
Citation: Baek, J.-H.; Lee, H.K.; Choo,

H.-G.; Jung, S.-h.; Koh, Y.J.;

Center-Guided Transformer for

Panoptic Segmentation. Electronics

2023, 12, 4801. https://doi.org/

10.3390/electronics12234801

Academic Editors: Zhenhua Guo and

Yue Wu

Received: 28 September 2023

Revised: 14 November 2023

Accepted: 15 November 2023

Published: 27 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Center-Guided Transformer for Panoptic Segmentation
Jong-Hyeon Baek 1 , Hee Kyung Lee 2 , Hyon-Gon Choo 2, Soon-heung Jung 2 and Yeong Jun Koh 1,*

1 Department of Computer Science & Engineering, Chungnam National University,
Daejeon 34134, Republic of Korea; whdgusdl97@gmail.com

2 Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea;
lhk95@etri.re.kr (H.L.); hyongonchoo@etri.re.kr (H.-G.C.); zeroone@etri.re.kr (S.-h.J.)

* Correspondence: yjkoh@cnu.ac.kr

Abstract: A panoptic segmentation network to predict masks and classes for things and stuff in
images is proposed in this work. Recently, panoptic segmentation has been advanced through the
combination of the query-based learning and end-to-end learning approaches. Current research
focuses on learning queries without distinguishing between thing and stuff classes. We present
decoupling query learning to generate effective thing and stuff queries for panoptic segmentation.
For this purpose, we adopt different workflows for thing and stuff queries. We design center-guided
query selection for thing queries, which focuses on the center regions of individual instances in
images, while we set stuff queries as randomly initialized embeddings. Also, we apply a decoupling
mask to the self-attention of query features to prevent interactions between things and stuff. In the
query selection process, we generate a center heatmap that guides thing query selection. Experimental
results demonstrate that the proposed panoptic segmentation network outperforms the state of the
art on two panoptic segmentation datasets.

Keywords: panoptic segmentation; transformer; center-guided query selection

1. Introduction

Panoptic segmentation [1] is the task in the domain of computer vision, involving the
segmentation of both things and stuff. Things are defined as distinguishable and individual
instances such as people, cars, and animals, where each instance contains unique id and
class. In contrast, stuff means amorphous regions and encompassing areas such as the
sky, meadows, grass, and other similar homogeneous areas. Starting from ConvNet-based
panoptic segmentation models [2–5], recent panoptic segmentation methods [6–9] employ
transformers to learn thing and stuff queries in various ways.

DETR [7] and its variants [8,9] set queries as randomly initialized embeddings and
train the queries with a transformer decoder, as shown in Figure 1a. Then, the learned
queries are transformed into class and mask predictions for things and stuff. Next, as in
Figure 1b, the query selection approach, which chooses effective features from image
features based on the class probability, is adopted in object detection methods [10,11].
However, things and stuff have different properties. Things are countable and contain
small segments, while stuff is uncountable and includes large segments; thus, thing and
stuff queries need to be learned differently. Also, the aforementioned approaches mix query
features using self-attention in the transformer decoder, which yields interactions between
thing and stuff queries.

In this work, we propose an architecture that integrates effective query selection for
things and a decoupling mask to prevent things and stuff from interrupting each other, as
illustrated in Figure 1c. First, we develop center-guided query selection for things, which
exploits the center regions of instances from image features. To analyze center regions,
we estimate a center heatmap, which has high values at the center of individual instances,
to generate a center-guided feature. Based on the center-guided feature, we select the
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effective thing queries. After treating stuff queries as randomly initialized embeddings, we
separately train thing and stuff queries using a transformer decoder with the decoupling
mask. Using the trained thing and stuff queries, we obtain panoptic segmentation results
from mask and class predictions. Experimental results demonstrate that the proposed
panoptic segmentation network outperforms the state of the art on the COCO panoptic
dataset [12] and ADE20K panoptic dataset [13]. Specifically, the proposed network yields
the best performance for things, while it provides comparable results for stuff with respect
to the state of the art on the COCO panoptic dataset. The proposed network achieves
52.2 PQ and 44.1 APth

pan on the COCO panoptic dataset, and 41.5 PQ and 28.9 APth
pan on the

ADE20K panoptic dataset, where the metrics PQ and APth
pan have a range from 0 to 100.

Figure 1. Approaches for query learning: (a) randomly initialized embeddings, (b) query selection,
and (c) proposed center-guided query selection and decoupling mask.

The rest of this paper is organized as follows: Section 2 surveys panoptic segmentation
methods and center-based learning techniques. Section 3 describes the proposed network.
Section 4 discusses the experimental results. Finally, Section 5 concludes this work and
provides future work directions.

2. Related Works

Panoptic segmentation [1] is a joint task including the semantic segmentation and
instance segmentation tasks, requiring the prediction of distinct masks to represent both
things and stuff. Early panoptic segmentation methods attempt to combine the existing se-
mantic segmentation network and instance segmentation network effectively. For example,
UPSNet [2] utilizes two separate branches to produce semantic and instance segmentation,
and then it subsequently integrates both results using an additional panoptic segmentation
head. PanopticFCN [3] jointly models things and stuff networks by designing a unified
convolution pipeline to simplify panoptic segmentation.

Recently, transformer-based models [6–9] have achieved the promising performance in
panoptic segmentation. DETR [7] is an end-to-end solution to address both object detection
and panoptic segmentation tasks. However, it is still inferior to classical segmentation mod-
els, since DETR produces panoptic segmentation by adding a simple mask head on top of
object detection networks. MaskFormer [8] and Mask2Former [9] have a architectures simi-
lar to that of DETR but differ in using a global segmentation decoder and some specialized
designs for mask prediction. MaskFormer [8] builds a pixel decoder to generate mask pre-
dictions through simple matrix multiplication between enhanced queries and pixel decoder
output. Mask2Former [9] proposes masked attention, which uses mask predictions in the
process of self-attention, to reduce training time significantly. Panoptic Segformer [6] adopts
an auxiliary location decoder to assist instance queries to learn location clues and ease
model training. These transformer-based methods rely on learnable queries initialized with
random values to estimate things and stuff. On the contrary, we propose a query selection
algorithm to extract individual queries from image features using object center information.
Also, fast panoptic segmentation networks [5,14,15] are presented. YOSO [15] developed



Electronics 2023, 12, 4801 3 of 13

the feature pyramid aggregator for speedup in GPU latency and the separable dynamic
decoder for generating panoptic kernels. IDNet [14] decomposes panoptic segmentation
into category and location information, which simplifies the network architecture.

The object’s center is able to provide a rich context for solving various computer vision
tasks, such as object detection [16–19] and segmentation [5,20]. CenterNet [16] detects each
object as center keypoints. CenterNet2 [17] further enhances center representation using
a heatmap approach. FCOS [18] introduces a centerness branch to predict the deviation
of a pixel from the center of its corresponding box. ExtremeNet [19] predicts geometric
centers and aligns them into a bounding box. In the segmentation task, CenterMask [20]
leverages a center heatmap for anchor-free instance segmentation. Panoptic-DeepLab [5]
first estimates all foreground masks from an image and then extracts thing classes based
on instance centers. On the other hand, we take into account centers of object instances
to extract instance queries from the corresponding feature space. In the experimental
results, the proposed algorithm exhibits the superior performance in comparison to the
other panoptic segmentation models.

3. Proposed Methods
3.1. Architecture

Figure 2 illustrates an overview of the proposed panoptic segmentation network.
In this section, we introduce the proposed center-guided query selection module and
transformer decoder with decoupling mask.

Figure 2. Overview of the proposed network. We use the backbone and transformer encoder to
extract image feature Fencoder from an input image X. Fencoder is gradually upsampled to obtain
center embedding Fcenter (orange block) and mask embedding Fmask (purple block). Thing queries
are selected from Fcenter through the center-guided query selection process, while stuff queries are
randomly initialized. The transformer decoder generates enhanced queries based on the attention
mechanism between Fencoder and queries with decoupling mask D. Then, the enhanced queries are
transformed into mask and class predictions for panoptic segmentation.

Backbone and transformer encoder: The backbone extracts image features from an
input image X ∈ RH0×W0×3, and the transformer encoder generates a new feature map
Fencoder ∈ RH1×W1×C from the image features, where H1 = H0/32, W1 = W0/32, and
C = 2048. We employ ResNet50 [21] for the backbone and the transformer encoder in [9].
The transformer encoder consists of deformable attention [10], layer normalization, and a
feed forward network (FFN). Feature map Fencoder is gradually upsampled to a center
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embedding Fcenter ∈ RH×W×C and a mask embedding Fmask ∈ RH×W×C through the two
sets of convolution layer and bilinear interpolation operation, where H = 4H1, W = 4W1.
Also, Fencoder is fed into the transformer decoder for attention mechanisms with queries.

Center-guided query selection: Traditional transformer-based panoptic segmentation
models [6,8,9] typically use randomly initialized embeddings to learn queries without
distinguishing between things and stuff. The proposed network learns things and stuff
separately to prevent thing queries and stuff queries from interrupting each other. Inspired
by center-based learning for object detection [16–19], we develop the mechanism of center-
guided query selection for thing queries. The center regions of individual instances in
input images contain the cues to distinguish different instances. Thus, we estimate a center
heatmap to guide effective thing query selection.

Figure 3 shows the diagram of the proposed center-guided query selection. Center
embedding Fcenter passes through the FFN to estimate center heatmap H ∈ RH×W , which
contains the location information of the instances. Then, we obtain center-guided fea-
ture F̃center ∈ RH×W×C using element-wise multiplication between the estimated center
heatmap H and each channel of Fcenter. To this end, we employ the feature selection process
in [10,11] to determine the top K query features from center-guided feature F̃center. F̃center

passes through a linear layer and softmax to obtain class probability map P ∈ RH×W×Cthing

for things, where Cthing is the number of thing classes. Then, we pick the highest probabil-
ity from P for each pixel and construct thing query Qthing ∈ RNthing×C, where Nthing = K,
by selecting the top K features from F̃center in terms of the highest probabilities extracted
from P. Since center heatmap H has high values on the central parts of the instances,
H conveys strong visual patterns related to the instances to obtain effective thing query
Qthing. Note that we only perform center-guided query selection for thing queries Qthing,
while we simply set stuff queries Qstuff ∈ RNstuff×C as Nstuff randomly initialized embed-
dings.

Figure 3. Diagram of center-guided query selection. It generates center-guided feature F̃center using
the estimated heatmap H, which contains the center information of the instances. Feature selection
extracts K queries from center-guided feature F̃center based on thing class probabilities.

Transformer decoder with decoupling mask: We need to train queries to inject enough
information to derive classes and masks. For this purpose, Qthing and Qstuff are concate-
nated as Q = [QT

thing QT
stuff]

T and fed to the transformer decoder, which includes self-
attention, deformable attention, and the FFN, as in Figure 4. Considering the different prop-
erties between things and stuff, we apply decoupling mask D ∈ R(Nthing+Nstuff)×(Nthing+Nstuff)

to self-attention, where D’s element D(i, j) is defined as

D(i, j) =


0 if i, j 5 Nthing,
0 if Nthing < i, j 5 Nthing + Nstuff,
−∞ otherwise.

(1)
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Figure 4. Diagram of the transformer decoder. Given query Q, it generates enhanced query Q̄
through self-attention and deformable attention with image feature Fencoder.

Then, self-attention in the transformer decoder is formulated as

Q̃ = Layernorm(softmax(D + QlK
T
l )Vl + Q) (2)

where Ql , Kl , and Vl are the query, key, and value extracted from Q through a linear layer,
respectively. We prevent interference between thing and stuff queries using decoupling
mask D. For the stability of the learning process, we use the residual connection with Q
and perform layer normalization after the residual connection. After the self-attention
process, we use deformable attention to inject Fencoder into Q̃, resulting in enhanced query
set Q̄.

Estimation: Masks and classes are estimated from enhanced query set Q̄. First, masks
are computed using the dot product between Q̄ and mask embedding Fmask. Second, Q̄
passes through a fully connected layer to predict the class probability. Finally, we obtain
panoptic segmentation results from mask and class predictions.

3.2. Loss

The proposed network outputs Nthing + Nstuff predictions, including masks and classes.
Then, we perform the Hungarian algorithm [22] to match predictions and ground truths,
following [6–9]. For each match, we compute the focal loss [23] between class probability
prediction ck and ground truth ĉk as follows:

Lc(ck, ĉk) = λclass[{α(1− ĉk)
γ · − log(ĉk) · ck} − {(1− α) · ĉγ

k · − log(1− ĉk) · (1− ck)}] (3)

where λclass, α, and γ were experimentally set to 4, 0.25, and 2, respectively. Also, to com-
pare the estimated mask Mk ∈ RH0×W0 and ground truth M̂k, we employ the mask loss
(Lm(Mk, M̂k)) in [8], which is composed of per-pixel cross-entropy loss Lpixel(Mk, M̂k) and
dice loss [24] Ldice(Mk, M̂k):

Lm(Mk, M̂k) = λpixelLpixel(Mk, M̂k) + λdiceLdice(Mk, M̂k) (4)

where λpixel and λdice were set to 5 and 5, according to [9]. Additionally, to train the
center-guided query selection module, we generate ground-truth heatmap Ĥ by applying
Gaussian distributions to all instance center points for each image. Then, we compute the
focal loss between the predicted center heatmap H and Ĥ.



Electronics 2023, 12, 4801 6 of 13

4. Experiments
4.1. Setting

Dataset: We conducted experiments on the proposed network on two panoptic segmen-
tation datasets: the COCO panoptic [12] and ADE20K panoptic [13] datasets. The COCO
panoptic dataset consists of annotated images with mask and class labels for 80 thing and
53 stuff classes. The COCO panoptic dataset is divided into training set, validation set,
and test set, which contain 118,785, 5000, and 5000 images, respectively. The ADE20K
panoptic dataset provides object- and semantic-level information for object detection and
segmentation. It consists of 100 thing classes and 50 stuff classes. The dataset contains
20,210 images for the training set and 2000 images for the validation set. Figures 5 and 6
show examples of the COCO panoptic and ADE20K panoptic datasets.

Figure 5. Examples of COCO panoptic images [12]. The first row and the second row represent
images and their annotations, respectively.

Figure 6. Examples of ADE20K panoptic images [13]. The first row and the second row represent
images and their annotations, respectively.

Implementation details and training settings: We implemented the model using the
detectron2 [25] platform, based on PyTorch. For training, the size of the input images
was set to 1280× 1280 on COCO, while it was set to 640× 640 on ADE20K. We employed
the standard convolution-based ResNet50 [21], ResNet101 [21] and Swin-Transformer [26]
as the backbone network. The transformer encoder and the transformer decoder were
repeated six times and nine times, respectively. The numbers of thing and stuff queries
were 300 and 53, respectively. During the training process, we used four NVIDIA RTX
A6000 GPUs, with a batch size of 4 per GPU. For training the proposed network, we set
epoch to 50 for the COCO panoptic dataset and epoch to 120 for the ADE20K panoptic
dataset. We optimized the proposed network using the AdamW optimizer. The initial
learning rate was set to 1× 10−4, and the multiple step learning rate scheduling technique
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was applied to decay the learning rate at specific epochs. The reduction rate is set to 1/10,
and the learning rate gradually decreases at 36 epoch and 48 epoch for the COCO panoptic
dataset, while it decreases at 75 epoch and 105 epoch for the ADE20K panoptic dataset..
The weight decay value is set to 0.05.

Evaluation metrics: For evaluation, we used Panoptic Quality (PQ) [1] to measure the
performance in both classification and segmentation. Also, we used the additional metric
of APth

pan, which measures the average precision (AP) of segmentation for thing categories
to demonstrate the effectiveness of the proposed method for thing classes. Both PQ and
APth

pan had a range from 0 to 100.

4.2. Comparison with Other Methods

COCO panoptic dataset: In Table 1, we compare the proposed method with existing
panoptic segmentation methods [3,5–9,14,27] on the COCO panoptic [12] dataset. Table 1
shows the PQ, APth

pan scores of the existing methods, which were obtained from the respec-
tive papers. We see that the proposed method outperforms both non-transformer-based
methods [3,5] and transformer-based ones [6–9]. Specifically, the proposed method sur-
passes the prior state of the art (Mask2Former [9]) by margins of 0.3 and 2.4 in terms of PQ
and APth

pan, respectively. The proposed method achieves the remarkable performance for
thing classes (58.4 PQthing), which indicates that the proposed center-guided query selection
is essential to exploiting features for different instances in each image. The highest score of
APth

pan shows that the proposed network is effective in the segmentation of thing classes.
Figure 7 shows the qualitative comparison of the proposed method with MaskFormer and
Mask2Former on the COCO panoptic dataset.

As shown in Figure 7, the proposed network provides more accurate segmentation
results and distinguishes different instances compared with MaskFormer and Mask2Former.
For example, in the third row in Figure 7, the proposed method significantly enhances the
detection performance of things, resulting in more segmentation thing masks than both
MaskFormer and Mask2Former. Specifically, while MaskFormer merges the several masks
of individual cakes into a single mask, Mask2Former completely fails to detect and segment
the cake instances. On the other hand, the proposed method faithfully detect individual
cake instances and provides accurate segmentation mask results. Moreover, as illustrated
in the stuff region in the fourth row, MaskFormer incorrectly classifies the fence class into
the tree class and yields merged masks. Also, Mask2Former fails to obtain segmentation
masks for tree regions. In contrast, the proposed method provides remarkable mask results
for stuff classes, including tree, fence, window, and wall-brick.

Table 1. Comparison of the proposed method with existing panoptic segmentation networks on the
COCO panoptic [12] val2017 dataset. The best results are boldfaced.

Model Backbone PQ PQthing PQstuff APth
pan FLOPs Params

Panoptic DeepLab [5] Xception71 [28] 41.4 45.1 35.9 - - -
ChaInNet [27] ResNet50 43.0 49.8 33.8 - - -
DETR [7] ResNet50 43.2 48.2 36.1 31.1 248 G 43 M
Panoptic FCN [3] ResNet50 43.6 49.3 35.0 36.6 244 G 37 M
IDNet [14] ResNet50 43.8 49.6 35.0 - - -
MaskFormer [8] ResNet50 46.5 51.0 39.8 33.0 181 G 45 M
Panoptic Segformer [6] ResNet50 49.6 54.4 42.4 39.5 214 G 51 M
Mask2Former [9] ResNet50 51.9 57.7 43.0 41.7 226 G 44 M
Ours ResNet50 52.2 58.4 42.6 44.1 276 G 51 M

ADE20K panoptic dataset: Table 2 compares the proposed method with IDNet [14],
MaskFormer [8], Panoptic Segformer [6], YOSO [15], and Mask2Former [9] in terms of
PQ and APth

pan on ADE20K. The proposed method achieves the best performance in all
metrics. Our method surpasses Mask2Former by over 1.8 and 2.7 in terms of PQ and
APth

pan. Figure 8 shows the qualitative comparison of the proposed method with Mask-



Electronics 2023, 12, 4801 8 of 13

Former and Mask2Former. We observe that the proposed method effectively distinguishes
thing and stuff classes and yields more accurate mask and class results than MaskFormer
and Mask2Former. For instance, in the fourth row in the Figure 8, MaskFormer produces in-
accurate mask results for the chair class, leading to incorrect or incomplete masks for some
chair instances. Mask2Former completely misses the chair and table instances. However,
the proposed method yields accurate chair and table segmentation results. Furthermore, in
the last row, MaskFormer fails to find wall regions, and thus it misclassifies wall regions
into building or water classes. Mask2Former accurately predicts the stuff area, but fails to
achieve accurate instance segmentation such as houses and stairs instances. In contrast,
the proposed method not only accurately predicts segmentation results for stuff, but also
precisely extracts thing segmentation results from the image.

Table 2. Comparison of the proposed method with existing panoptic segmentation networks on the
ADE20K panoptic [13] validation dataset. The best results are boldfaced.

Model Backbone PQ PQthing PQstuff APth
pan

IDNet [14] ResNet50 30.2 33.2 24.3 -
MaskFormer [8] ResNet50 34.7 32.2 39.7 -
Panoptic Segformer [6] ResNet50 36.4 35.3 38.6 -
YOSO [15] ResNet50 38.0 37.3 39.4 -
Mask2Former [9] ResNet50 39.7 38.8 40.5 26.2

Ours ResNet50 41.5 41.1 42.2 28.9

4.3. Ablation Study

In Tables 3 and 4, we conduct ablation studies to validate the effectiveness of center-
guided query selection and the decoupling mask. Tables 3 and 4 list the performance of
the proposed network without center-guided query selection and the decoupling mask on
COCO and ADE20K, respectively. As shown in Tables 3 and 4, both components improve
the performance in all metrics. Specifically, center-guided query selection increases the
PQthing and APth

pan scores by 1.2 and 2.1 on COCO, while it improves the PQthing and APth
pan

scores by 1.7 and 2.8 on ADE20K. This indicates that center-guided feature F̃center is effective
in segmenting objects and distinguishing different instances. Also, without the decoupling
mask, PQthing and PQstuff performance is degraded on both COCO and ADE20K. When we
remove the two components, PQ scores are reduced by 1.8 and 2.1 on COCO and ADE20K,
respectively. These results indicate that the proposed modules are essential for accurate
panoptic segmentation.

For the learning of thing and stuff queries, there are three approaches: (1) center-
guided query selection, (2) feature selection [10,11], and (3) random initialization. Table 5
shows an ablation study according to combinations of thing and stuff query learning. We
observe that the combination of center-guided query selection for things and random
initialization for stuff, i.e., the proposed method, yields the best performance. When feature
selection is adopted for stuff instead of random initialization, we experience accuracy degra-
dation. Also, the proposed combination surpasses the traditional feature selection in [10,11].
Table 6 lists the panoptic segmentation performance for various backbones: (1) ResNet50,
(2) ResNet101, and (3) Swin-T [26]. By comparing ResNet50 and ResNet101, the perfor-
mance is improved as parameters increase. Also, the transformer-based backbone [26]
yields the best performance, even though it uses fewer parameters than ResNet101.
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(a) (b) (c) (d)

Figure 7. Qualitative comparison on the COCO panoptic [12] val2017 dataset. (a) Input; (b) Mask-
Former; (c) Mask2Former; (d) ours.
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(a) (b) (c) (d)

Figure 8. Qualitative comparison on the ADE20K panoptic [13] dataset. (a) Input; (b) MaskFormer;
(c) Mask2Former; (d) ours.
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Table 3. Ablation study on the COCO panoptic val2017 dataset according to different settings.
The best results are boldfaced.

Model PQ PQthing PQstuff APth
pan FLOPs Params

Ours 52.2 58.4 42.6 44.1 276 G 51 M

−Center-guided query selection 51.6 57.2 42.3 42.0 273 G 50 M
−Decoupling mask 51.8 57.6 42.1 42.6 273 G 50 M
−2 components above 50.4 56.2 41.3 41.4 270 G 50 M

Table 4. Ablation study on the ADE20K panoptic validation set according to different settings.
The best results are boldfaced.

Model PQ PQthing PQstuff APth
pan

Ours 41.5 41.1 42.2 28.9

−Center-guided query selection 40.2 39.4 41.1 26.1
−Decoupling mask 40.5 39.9 41.3 26.9
−2 components above 39.4 39.3 40.1 25.2

Table 5. Ablation study on the COCO panoptic val2017 dataset according to query learning settings.
The best results are boldfaced.

Center-Guided Feature Random PQ PQthing PQstuff APth
pan

Query Selection Selection Initialization

Things X 52.2 58.4 42.6 44.1Stuff X

Things X 51.8 58.2 42.1 43.6Stuff X

Things X 51.6 57.6 42.3 42.9Stuff X

Table 6. Ablation study on the COCO panoptic val2017 dataset with various backbones, ResNet50,
ResNet101, and Swin-T [26]. The best results are boldfaced.

Backbone PQ PQthing PQstuff APth
pan FLOPs Params

ResNet50 52.2 58.4 42.6 44.1 276G 51M
ResNet101 52.7 58.9 43.3 44.7 342G 69M
Swin-T 53.6 59.8 43.6 45.2 280G 48M

5. Conclusions

We propose a panoptic segmentation network to predict masks and classes for things
and stuff. The key insight of the proposed network is to generate effective thing and
stuff queries for panoptic segmentation. First, we developed center-guided query selec-
tion, which exploits center information for detecting and segmenting individual instances.
Second, we applied a decoupling mask to the transformer decoder, which prevents the
interaction between thing and stuff queries. Experiments on COCO and ADE20K validated
that the proposed panoptic segmentation network outperforms the existing methods, espe-
cially with respect to things. Despite its effectiveness, the proposed panoptic segmentation
network has a limitation with respect to stuff, as reported in Table 1. Therefore, it remains a
future work direction to generate effective queries for stuff classes.
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