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Abstract: The Internet of Things (IoT), a rapidly developing technology, connects entities to the
Internet through information sensing devices and networks. Recently, IoT has gained widespread
application in daily life and work due to its high efficiency and convenience. However, with the
rapid development of IoT, the systems are intruded upon by malicious users and hackers more and
more frequently. As a result, intrusion detection has attracted significant attention, and numerous
schemes have been proposed that can precisely identify malicious intrusion operations. However,
the existing schemes suffer from several severe challenges, such as low accuracy, high computational
overhead, and poor real-time performance, in processing large-scale, high-dimensional, and tempo-
rally correlated IoT network traffic data. To address these challenges, we propose a new intrusion
detection scheme for IoT in this paper. Specifically, we first improve the traditional Gate Recurrent
Unit (GRU) and design a novel neural network model, namely, the Deep Supplement Gate Recurrent
Unit (DSGRU). This model comprises an Original Gate Recurrent Unit (OGRU), a Decode Gate
Recurrent Unit (DGRU), and a Softmax activation function. Compared with the traditional GRU, our
proposed DSGRU can more efficiently extract features from IoT network traffic data and reduce the
loss of features caused by nonlinear transformations during the learning process. Subsequently, we
adopt DSGRU to design a novel intrusion detection scheme for IoT. We also analyze the theoretical
computational complexity of the proposed scheme. Finally, we implement our proposed intrusion
detection scheme and evaluate its performance based on the UNSW-NB15 and NSL-KDD datasets.
The experimental results demonstrate that our proposed DSGRU-based intrusion detection scheme
achieves better performance, including in terms of Accuracy, Precision, Recall, F1_score, loss value,
and efficiency.

Keywords: network security; Internet of Things; intrusion detection; deep learning; deep supplement
gate recurrent unit

1. Introduction

The IoT, a rapidly developing and promising technology, connects entities to the
internet through information sensing devices (such as infrared sensors, laser scanners,
global positioning systems, and others) and a communication network based on agreed-
upon protocols, thus forming a network of everything [1–3]. Due to its attractive advantages
of high efficiency and convenience, IoT has been widely applied in daily life and work. A
report by IoT Analytics showed that the enterprise IoT market reached USD 201 billion at
the end of 2022, and will reach USD 483 billion by the end of 2027. However, alongside
the rapid development and widespread application of IoT, it is increasingly targeted by
hackers, and its security has become a major concern for users [4].
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To protect IoT security, plenty of security protection technologies have been applied in
the IoT landscape, such as firewalls [5,6], authentication mechanisms [7,8], data encryp-
tion [9–11], and so on. Although these technologies can prevent many attacks, they are all
passive defenses. That is, they can only protect IoT security when attacks occur. Meanwhile,
they lack the capability to actively analyze network behaviors, identify threat patterns,
or forecast attacks, thus limiting their effectiveness against a wide array of network at-
tacks [10]. To achieve active defense, intrusion detection systems have been deployed in
IoT. By collecting and analyzing network traffic data, these systems can determine whether
there are malicious intrusions [12]. Upon detecting intrusions, they can also promptly
intercept and respond to the attacks. Additionally, they can inform system administrators
of malicious intrusions, thereby assisting them in taking related measures [13].

Recently, thanks to the rapid advancement of artificial intelligence, machine learning
and deep learning have been widely applied in intrusion detection, resulting in a substantial
body of literature. However, these schemes cannot be directly suitable for IoT because
IoT network traffic data are characterized by large-scale, heterogeneous multiple sources,
high dimensionality, and temporal correlation [14]. According to a report by IoT Analytics,
the number of devices accessing the IoT is expected to reach 22 billion globally by the
end of 2025 [2]. Generally, these IoT devices are constantly collecting and sharing data,
thus generating large-scale, heterogeneous, high-dimensional, and temporally correlated
network traffic data [15,16]. The existing intrusion detection solutions directly applied in
the IoT environment will suffer from low accuracy, high computational overhead, and poor
real-time performance.

Specifically, in the data processing phase, the existing schemes require a significant
computational overhead to process large-scale IoT network traffic data, thus incurring
substantial time overhead. As a result, this can greatly affect the overall efficiency of
intrusion detection [17]. Meanwhile, to learn and characterize the characteristics of IoT
network traffic data, these schemes necessitate numerous matrix calculations and nonlinear
transformations, which might lead to feature loss. These issues can diminish the capacity
for data characterization and might impair the model’s ability to generalize, potentially
reducing its applicability and universality. Therefore, the motivation of this paper is to
design a novel intrusion detection scheme for IoT, one that can effectively process large-
scale, heterogeneous, high-dimensional, and temporally correlated IoT network traffic data.

1.1. Contributions

In this paper, we design a new neural network model and use it to propose an intrusion
detection scheme for IoT, which can achieve efficient and accurate intrusion detection. As a
consequence, the main contributions of this paper can be summarized as follows:

• We improve the traditional GRU model and design a novel neural network algorithm,
namely, DSGRU, which consists of OGRU, DGRU, and the Softmax activation function.
Specifically, OGRU is utilized to characterize the learned network traffic data, while
DGRU is utilized to decode and recover the features that have been characterized
by OGRU. Meanwhile, DSGRU can better characterize the network traffic data and
discover the intrinsic connections within the temporally correlated network traffic data.
Moreover, DSGRU can greatly reduce feature loss during the nonlinear transformation
process through loss compensation, thus effectively enhancing the robustness and
generalization ability.

• We adopt DSGRU to propose a novel intrusion detection scheme for the IoT environ-
ment, which is ideally suited for large-scale IoT network traffic data characterized by
heterogeneous multiple sources, high dimensionality, and temporal correlation. By
employing a loss compensation approach, our proposed scheme can reduce feature
loss of IoT network traffic data during the model training process. Meanwhile, our
scheme can effectively learn the temporal correlation between IoT network traffic
data, thus improving intrusion detection accuracy. Moreover, our scheme enhances
efficiency by reducing the operations involved in nonlinear transformations.
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• We provide the total computational time overhead and theoretical computational
complexity analysis to demonstrate the efficiency of our proposed scheme. Meanwhile,
we develop a prototype implementation and simulate our proposed scheme. Finally,
we test our proposed scheme based on the UNSW-NB15 dataset and NSL-KDD dataset,
and provide the overall performance evaluation. The experimental results not only
demonstrate that our proposed scheme is suitable for the IoT environment but also
demonstrate the practicability and universality of our proposed scheme.

The structure of this article is as follows. Some preliminaries will be described in
Section 2. In Section 3, we propose a novel neural network model that will be utilized to
establish our intrusion detection scheme. In Section 4, we first describe the system frame-
work and then present the detailed intrusion detection scheme for the IoT environment.
We provide the theoretical computational complexity comparison in Section 5. In Section 6,
we implement our proposed scheme and provide the performance evaluation. Finally, we
present our discussion and conclusion in Sections 7 and 8, respectively.

1.2. Related Works

Intrusion detection was first proposed by Denning in 1987 [18], which provided a
general framework for intrusion detection. After that, it has attracted significant attention
from both academia and industry, leading to a series of solutions. Generally, over the last
decade, probabilistic statistics and deep learning have been widely utilized to achieve
intrusion detection.

A lot of the existing solutions utilize classical data classification methods from ma-
chine learning to detect intrusion traffic data [19,20]. To detect IoT cyber attacks, Kuang
et al. [21] combined Kernel Principal Component Analysis (KPCA) with Improved Chaotic
Particle Swarm Optimization (ICPSO) to propose a new Support Vector Machine (SVM)
model. Subsequently, they used this new SVM for intrusion detection. By integrating SVM
and plain Bayesian feature embedding, Gu et al. [22] designed a new intrusion detection
scheme. In their solution, they first performed a plain Bayesian feature transformation
based on the original data features. Subsequently, they trained a model based on the data
obtained after the transformation and utilized the trained model to reach intrusion detec-
tion. By combining an artificial neural network and SVM, Hussain et al. [23] designed a
two-stage hybrid intrusion detection scheme. In their scheme, they utilized SVM to achieve
anomaly detection and adopted an artificial neural network to complete misuse detection.
Lv et al. [24] designed a hybrid kernel function for a limited learning machine and utilized
it to establish an intrusion detection scheme. Additionally, they achieved automatic param-
eter optimization by combining a novel Gravitational Search Algorithm (GSA) with the
Differential Evolution (DE) algorithm. Saleh et al. [25] achieved intrusion detection based
on an optimized k-nearest neighbor and SVM classifier. However, traditional classification
techniques cannot realize automatic parameter optimization during the data pre-processing
and feature extraction phases. That is, they require reliance on the expertise of specialists
and achieve learning and classification through human involvement. Therefore, they are
not able to quickly and accurately process large-scale, heterogeneous, high-dimensional,
and temporally correlated IoT network traffic data.

Deep learning, a novel research hotspot in neural networks and artificial intelligence,
has been extensively applied in network intrusion detection and has achieved outstand-
ing results [26,27]. In 2018, to satisfy the security requirements of the modern network,
Shone et al. [28] designed a novel intrusion detection scheme based on a stacked Non-
symmetric Deep Autoencoder (NDAE). Experimental results demonstrated the strong
potential of the proposal in modern networks. To achieve intrusion detection in wireless
sensor networks, Otoum et al. [29] developed an intrusion detection system based on
clustered constrained Boltzmann machines. In 2020, Kasongo and Sun [30] investigated the
design of an intrusion detection scheme in a wireless network environment. Subsequently,
by combining a Feed-Forward Deep Neural Network (FFDNN) with a Wrapper-Based
Feature Extraction Unit (WFEU), they proposed a network intrusion detection scheme,
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which could improve effectiveness and accuracy. To protect the security of industrial
Cyber-Physical Systems (CPSs), Li et al. [31] designed an intrusion detection scheme based
on a Convolutional Neural Network (CNN) and GRU. Almutlaq et al. [32] proposed a
two-stage intrusion detection method for an intelligent transportation system, which could
effectively improve the accuracy and efficiency of intrusion detection.

To improve the performance of intrusion detection in distributed networks,
Keshk et al. [33] proposed a new SPIP IoT intrusion detection framework to identify
network attacks and explain the model’s decisions. Wu et al. [34] presented a hybrid
intrusion detection scheme based on Stacked Autoencoders (SAEs) and the Kernel Approx-
imation algorithm. They implemented their proposed scheme and provided a performance
evaluation based on the NSL-KDD dataset. The experimental results verify the efficiency
and accuracy of their proposal. To achieve intrusion detection in imbalanced datasets,
Lee et al. [35] proposed a new intrusion detection method by combining an Autoencoder
(AE) with a Generative Adversarial Network (GAN). Specifically, they used GAN to sample
a few classes of data and adopted AE to downsize the data, thus improving overall perfor-
mance. Lo et al. [36] proposed a Long Short-Term Memory (LSTM) algorithm, and then
utilized LSTM to establish a new intrusion detection system with a high false alarm rate.

To detect the unbalanced attack types, Imrana et al. [37] proposed a Bidirectional
LSTM for intrusion detection and the experiment results showed the effectiveness of
Bidirectional LSTM. Aljrees et al. [38] introduced a novel paradigm that synergized efficient
data encryption, the Quondam Signature Algorithm (QSA), and federated learning, to
effectively detect random attacks in the IoT system. Sook et al. [39] proposed a two-phase
network traffic anomaly detection system compatible with the ETSI-NFV standard 5G
architecture. Although the above solutions can improve the accuracy of intrusion detection,
they need to perform a large number of nonlinear transformations when dealing with large-
scale, heterogeneous, high-dimensional, and temporally correlated IoT network traffic
data, thus affecting efficiency and real-time performance. Meanwhile, they suffer from the
problem of local data feature loss, which can reduce accuracy and generalization ability [40].

2. Preliminaries

To solve the problems of ineffective long-term memory information transfer and
gradient vanishing in backpropagation, a new recurrent neural network GRU, which is
very similar to the Long Short-Term Memory (LSTM) neural network, has been widely
used [41]. GRU can efficiently capture the semantic associations between long sequences,
thus mitigating the problems of gradient vanishing and gradient explosion. However, the
structure and computation of GRU are both simpler than those of LSTM. GRU mainly
consists of two gate structure units: the update gate and the reset gate, as demonstrated in
Figure 1.

Figure 1. The structure of the GRU model.

In GRU, the reset gate controls the flow of the previous moment’s hidden state into
the candidate’s hidden state of the current moment, which may contain all the historical
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information about the time series up to that previous moment. Therefore, the reset gate
enables the discarding of historical information that is not relevant to the prediction. The
update gate controls the extent to which the current moment forgets the content of messages
unrelated to the current moment and determines how much of the current candidate’s
hidden state is retained.

As shown in Figure 1 symbol Rt denotes the reset gate and symbol Zt denotes the
update gate. The GRU model can be described as follows.

Firstly, the reset gate Rt and the update gate Zt are jointly determined by the past-
moment information t and the current-moment information xt, where xt is a small batch of
inputs at a given moment t. Subsequently, the reset gate Rt and the update gate Zt can be
computed as follows:

Rt = σ(WR · [ht−1, xt]) (1)

Zt = σ(WZ · [ht−1, xt]) (2)

where σ is the sigmoid function, and WR and WZ are learnable parameters.
Secondly, the candidate’s hidden state h̃t of GRU at moment t is controlled by the

information of the past moment ht−1 and current moment xt. The computational formula
is described as follows:

h̃t = tanh(Wh̃ · [Rt × ht−1, xt]) (3)

where tanh is the tanh activation function and Wh̃ is the learnable parameter.
Finally, when calculating the hidden state ht at moment t, it is necessary to utilize the

update gate Zt at the current moment to combine the hidden state ht−1 and the candidate’s
hidden state h̃t. The specific formula is as follows:

ht = (1− Zt)× ht−1 + Zt × h̃ (4)

3. Deep Supplement Gate Recurrent Unit

Although GRU can achieve impressive performance in processing temporally cor-
related network traffic data, it requires performing numerous nonlinear transformations
during the data feature learning process, resulting in feature loss and reduced efficiency. To
address these issues, we have improved upon the traditional GRU and designed a novel
neural network model called DSGRU. Its construction is demonstrated in Figure 2.
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Figure 2. The structure of the DSGRU model.

We can directly see from Figure 2 that the proposed DSGRU consists of two types of
GRU, i.e., OGRU and DGRU. Generally, OGRU contains a traditional GRU network and a
fully connected layer. Meanwhile, OGRU is primarily utilized to learn data characterization
from the input data. Similarly, DGRU consists of a traditional GRU and a fully connected
layer, but its main function is to decode and recover the feature data after OGRU has
learned the data characterization.

Unlike the traditional GRU, DSGRU is equipped with more hidden layers by deepen-
ing the OGRUs and the DGRUs. The deeper OGRUs and DGRUs can learn data features
more fully, recover more data features, and lose fewer data features, thus improving the
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learning characterization ability. At the same time, by increasing the layers of DGRU, it
can retain more original data features in data decoding and provide more accurate loss
compensation data in subsequent loss compensation. Subsequently, the overall data feature
information loss is reduced through accurate loss compensation

In Figure 2, we utilize the symbol xinput to represent the input data and xt to represent
the data characterization of the output of OGRU located in the last layer. Moreover, we
use xout to denote the decoded data output of the last layer of DGRU, lc to denote the loss
data, and lcout to denote the loss compensation data. Nx denotes the number of layers of
encoding and decoding. For simplicity, we use Nx = 2 as an example to illustrate a specific
flow of DSGRU in the following part.

Firstly, xinput is assigned to xout, and then xout is encoded and decoded twice. Subse-
quently, xt is obtained by the characterization learning executed by the OGRU located in
the last layer. At the same time, xout is obtained by the last layer of DGRU decoding, which
can be calculated as follows:

xout = xinput (5)

xt = OGRU(xout) (6)

xout = DGRU(xt) (7)

xt = OGRU(xout) (8)

xout = DGRU(xt) (9)

Secondly, the loss data, lc, are obtained by subtracting the input data, xinput, from the
xout data obtained by the DGRU. Therefore, the loss data, lc, can be computed by using the
following formula:

lc = xinput − xout (10)

Finally, the loss compensation data, lcout, are obtained through OGRU representation
learning; then, xt plus lcout are assigned to xt, and the final result is obtained after a Softmax
activation function with the following formula:

lcout = OGRU(lc) (11)

xt = xt + lcout (12)

4. Our Proposed Scheme

In the following section, we will first describe the system framework of our new
intrusion detection scheme. Subsequently, we will introduce the DSGRU-based intrusion
detection scheme in detail.

4.1. System Framework

We investigate the design of an intrusion detection scheme for IoT. Recently, with the
rapid advancement of information technology, especially in cloud computing, wireless
networks, and sensor technology, the popularity and coverage of IoT have progressively
increased. At the same time, the practical application of intrusion detection often involves
network traffic data characterized by large-scale, heterogeneous multi-source, high di-
mensionality, and time correlation. These characteristics present many new challenges to
previous intrusion detection solutions [42]. To deal with these issues, we design a DSGRU-
based intrusion detection scheme, whose system framework is demonstrated in Figure 3.
In our system framework, the main constituent parts can be roughly divided into four
sections: data processing, model training, model testing, and result analysis.
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Figure 3. The system framework of our proposed scheme.

The data processing part primarily handles the original input data, i.e., dividing the
original data into training and testing datasets, as well as achieving data redundancy
elimination, digital encoding, feature extraction, and so on. The model training part focuses
on training the DSGRU-based intrusion detection model using the training dataset, while
the model testing part tests the trained DSGRU-based intrusion detection model using the
testing dataset. That is, the model training part and the model testing part are designed
to establish the DSGRU-based intrusion detection scheme, which achieves efficient and
accurate intrusion detection in the IoT environment. The result analysis part enables the
analysis of intrusion detection results, thereby demonstrating the efficiency, practicability,
and accuracy of our proposed DSGRU-based intrusion detection scheme.

To demonstrate the DSGRU-based intrusion detection scheme implementation process
more intuitively, the above steps can be summarized into an algorithmic pseudo-code, as
shown in Algorithm 1.

Algorithm 1: DSGRU algorithm.
Input: xinput
Output: xt

1 The dataset constitutes xinput data through feature standardization and feature
numerical encoding

2 xout ← xinput

3 for d = 1 to n do
4 xt ← OGRU(xout)
5 xout ← DGRU(xt)

6 lc← xinput − xout

7 lcout ← OGRU(lc)
8 return xt ← so f tMax(xt + lcout)

4.2. DSGRU-Based Intrusion Detection Scheme

In this subsection, we introduce the DSGRU-based intrusion detection scheme in detail.
Note that compared with other neural network algorithms, DSGRU can greatly reduce
feature loss through loss compensation, thereby improving robustness and generalization
ability, and can better process the potential relation between long-term and short-term
dependencies in temporally correlated data. Therefore, our presented DSGRU-based
intrusion detection scheme can achieve better performance.
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To demonstrate the proposed scheme more clearly, we utilize an algorithm to present
the proposed scheme, as demonstrated in Algorithm 2.

Algorithm 2: Intrusion detection algorithm.
Input: Data Feature
Output: Classifications

1 Load Dataset
2 Data processing
3 for d = 1 to n do
4 if Feature = Nonnumerical then
5 Using numerical encoding

6 else
7 Feature standardization with Z = X−Xmin

Xmax−Xmin

8 Start model training and testing
9 for d=1 to n do

10 DSGRU ← DSGRUi(X);
11 result← Compare(Yreal , Ypred)

12 Test model on test sets
13 Calculate DSGRU model performance metrics

In Algorithm 2, we respectively utilize symbol x to represent the attribute features of
the data; y to represent the category features of the data; use X to represent the attribute
characteristics of the data in standardization. Meanwhile, we denote the minimum value
by Xmin, denote the maximum value by Xmax, and denote the real situation value by Yreal .
Moreover, Ypred is utilized to represent the predicted situation value, Nx is used to represent
the training epoch, and the symbol resulting is adopted to represent the evaluation results.
The primary phases of Algorithm 2 can be summarized as follows.

(1) Data pre-processing. We process the original network traffic dataset. To be more spe-
cific, the original dataset will be transformed into numerical features and then normalized.
Subsequently, we utilize the processed dataset to establish an intrusion detection network
traffic dataset. The processed dataset will be divided into two parts: a training dataset
and a testing dataset. The training dataset is utilized to train the DSGRU-based intrusion
detection model and the testing dataset is used to test the intrusion detection performance.

(2) Model training. The training dataset is input into the DSGRU-based intrusion
detection training model and executes n epochs of training. Subsequently, a trained
DSGRU-based intrusion detection model is output.

(3) Model testing. The testing dataset is input into the trained DSGRU-based intrusion
detection model and then output the intrusion detection results.

(4) Result analysis. According to the intrusion detection results output by the trained
DSGRU-based intrusion detection model, some related metrics are calculated to evaluate
the performance of the proposed scheme.

5. Computational Complexity

In the following part, we will analyze the theoretical computational complexity of the
DSGRU-based intrusion detection scheme, SGRU-based intrusion detection scheme [40],
GRU-based intrusion detection scheme [41], BiLSTM-based intrusion detection scheme [37],
and DAE-BPNN-based intrusion detection scheme [39], as demonstrated in Table 1. For
simplicity, symbol m is used to represent the dimensionality of the input data and symbol
n is utilized to represent the dimensionality of the hidden layer.
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Table 1. Theoretical computational complexity.

Methodology Total Times of Calculations Computational
Complexity

DSGRU T[(2× d + 1)× (3× n×m + 3× n2 + 3×
n) + 2× n + 2×m]

O(n2)

SGRU [40] T[3× (3× n×m + 3× n2 + 3× n) + 2× n +
2×m]

O(n2)

GRU [41] T(3× n×m + 3× n2 + 3× n) O(n2)
BiLSTM [37] T(2× (4× n×m + 4× n2 + 4× n)) O(n2)

DAE-BPNN [39] T(3× n×m + 3× n2)) O(n2)

To compute the time complexity of DSGRU, the time complexity of GRU is analyzed
first. According to Formulas (1)–(4) in Section 2, GRU requires maintaining three sets
of parameters: the input gate, the forgetting gate, and the candidate state. Therefore,
the total computational time overhead of GRU is T(3× n × m + 3× n2 + 3× n). That
is, the computational complexity of GRU can be denoted as O(n2). LSTM then requires
maintaining four sets of parameters: the input gate, the oblivion gate, the output gate,
and the candidate state. Therefore, the total computational time overhead of BiLSTM is
T(2× (4× n× m + 4× n2 + 4× n)). That is, the computational complexity of BiLSTM
is denoted as O(n2). Meanwhile, the total computational time overhead of DSGRU is
T[(2× d + 1)× (3× n×m + 3× n2 + 3× n) + 2× n + 2×m], where d is the number of
layers of OGRU and DGRU. As a consequence, the computational complexity of DSGRU
and GRU are the same and both are O(n2). Moreover, since both DAE and BPNN contain
two-layer–fully connected layer structures in our reproduction experiments, the total
computational time overhead is T(3× n×m + 3× n2), and the computational complexity
can be denoted as O(n2).

6. Experiments

In the following section, we will implement our proposed scheme and provide the per-
formance evaluation. Specifically, we will provide a detailed description of the experimental
environment, experimental dataset, and experimental evaluation metrics. Subsequently,
we describe the experimental results, along with a comprehensive analysis.

6.1. Implementation

The proposed scheme will be implemented in the Python programming language
using the PyTorch deep learning framework. The Adaptive Moment Estimation (Adam)
algorithm is the optimizer used to update the model weights at a learning rate of 0.001.
The number of neurons in the OGRU hidden layer is 20 and the number of neurons in
the DGRU hidden layer unit is 43; meanwhile, the loss function used in the model is the
categorical cross-entropy for multi-class classification. Moreover, the model batch size is
set to 512 and the model training epoch is 250. The following two datasets (UNSW-NB15
dataset and NSL-KDD dataset) both match this parameter configuration. As shown in
Figure 2, the model first uses an embedding layer to map the inputs to its representation.
Then, it provides the embedding to the OGRU and DGRU layers with multilayer processing.
The DSGRU output is then fed to the fully connected layer with Softmax as the activation
function. Ideally, the fully connected layer learns and compiles the data extracted by the
DSGRU layer to form the final output, which is classified by the output layer. Finally, we
use loss compensation to reduce the loss of nonlinear transformation.

6.2. Experimental Environment

To simulate our proposed scheme, all the simulation experiments were performed
on a desktop computer that was equipped with an Intel Core i5-8300H CPU running at
2.30 GHz, an NVIDIA GeForce GTX 1050 Ti graphics card, and 16 GB of main memory.
Meanwhile, the desktop computer was also equipped with a Windows 11 operating system,
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CUDA10.0 driver, cuDNN 7.4.2, and a Python 3.7 environment. Moreover, the deep
learning framework utilized in the experiments was PyTorch 1.8.

6.3. Experimental Dataset

We utilized UNSW-NB15 and NSL-KDD as the experimental datasets.

6.3.1. UNSW-NB15 Dataset

The UNSW-NB15 dataset was created by the Australian Centre for Cyber Security
(ACCS) lab in 2015 [43]. The UNSW-NB15 dataset comprises both real normal traffic data
and malicious attack traffic data. Meanwhile, the UNSW-NB15 dataset encompasses normal
traffic data and nine types of attack traffic data. The nine types of attack traffic data are
backdoor, penetration analysis, denial of service (Dos) attack, vulnerability exploitation,
fuzz test, generalized attack, stomp, shellcode, and worm. Generally, the UNSW-NB15
dataset consists of 2,540,044 data samples classified into 10 types, as follows:

• Normal: The normal network traffic data.
• Fuzzers: Attacks that attempt to paralyze a system with randomly generated data

from the web.
• Analysis: Web attacks through port scanning, spamming, and file exfiltration.
• Backdoors: Hacking attacks that access computer data by bypassing system secu-

rity mechanisms.
• DoS: Uninterrupted malicious attacks on the host computer intended to render the

computer out of service.
• Exploits: Malicious attacks through the operating system or software security

vulnerabilities.
• Generic: Group password hacking attacks.
• Reconnaissance: Attackers gather information related to their target to carry out

the attack.
• Shellcode: Attackers use shell commands to control the target host attack methods.
• Worms: An attack method in which an attacker spreads to other computers through

self-replication, rendering other computers unable to function properly.

To thoroughly evaluate the effectiveness of DSGRU in intrusion detection for the IoT
environment, we carried out the experiments by using a randomized extraction method
on a dataset that consisted of 600,000 samples from the UNSW-NB15 dataset. Meanwhile,
to achieve proper evaluation, we split the dataset into a training dataset and a testing
dataset, at a ratio of 5:1. Specifically, the first 500,000 data samples were utilized as the
training dataset, while the remaining 100,000 data samples were designated as the testing
dataset. By this rigorous approach, we can rigorously evaluate the overall performance of
the DSGRU-based intrusion detection scheme for the IoT environment.

6.3.2. NSL-KDD Dataset

The NSL-KDD dataset is one of the benchmark datasets used for evaluating intrusion
detection systems [44]. It is an enhanced form of the KDD Cup 99 dataset. There are
five categories in the NSL-KDD dataset: Normal, Denial of Service (DoS) Attack, User to
Root Attack (R2L), Remote to Local Attack (U2R), and a Probe attack. The data types are
specifically described as follows:

• Normal: Normal network data.
• DoS: Uninterrupted malicious attacks on the host computer to render the computer

out of service.
• R2L: Hacker attacks that access computer data by bypassing security system mechanisms.
• U2R: Attacks that attempt to paralyze the system through randomly generated data

over the network.
• Probe: Web attacks through port scanning, spamming, and file exfiltration.
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The NSL-KDD dataset contains KDDTrain+ as a training set for model learning,
and KDDTesn+ and KDDTest−21 as testing sets for the performance evaluations of the
trained models [45]. Among them, KDDTrain+ has 125,973 traffic samples, KDDTesn+ has
22,544 traffic samples, and KDDTest−21 has 11,850 samples. Moreover, to simulate the
realism of network traffic, the testing dataset includes many attacks that do not appear
in the training set. Therefore, except for the 22 attack types in the training set, there are
17 different attack types in the testing set. To better train the model, KDDTrain+ is mainly
used as the training set and KDDTest+ as the testing set in the experiments.

6.4. Evaluation Metrics

To evaluate an intrusion detection scheme, the typical evaluation metrics include
accuracy, false alarms, and missed alarms [46]. However, due to the serious imbalance of
IoT network traffic data, normal network traffic data account for the vast majority, which
would lead to the bias of traditional evaluation metrics. As a result, to guarantee the
comprehensiveness of the evaluation, we will comprehensively adopt Con f usion Matrix,
Accuracy, Precision , Recall, and F1_score as evaluation metrics [47].

TruePositive (TP): True positive represents the number of samples that are truly attacks
and that have been correctly detected as attacks.

FalsePositive (FP): False positive represents the number of attacks that are misclassi-
fied as normal samples.

TrueNegative (TN): True negative represents the number of normal samples that are
incorrectly detected as attacks.

FalseNegative (FN): False negative represents the number of normal samples that are
accurately detected as normal samples.

Accuracy: Accuracy represents the proportion of correctly detected samples to the
total number of samples. The calculation formula of accuracy is as follows.

Accuracy =
TN + TP

TP + TN + FP + FN
(13)

Precision: Precision indicates the proportion of samples detected by the model to be in
the positive category that are actually in the positive category. It focuses on the accuracy of
the model’s predictions. The calculation formula of precision is as follows:

Precision =
TP

TP + FP
(14)

Recall: Recall represents the proportion of correct detections that are positives in the
model, as a proportion of the data that are actually positives. In the experiment, recall
refers to the proportion of attacks that are correctly categorized, such as a proportion of the
actual attack data, which can be calculated as follows:

Recall =
TP

TP + FN
(15)

F1_score: F1_score is a comprehensive metric that balances precision and recall.
F1_score is used to assess the model’s performance by considering both Precision and
Recall simultaneously. The F1_score is a value between 0 and 1; a higher value indicates
a better model performance when Precision and Recall are close. The formula for the
F1_score is as follows:

F1_score = 2× precision× recall
recall + precision

(16)

Con f usion Matrix: The confusion matrix is a table used to evaluate the performance
of a classification model. The rows and columns of the matrix, respectively, represent the
predicted and actual values. Specifically, TP, FP, TN, and FN can be calculated based on
the number of instances in each category of the confusion matrix, and then the evaluation
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metrics, such as accuracy, precision, recall, and F1_score score can be calculated using
Formulas (13)–(16).

6.5. Experimental Results

In this subsection, we simulate our proposed scheme and compare the performance
with some previous intrusion detection solutions. Specifically, we will compare the per-
formances among our proposed DSGRU-based intrusion detection scheme, SGRU-based
intrusion detection scheme [40], GRU-based intrusion detection scheme [41], BiLSTM-based
intrusion detection scheme [37], and DAE-BPNN-based intrusion detection scheme [39].

Confusion Matrix. We firstly test the fully trained model and then obtain the confu-
sion matrix, as demonstrated in Figures 4 and 5.

In Figures 4 and 5, the diagonal of the confusion matrix represents the number of
correct identifications for each category. For a deep learning model, the training process
is a form of self-learning. In other words, deep learning models can learn a significant
amount of knowledge from the training dataset and then present the data features. Then,
in Figures 4 and 5, the larger the numbers in the diagonal, the more knowledge the model
has learned. Because the dataset is extremely unbalanced, categories with more data can
achieve higher accuracy, while those with less data tend to have lower accuracy.

Figure 4. Confusion matrix of DSGRU based on the UNSW-NB15 dataset.
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Figure 5. Confusion matrix of DSGRU based on the NSL-KDD dataset.

6.5.1. Model Fit Analysis

To evaluate the model fitting degree, we compare the loss values of the DSGRU-based
intrusion detection scheme, SGRU-based intrusion detection scheme [40], GRU-based
intrusion detection scheme [41], BiLSTM-based intrusion detection scheme [37], and DAE-
BPNN-based intrusion detection scheme [39]. Subsequently, the comparison results are
demonstrated in Table 2 and Figure 6.

Table 2. Comparison of loss values.

Dataset DSGRU SGRU GRU BiLSTM DAE-BPNN

UNSW-NB15
Loss value

1.55−2 1.62−2 1.97−2 1.95−2 1.87−2

NSL-KDD 1.76−3 2.07−3 1.82−3 2.39−2 3.39−3

From Table 2, we can see that when the dataset is the UNSW-NB15 dataset, the final
loss value of the GRU-based intrusion detection scheme [41] is the highest, followed by that
of the BiLSTM-based intrusion detection scheme [37], and the loss value of our proposed
DSGRU-based intrusion detection scheme is the lowest. However, when the dataset is
the NSL-KDD dataset, the final loss value of the DAE-BPNN-based intrusion detection
scheme [39] is the highest, followed by that of the BiLSTM-based intrusion detection
scheme [37], and the loss value of our proposed DSGRU-based intrusion detection scheme
is the lowest. This demonstrates that, compared with the other four previous schemes, our
proposed DSGRU-based intrusion detection scheme can achieve a better degree of fit.
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(a) (b)

Figure 6. Comparison of loss values of different methods. (a) Loss for the UNSW-NB15 dataset.
(b) Loss for the NSL-KDD dataset.

From Figure 6, we can obviously detect that our proposed DSGRU-based intrusion
detection scheme has a better decline in loss value. In other words, compared with
the other four previous solutions, our proposed scheme has a better loss value conver-
gence rate and lower loss value. This is because—compared with the other four previous
schemes—DSGRU can learn the temporal correlation of the dataset and achieve loss com-
pensation in the model training process. Meanwhile, DSGRU can better consider the
information to be transmitted in the future compared to the other four schemes.

6.5.2. Effectiveness Evaluation

To evaluate the effectiveness, we compare the five different schemes from the metrics
of accuracy, precision, recall, and F1_score based on the UNSW-NB15 dataset and NSL-KDD
dataset. Subsequently, the comparison results are demonstrated in Figure 7.

Figure 7a demonstrates the effectiveness of the comparison results based on the UNSW-
NB15 dataset. We can obviously see that, compared with the other four previous intrusion
detection schemes, our proposed scheme performs best in accuracy, precision, recall, and
F1_score. For example, the accuracy of our proposed scheme reaches 96.08%, which is
1.34%, 1.86%, 1.74%, and 1.70% higher than those of the SGRU-based intrusion detection
scheme [40], GRU-based intrusion detection scheme [41], BiLSTM-based intrusion detection
scheme [37], and DAE-BPNN-based intrusion detection scheme [39], respectively. For
another example, the precision of our DSGRU-based intrusion detection scheme reaches
95.52%. However, the precision of the SGRU-based intrusion detection scheme [40] is
92.89%, the precision of the GRU-based intrusion detection scheme [41] is 92.59%, the
precision of the BiLSTM-based intrusion detection scheme [37] is 91.59%, and the precision
of the DAE-BPNN-based intrusion detection scheme [39] is 90.89%. Meanwhile, the other
two metrics (i.e., recall and F1_score) of our proposed scheme are both better than those of
the other four solutions.

Meanwhile, to illustrate the good generalization ability and robustness of our proposed
scheme, we also utilize the NSL-KDD dataset to verify the effectiveness; the comparison re-
sults are shown in Figure 7a. From Figure 7b, we can see that our proposed scheme is better
than the other four solutions. For accuracy, our proposed scheme reaches 81.10%. However,
the accuracies of the SGRU-based intrusion detection scheme [40], GRU-based intrusion
detection scheme [41], BiLSTM-based intrusion detection scheme [37], and DAE-BPNN-
based intrusion detection scheme [39] are 79.47%, 77.42%, 79.92%, and 78.24%, respectively.
Similarly, the other metrics (i.e., precision, recall, and F1_score) of our proposed scheme all
are better than those of the other four solutions.

From Figure 7, we see that our proposed scheme achieves the best performance among
the five solutions, which means that DSGRU can more fully extract the related features
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from the dataset. Meanwhile, DSGRU can better mine the intrinsic connection between the
temporal correlation network traffic data.
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Figure 7. Comparison of the effectiveness of the five models. (a) Results for the UNSW-NB15 dataset.
(b) Results for the NSL-KDD dataset.

6.5.3. Efficiency Evaluation

In this experiment, we, respectively, measure the total computational time overhead,
the model training computational time overhead, and the model testing computational
time overhead based on the theoretical computational complexity described in Table 1.
Subsequently, the comparison results are demonstrated in Figures 8–10.

Efficiency evaluation based on the UNSW-NB15 dataset. We first measure the total
time overhead and model training time overhead based on the UNSW-NB15 dataset, as
shown in Figure 8. We can easily discover from Figure 8a that the BiLSTM-based intrusion
detection scheme [37] requires the most total computational time overhead, followed
by our proposed DSGRU-based intrusion detection scheme. The GRU-based intrusion
detection scheme [41] requires the least total computational time overhead. This is because
LSTM includes four gate structures, whereas GRU has only three gate structures and fewer
parameters. Meanwhile, both DSGRU and SGRU comprise multiple GRUs, resulting in
longer total computational time overhead compared to GRU, but still shorter than that of
BiLSTM.
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Figure 8. Total time overhead and model training time overhead based on the UNSW-NB15 dataset.

Figure 8b shows the model training time overhead, from which we can directly observe
that the ranking of the model training time overhead for the five schemes is the same as that
of the total time overhead. Meanwhile, from Figure 8, we see that model training constitutes
the majority of the time overhead. For instance, the total computational time overhead of
our proposed DSGRU-based intrusion detection scheme based on the UNSW-NB15 dataset
is 61.40 min, while the model training requires 61.11 min. For another example, the BiLSTM
model training requires 117.48 min, which occupies 99.97% of the total computational time
overhead. In the model training process, feature extraction and learning will be completed.
These two processes require some complex operations to help the model learn the features,
hence they consume most of the time. However, it is important to note that model training
is completed offline in advance, so it does not significantly affect efficiency.

To evaluate the real-time intrusion detection, we measure the model testing time
overhead, as demonstrated in (Figure 9). From Figure 9, we can see that the BiLSTM-based
intrusion detection scheme [37] requires the most model testing time overhead, followed
by the DAE-BPNN-based intrusion detection scheme [39] and our proposed DSGRU-based
intrusion detection scheme. The GRU-based intrusion detection scheme [41] requires the
least model testing time overhead. However, the difference in model testing time overhead
is small. For example, our proposed scheme requires 2.1 s to achieve model testing, while
the model testing time overhead of the GRU-based intrusion detection scheme [41] is 1.3 s.
In other words, the difference in model testing time overhead is so small that it is acceptable.
Therefore, we can consider our proposed DSGRU-based intrusion detection scheme to be
quite efficient.
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Figure 9. Model testing time overhead based on the UNSW-NB15 dataset.
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Efficiency evaluation based on the NSL-KDD dataset. To further verify the efficiency
of our proposed scheme, we also measure the time overhead based on the NSL-KDD dataset.
Subsequently, the total time overhead and model training time overhead are demonstrated
in Figure 10. We can clearly see that the time overhead for all five solutions is less when
based on the NSL-KDD dataset compared to those based on the UNSW-NB15 dataset. This
is because the number of data items in the NSL-KDD dataset is fewer than in the UNSW-
NB15 dataset. Meanwhile, we see that the rankings of the total time overhead and the
model training time overhead based on the NSL-KDD dataset are the same as those based
on the UNSW-NB15 dataset. That is, the BiLSTM-based intrusion detection scheme [37]
requires the most total computational time overhead and model training time overhead,
followed by our proposed DSGRU-based intrusion detection scheme. The GRU-based
intrusion detection scheme [41] requires the least total computational time overhead and
model training computational time overhead.

Moreover, we measure the model testing time overhead based on the NSL-KDD
dataset, as shown in Figure 11. From Figure 11, we can see that the DAE-BPNN-based
intrusion detection scheme [39] requires the most model testing time overhead, followed
by the BiLSTM-based intrusion detection scheme [37], and our proposed DSGRU-based
intrusion detection scheme requires the least model testing time overhead. Specifically,
in the model testing process, our proposed scheme merely requires 0.31 s, while the
DAE-BPNN-based intrusion detection scheme [39] requires 1.08 s, and the BiLSTM-based
intrusion detection scheme [37] requires 0.86 s. Meanwhile, the time overhead of our
proposed scheme is 0.11 s less than that of the GRU-based intrusion detection scheme [41].
Therefore, we can see that our proposed DSGRU-based intrusion detection scheme is the
most efficient in the model testing process based on the NSL-KDD dataset.
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Figure 10. Total time overhead and model training time overhead based on the NSL-KDD dataset.

By analyzing and comparing the theoretical computational costs and computational
complexity (which are described in Section 5), we see that although our proposed DSGRU-
based intrusion detection scheme requires performing the most operations, the computa-
tional complexity of our scheme is the same as the other four previous schemes. Meanwhile,
from the experimental results, we can see that our proposed DSGRU-based intrusion detec-
tion scheme requires a little more time overhead than the SGRU-based intrusion detection
scheme [40] and GRU-based intrusion detection scheme [41]. However, the difference in
time overhead is quite small. Moreover, our proposed DSGRU-based intrusion detection
scheme can greatly improve the overall performance. Therefore, we can still consider our
proposed scheme to be more attractive than the other four previous schemes
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7. Discussion

As is well known, there are many neural network models that can achieve intrusion
detection. However, in this paper, DSGRU was designed and utilized to propose a novel
intrusion detection scheme because DSGRU is perfectly suitable for the IoT environment,
where the network traffic data is characterized by large-scale, heterogeneous multiple
sources, high-dimensionality, and temporal correlation. In general, the main purpose of
our proposed scheme is to attempt to address the following challenging problems.

How can the proposed scheme be suitable for the IoT environment compared to
other comparable solutions? In the IoT environment, network traffic data are character-
ized by large-scale, heterogeneous multiple sources, high dimensionality, and temporal
correlation. Traditional intrusion detection schemes require plenty of nonlinear transfor-
mations and complex matrix manipulations to process these network traffic data, thus
reducing the efficiency and effectiveness. In our proposed scheme, we adopt DSGRU to
establish the intrusion detection scheme, which can reduce the nonlinear transformations
and matrix manipulations. Meanwhile, DSGRU can effectively find relations within the
temporal correlation data. Therefore, by using the advantages of DSGRU, our proposed
scheme can improve the overall performance in processing large-scale, heterogeneous
multiple sources, high-dimensionality, and temporal correlation network traffic data.

How can the proposed scheme effectively reduce feature loss compared to the other
neural network model? In our proposed scheme, we adopt DSGRU as the building block
to establish the intrusion detection scheme. Generally, DSGRU consists of ORU, DGRU,
and the Softmax activation function. On the one hand, DSGRU can learn more features by
improving the number of layers for OGRU and DGRU. On the other hand, in the model
training process, DSGRU will execute the loss compensation operation. That is, DSGRU
will obtain the loss data and add them to xt. As a consequence, our proposed scheme can
effectively reduce feature loss during the model training process.

How can the proposed scheme greatly improve effectiveness compared to other
comparable solutions? Compared with some previous solutions, our proposed scheme
can greatly improve the effectiveness of intrusion detection due to the following factors.
Firstly, DSGRU can perform loss compensation to reduce feature loss, thus improving the
generalization ability of the intrusion detection model. Secondly, by increasing the layers
of OGRU and DGRU, DSGRU can learn more feature data from the original dataset. Lastly,
DSGRU can effectively reduce the operations of nonlinear transformations, thus reducing
feature loss. As a consequence, our proposed scheme can greatly improve effectiveness
compared to other comparable solutions.
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8. Conclusions and Future Work

In this section, we will first conclude this paper. Subsequently, we will describe the
research points that we will study in the future.

8.1. Conclusions

In an IoT environment, the network traffic data are characterized by large-scale,
heterogeneous multiple sources, high-dimensionality, and temporal correlation, which
could seriously affect the efficiency and accuracy of deep-learning-based intrusion detection
schemes. To solve the above challenge, we designed a DSGRU-based intrusion detection
scheme for the IoT environment. Specifically, we first designed a new neural network
model called DSGRU. Subsequently, we utilized DSGRU to propose a novel intrusion
detection scheme for the IoT environment. By using the attractive advantages of DSGRU,
our proposed intrusion detection scheme could greatly improve the overall performance.
Finally, we implemented our proposed DSGRU-based intrusion detection scheme and
provided accurate experimental results based on the UNSW-NB15 dataset and NSL-KDD
dataset. Meanwhile, the experimental results show that our proposed DSGRU-based
intrusion detection scheme can achieve significant improvements in both effectiveness and
efficiency when compared to some previous intrusion detection solutions. Specifically,
when the datasets are UNSW-NB15 and NSL-KDD, the accuracies are 96.06% and 81.10%,
the precisions are 95.52% and 83.34%, and the model training times are 61 min and 12 min,
respectively.

8.2. Future Work

In this paper, we mainly studied the design of the intrusion detection scheme for the
IoT environment and proposed a DSGRU-based intrusion detection scheme. Our proposed
scheme can improve intrusion detection efficiency and accuracy. However, in practical
applications, system administrators not only wish to comprehend the current security situa-
tion through intrusion detection but also seek to know the future security situation through
intrusion forecasting. Therefore, we will study the solution for intrusion forecasting.

Author Contributions: Conceptualization, Y.L. (Yueling Liu) and C.Y.; methodology, Y.L. (Yuel-
ing Liu) and C.Y.; software, C.Y. and Y.L. (Yingcong Lan); validation, Y.L. (Yueling Liu), Y.L.
(Yingcong Lan) and Y.D.; investigation, C.L.; resources, Y.D.; data curation, Y.L. (Yingcong Lan);
writing—original draft preparation, Y.L. (Yueling Liu); writing—review and editing, Y.L. (Yueling
Liu) and C.Y.; visualization, Y.L. (Yueling Liu); supervision, Y.D. and C.L.; project administration,
C.L.; funding acquisition, C.Y. and Y.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Key Science and Technology Project of Guangxi (grant
no. AA22068067), the Central Guidance on Local Science and Technology Development Fund of
Guangxi Province (grant no. ZY23055008), the Guangdong Provincial Key Laboratory of Novel
Security Intelligence Technologies (grant no. 2022B1212010005), the Guangxi Key Laboratory of
Trusted Software (grant no. KX202329), and the National Natural Science Foundation of China (grant
no. 62172119).

Data Availability Statement: The UNSW-NB15 dataset can be downloaded from https://research.
unsw.edu.au/projects/unsw-nb15-dataset (accessed on 18 August 2023) and the NSL-KDD dataset
can be downloaded from https://www.unb.ca/cic/datasets/nsl.html (accessed on 29 August 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiong, J.; Ma, R.; Chen, L.; Tian, Y.; Li, Q.; Liu, X.; Yao, Z. A personalized privacy protection framework for mobile crowdsensing

in IIoT. IEEE Trans. Ind. Inform. 2019, 16, 4231–4241. [CrossRef]
2. Bag, S.; Gupta, S.; Kumar, S. Industry 4.0 adoption and 10R advance manufacturing capabilities for sustainable development. Int.

J. Prod. Econ. 2021, 231, 107844. [CrossRef]

https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://www.unb.ca/cic/datasets/nsl.html
http://doi.org/10.1109/TII.2019.2948068
http://dx.doi.org/10.1016/j.ijpe.2020.107844


Electronics 2023, 12, 4745 20 of 21

3. Kou, L.; Wu, J.; Zhang, F.; Ji, P.; Ke, W.; Wan, J.; Liu, H.; Li, Y.; Yuan, Q. Image encryption for Offshore wind power based on
2D-LCLM and Zhou Yi Eight Trigrams. Int. J. Bio-Inspired Comput. 2023, 22, 53–64. [CrossRef]

4. Roman, R.; Zhou, J.; Lopez, J. On the features and challenges of security and privacy in distributed internet of things. Comput.
Netw. 2013, 57, 2266–2279. [CrossRef]

5. Togay, C.; Kasif, A.; Catal, C.; Tekinerdogan, B. A firewall policy anomaly detection framework for reliable network security. IEEE
Trans. Reliab., 2022, 71, 339–347. [CrossRef]

6. Ren, H.; Xu, G.; Qi, H.; Zhang, T. PriFR: Privacy-preserving Large-scale File Retrieval System via Blockchain for Encrypted Cloud
Data. In Proceedings of the 2023 IEEE 9th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference
on High Performance and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), New York,
NY, USA, 6–8 May 2023; IEEE: Piscataway, NJ, USA, 2023.

7. Ning, H.; Zhen, Z.; Shi, F.; Daneshm, M. A survey of identity modeling and identity addressing in Internet of Things. IEEE
Internet Things J. 2020, 7, 4697–4710. [CrossRef]

8. Taparia, A.; Banu, P.K.N. A survey of blockchain: Concepts, applications and challenges. Int. J. Comput. Sci. Math. 2023, 17,
152–165. [CrossRef]

9. Muhammad, K.; Hamza, R.; Ahmad, J.; Lloret, J.; Wang, H.; Baik, S.W. Secure surveillance framework for IoT systems using
probabilistic image encryption. IEEE Trans. Ind. Inform. 2018, 14, 3679–3689. [CrossRef]

10. Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of threats? A survey of practical security
vulnerabilities in real IoT devices. IEEE Internet Things J. 2019, 6, 8182–8201. [CrossRef]

11. Ren, H.; Li, H.; Liu, D.; Xu, G.; Cheng, N.; Shen, X. Privacy-preserving efficient verifiable deep packet inspection for cloud-assisted
middlebox. IEEE Trans. Cloud Comput. 2020, 10, 1052–1064. [CrossRef]

12. Verma, S.; Kawamoto, Y.; Kato, N. A network-aware Internet-wide scan for security maximization of IPV6-enabled WLAN IoT
devices. IEEE Internet Things J. 2020, 8, 8411–8422. [CrossRef]

13. Arisdakessian, S.; Wahab, O.A.; Mourad, A.; Otrok, H.; Guizani, M. A survey on IoT intru-sion detection: Federated learning,
game theory, social psychology, and explainable AI as future directions. IEEE Internet Things J. 2022, 10, 4059–4092. [CrossRef]

14. Zhang, J.; Wang, Y.; Li, S.; Shi, S. An architecture for IoT-enabled smart transportation security system: A geospatial approach.
IEEE Internet Things J. 2020, 8, 6205–6213. [CrossRef]

15. Zhang, J.; Wang, Y.; Li, S.; Shi, S. POTA: Privacy-Preserving Online Multi-Task Assignment with Path Planning. IEEE Trans. Mob.
Comput. 2023, 1–13. . [CrossRef]

16. Hu, C.; Zhang, C.; Lei, D.; Wu, T.; Liu, X.; Zhu, L. Achieving Privacy-Preserving and Verifiable Support Vector Machine Training
in the Cloud. IEEE Trans. Inf. Forensics Secur. 2023, 18, 3476–3491. [CrossRef]

17. Zhang, C.; Hu, C.; Wu, T.; Zhu, L.; Liu, X. Achieving efficient and privacy-preserving neural network training and prediction in
cloud environments. IEEE Trans. Dependable Secur. Comput. 2022, 20, 4245–4257. [CrossRef]

18. Liao, H.J.; Lin, C.H.R.; Lin, Y.C.; Tung, K.Y. Intrusion detection system: A comprehensive review. J. Netw. Comput. Appl. 2013, 36,
16–24. [CrossRef]

19. Kuang, F.; Xu, W.; Zhang, S. A novel hybrid KPCA and SVM with GA model for intrusion detection. Appl. Soft Comput. 2014, 18,
178–184. [CrossRef]

20. Mohammadi, M.; Rashid, T.A.; Karim, S.H.T.; Aldalwie, A.H.M.; Tho, Q.T.; Bidaki, M.; Rahmani, A.M.; Hosseinzadeh, M. A
comprehensive survey and taxonomy of the SVM-based intrusion detection systems. J. Netw. Comput. Appl. 2021, 178, 102983.
[CrossRef]

21. Kuang, F.; Zhang, S.; Jin, Z.; Xu, W. A novel SVM by combining kernel principal component analysis and improved chaotic
particle swarm optimization for intrusion detection. Soft Comput. 2015, 19, 1187–1199. [CrossRef]

22. Gu, J.; Lu, S. An effective intrusion detection approach using SVM with naïve Bayes feature embedding. Comput. Secur. 2021,
103, 102158. [CrossRef]

23. Hussain, J.; Lalmuanawma, S.; Chhakchhuak, L. A two-stagehybrid classification technique for network intrusion detection
system. Int. J. Comput. Intell. Syst. 2016, 9, 863–875. [CrossRef]

24. Lv, L.; Wang, W.; Zhang, Z.; Liu, X. A novel intrusion detection system based on an optimal hybrid kernel extreme learning
machine. Knowl.-Based Syst. 2020, 195, 105648. [CrossRef]

25. Saleh, A.I.; Talaat, F.M.; Labib, L.M. A hybrid intrusion detection system (HIDS) based on prioritized k-nearest neighbors and
optimized SVM classifiers. Artif. Intell. Rev. 2019, 51, 403–443. [CrossRef]

26. Zhang, C.; Costa-Pérez, X.P.; Patras, P. Adversarial attacks against deep learning-based network intrusion detection systems and
defense mechanisms. IEEE/ACM Trans. Netw. 2022, 30, 1294–1311. [CrossRef]

27. Xie, G.; Yang, L.T.; Yang, Y.; Luo, H.; Li, R.; Alazab, M. Threat analysis for automotive CAN networks: A GAN model-based
intrusion detection technique. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4467–4477. [CrossRef]

28. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A deep learning approach to network Intrusion detection. IEEE Trans. Emerg. Top.
Comput. Intell. 2018, 2, 41–50. [CrossRef]

29. Otoum, S.; Kantarci, B.; Mouftah, H.T. On the feasibility of deep learning in sensor network intrusion detection. IEEE Netw. Lett.
2019, 1, 68–71. [CrossRef]

30. Kasongo, S.M.; Sun, Y. A deep learning method with wrapper based feature extraction for wireless intrusion detection system.
Comput. Secur. 2020, 92, 101752. [CrossRef]

http://dx.doi.org/10.1504/IJBIC.2023.133505
http://dx.doi.org/10.1016/j.comnet.2012.12.018
http://dx.doi.org/10.1109/TR.2021.3089511
http://dx.doi.org/10.1109/JIOT.2020.2971773
http://dx.doi.org/10.1504/IJCSM.2023.130685
http://dx.doi.org/10.1109/TII.2018.2791944
http://dx.doi.org/10.1109/JIOT.2019.2935189
http://dx.doi.org/10.1109/TCC.2020.2991167
http://dx.doi.org/10.1109/JIOT.2020.3045733
http://dx.doi.org/10.1109/JIOT.2022.3203249
http://dx.doi.org/10.1109/JIOT.2020.3041386
.
http://dx.doi.org/10.1109/TMC.2023.3315324
http://dx.doi.org/10.1109/TIFS.2023.3283104
http://dx.doi.org/10.1109/TDSC.2022.3208706
http://dx.doi.org/10.1016/j.jnca.2012.09.004
http://dx.doi.org/10.1016/j.asoc.2014.01.028
http://dx.doi.org/10.1016/j.jnca.2021.102983
http://dx.doi.org/10.1007/s00500-014-1332-7
http://dx.doi.org/10.1016/j.cose.2020.102158
http://dx.doi.org/10.1080/18756891.2016.1237186
http://dx.doi.org/10.1016/j.knosys.2020.105648
http://dx.doi.org/10.1007/s10462-017-9567-1
http://dx.doi.org/10.1109/TNET.2021.3137084
http://dx.doi.org/10.1109/TITS.2021.3055351
http://dx.doi.org/10.1109/TETCI.2017.2772792
http://dx.doi.org/10.1109/LNET.2019.2901792
http://dx.doi.org/10.1016/j.cose.2020.101752


Electronics 2023, 12, 4745 21 of 21

31. Li, B.; Wu, Y.; Song, J.; Lu, R.; Li, T.; Zhao, L. DeepFed: Federated deep learning for intrusion detection in industrial cyber–physical
systems. IEEE Trans. Ind. Inform. 2021, 17, 5615–5624. [CrossRef]

32. Almutlaq, S.; Derhab, A.; Hassan, M.M.; Kaur, K. Two-stage intrusion detection system in intelligent transportation systems
using rule extraction methods from deep neural networks. IEEE Trans. Intell. Transp. Syst. 2022, 1–15. [CrossRef]

33. Keshk, M.; Koroniotis, N.; Pham, N.; Moustafa, N.; Turnbull, B.; Zomaya, A.Y. An explainable deep learning-enabled intrusion
detection framework in IoT networks. Inf. Sci. 2023, 639, 119000. [CrossRef]

34. Wu, Y.; Lee, W.W.; Gong, X.; Wang, H. A hybrid intrusion detection model combining SAE with kernel approximation in Internet
of Things. Sensors 2020, 20, 5710. [CrossRef] [PubMed]

35. Lee, J.H.; Park, K.H. AE-CGAN model based high performance network intrusion detection system. Appl. Sci. 2019, 9, 4221.
[CrossRef]

36. Lo W.; Alqahtani, H.; Thakur, K.; Almadhor, A.; Chander, S.; Kumar, G. A hybrid deep learning based intrusion detection system
using spatial-temporal representation of in-vehicle network traffic. Veh. Commun. 2022, 35, 100471.

37. Imrana, Y.; Xiang, Y.; Ali, L.; Abdul-Rauf, Z. A bidirectional LSTM deep learning approach for intrusion detection. Expert Syst.
Appl. 2021, 185, 115524. [CrossRef]

38. Aljrees, T.; Kumar, A.; Singh, K.U.; Singh, T. Enhancing IoT Security through a Green and Sustainable Federated Learning
Platform: Leveraging Efficient Encryption and the Quondam Signature Algorithm. Sensors 2023, 23, 8090. [CrossRef]

39. Sood, K.; Nosouhi, M.R.; Nguyen, D.D.N.; Jiang, F.; Chowdhury, M.; Doss, R. Intrusion detection scheme with dimensionality
reduction in next generation networks. IEEE Trans. Inf. Forensics Secur. 2023, 18, 965–979. [CrossRef]

40. Liu, Z.Y.; Yang, C.S.; Xiao, J.; Song, B.W.; Shi, K.X. A Novel Intrusion Detection Method Based on Supplement Gate Recurrent
Unit for IoT. Wirel. Communi-Cations Mob. Comput. 2022, 2022, 3678493. [CrossRef]

41. Ansari, M.S.; Bartoš, V.; Lee, B. GRU-based deep learning approach for network intrusion alert prediction. Future Gener. Comput.
Syst. 2022, 128, 235–247. [CrossRef]
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