithm against
several widely used single-pass imputation techniques using the same collection of data
sets, both real-world and simulated, we found that it produces better results against
several of our performance metrics (Table 4). However, we observed that the size of the
neighborhood had an impact on the performance of our algorithm. We also noticed that
the limited data set sizes and degrees of missingness of the initial source data could impact
the results, and more extensive work would be necessary using a wider range of different
data sets in order to see how these measures are related. The empirical Bayes correction
of the neighborhood-based algorithm offered consistently smaller RMSEs over the simple
algorithm and the k-nearest neighbors imputation, with minimal computational overhead.
In addition to the performance advantages, we recommended it as a general method, since
the shrinking parameter α indicated a degree of certainty between our inputted value and
the sample mean (with zero indicating certainty of the similarity of the inputted value and
one indicating most uncertain).

6. Future Work

The main limitation of our current work is that the PIMA data set contains only
numeric feature values. Future work could include support for both categorical and textual
data. Both types of information are widely found in medical data sets and would help to
support the usefulness of our algorithm in this domain, as well as in other similar domains.
The implementation of our algorithm has been deliberately developed to be loosely coupled
to the source data to allow for different file formats and structures in the source data to be
supported with minimal effort, thus allowing for generalization of the code for different
future uses.

To aid with future development of this algorithm, we have provided the full source
code to the software we used to generate the presented results. The source code, written in
the Go programming language, can be freely used and modified, and it has been designed
to be modular and loosely coupled to any data set, thereby making it easier to extend
as required.
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