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Abstract: This paper studies the robust stabilization of rigid-body attitudes represented by a special
orthogonal matrix. A geometric proportional–integral–derivative (PID) controller is proposed with
all the input commands defined in the dual space so∗(3) of a Lie algebra for left-invariant systems
evolving on a Lie group SO(3). Almost global asymptotic stability (AGAS) of the close system
is proved by constructing a gradient-descent Lyapunov function after explicitly performing two
stages of variable change. The attitudes are stabilized to the stable equilibrium despite the influence
of inertially fixed biases. The convergent behaviors and the robustness to biases are verified by
numerical simulations.
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1. Introduction

Stabilizing the orientation or attitude of a rigid body is significantly desirable for
controlling the kinematics or dynamics of aircraft, space crafts, satellites, helicopters,
unmanned aerial vehicles (UAVs) and submarines [1]. Before justifying stabilization al-
gorithms, we first need to turn the attitudes into mathematical notations. The minimal
representations, like Euler angles or modified Rodriguez parameters, suffer from singu-
larities. Early results were established on quaternions with four parameters, attempting
to obtain globally effective control laws by resolving the problems caused by singular-
ities [1,2]. However, the quaternion-based system faces ambiguity in representing one
attitude with two antipodal points, which may exhibit an unwinding phenomenon if not
carefully resolved. The Lie group structure, however, allows for a global and unique
representation of rigid-body attitudes in terms of a rotation matrix; see [3] for more detailed
discussions. In this line, many well-known techniques for control and estimation, such as
PID control [4–6], state observers [7,8] and output regulation [9], are extended to systems
whose configuration space involves a Lie group. By specializing the abstract notation of a
Lie group into a concrete one SO(3), i.e., a special orthogonal group of three dimensions,
it is straightforward to come up with engineering algorithms for practical applications,
including stabilization [6], coordination [10], synchronization [11,12], observers [7,13] and
tracking [4,14] of rigid-body attitudes. Basically, this paper is focused on attitude stabiliza-
tion on SO(3), as we believe that it is possible to establish the other algorithms based on
this essential framework of stabilization without any significant adaption. As pointed out
in [15], achieving global stability by solely using continuous control law is not possible.
Therefore, we set our goal as establishing almost global stability based on a continuous
strategy of PID control.

There are various methods for controller design, allowing us to achieve the desired
attitude stabilization. Roughly, we categorize the control algorithms into model-based
and model-free classes by investigating if their computation of control inputs requires
prior knowledge of the system model or not. When exact information about physical
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systems is available, the model-based strategies, such as state observers [7,8,16], sliding
model control [17] and output regulation [9], are beneficial in obtaining more accurate
control by simulating the physical models. Nevertheless, the simulation relies heavily on
computation power, and thus has limitations in practical applications with restricted com-
puting resources. As a typical model-free method, PID control requires the least knowledge
about the system’s model. Now, more than 95% of industrial feedback control systems
employ PID or PID-type control due to their simple structure and easiness of parameter
tuning. The input commands of PID control consist of three terms, i.e., the proportion,
time derivative, and time integral of errors. It is convenient to compute those terms for
systems defined in Euclidean spaces. For systems evolving in non-Euclidean spaces, how-
ever, the classical definition of PID inputs in vector spaces makes no mathematical sense.
Geometric extension of PID control to systems defined on nonlinear spaces, such as on Lie
groups or, more generally, on Riemannian manifolds, has attracted significant attention in
the last two decades. By defining the proportional control as a proportion of the gradient
of an error function, PD control was generalized to mechanical systems on Riemannian
manifolds [18]. Following this framework, we further defined the integral action in Lie
algebra as the time integral of PD commands and came up with a left-invariant PID con-
troller for a left-invariant system on Lie groups [6] with body-fixed biases. Parallel work
in [5] is focused on providing an intrinsic PID controller with the integral action defined in
a manner of covariant derivative. The effectiveness of geometric PID control proposed in
those published works has been verified by examples of attitude stabilization on SO(3).
Results in [19] also extended the classical PID to that for both first-order and second-order
systems on smooth manifolds.

For systems evolving on nonlinear spaces, defining integral control requires the trans-
formation of velocities among the tangent spaces of different configuration points. The struc-
ture of Lie group provides two canonical ways to transport the velocities in tangent space of
an arbitrary point to that of the group identity, i.e., the Lie algebra, resulting in the concepts
of left-invariant and right-invariant velocity. In robotic applications, we usually but not
rigorously use the left-invariant and right-invariant terms to describe velocities in body
and inertial frames, respectively. The work in [6] is focused on the left-invariant design
of PID controllers for systems admitting body-fixed (left-invariant) biases. They also de-
vised a right-invariant design for systems with inertially fixed (right-invariant) disturbance.
In order to maintain the right invariance of an integral action, its design expressed in body
frames needs to compensate for the variations due to the influence of frame change. This
paper is built upon our previous work in [6]. However, we believe that those compensations
are not necessarily required when the integral control is confirmed with the ability to deal
with state-dependent biases. To our best knowledge, using a left-invariant design of PID
controllers to robustly stabilize the attitudes of a rigid body with inertially fixed biases
has not been studied. In addition, tangent and cotangent spaces are identified, and the
influence of an inertia matrix is ignored in [6]. Instead, we view the attitude dynamics of a
rigid body as a mechanical system and consider the case with control inputs defined in the
dual space of a Lie algebra, i.e., so∗(3).

Although traditional PID control has been generalized to more geometric settings,
analyzing the convergence and robustness of the resulting systems needs further studies.
The existing results in [6,20] only counter constant biases. In practice, however, most biases
vary as the system’s states evolve. For instance, inertially fixed bias in the above setting
turns out to be a state-dependent bias in the body frames of a rigid body. Although rejecting
state-dependent [21] or time-varying disturbance [5] has been considered, their analysis
does not pay attention to the speed of convergence. The result in [6,20,22] reduces the
derivative of the Lyapunov function into a binary quadratic form, and the proof has to
be produced by recalling the associated LaSalle’s invariance principle; it is difficult to
judge the convergent speed in the third dimension. The work in [5] has a representation of
the ternary quadratic form for the derivative of the Lyapunov function, which allows for
decreasing the Lyapunov function in a gradient-descent manner. However, its construction
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of the Lyapunov function does not include the biased term, and thus, the system is only
ensured to converge to a neighborhood of the desired equilibrium point. We attempt to
explicitly construct a Lyapunov function whose derivative is a ternary quadratic form and
prove the gradient-descent convergence of a left-invariant PID-controlled system (with the
controller defined in body frames) to the exact point of equilibrium despite the influence of
state-dependent biases (the expression of inertially fixed biases in body frames).

The contributions of this paper are in the following aspects:

• A geometric PID controller is defined on so∗(3) for left-invariant dynamical systems
evolving on SO(3). The time-varying effects in body frames caused by inertially fixed
biases are suppressed by integral actions.

• A gradient-descent Lyapunov function is established by applying two stages of vari-
able change. A criterion for parameter tuning of the geometric PID controller is
justified by ensuring the decline of the suggested Lyapunov function.

• AGAS stability of the stable equilibrium point is proved for the resulting close system
by decreasing the Lyapunov function without involving LaSalle’s invariance principle.

The contents of the present paper are organized as follows. In Section 2, we establish
the preliminary concepts and provide the necessary mathematical notations. The system
model and geometric PID controller are clearly defined in Section 3. The main efforts
of this paper are devoted to the convergence analysis of the resulting close system; see
Section 4 for details. Simulation results of a numerical example are reported in Section 5,
and conclusions are reached in Section 6.

2. Preliminaries and Mathematical Notations

We denote the set of three-dimensional special orthogonal matrices by SO(3) = {Q ∈
R3×3|QTQ = I3×3, det(Q) = 1}, which is a Lie group as it is a continuous manifold and
simultaneously satisfies the group structure. For a matrix group, the group operation,
group identity, and inverse of a group element are just matrix multiplication, the identity
matrix I3×3 and the inverse of a matrix. Associated with each Q is a tangent space TQSO(3).
The special tangent space at the group identity TeSO(3) = {Ω ∈ R3×3|ΩT = −Ω},
i.e., a set of all skew-symmetric matrices, is indeed a Lie algebra so(3) with Lie bracket
operation defined as [Ωa, Ωb] = ΩaΩb − ΩbΩa. The matrix Ω, in fact, only has three
independent variables, and we are inspired by this fact to represent the velocity with a
three-dimensional vector. The Lie algebra is then defined as so(3) = {ω ∈ R3|[ωa, ωb] =
ωa ×ωb} with the associated Lie bracket justified as a cross product in three-dimensional
space. The transformations between vector notation ω and matrix notation Ω follow

ω = [Ω]∨ =

ω1
ω2
ω3

 ⇔ Ω = [ω]∧ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

.

There are two canonical ways allowing for translation of the velocity d
dt Q ∈ TQSO(3)

into that in so(3). Left multiplication by QT results in the definition of left-invariant
velocity ξ l = QT · d

dt Q, while right multiplication by QT gives the right-invariant velocity
ξr = d

dt Q · QT . The terms ξ l and ξr are not equal in most cases, although they belong to
the same space so(3). In practice, usually but not rigorously, we use ξ l and ξr to model
velocities in body frames and in the inertial frame, respectively. The transformations
ξr = AdQξ l = Qξ lQT in matrix notation, or ωr = AdQωl = Qωl in vector notation,
follow the adjoint representation AdQ : so(3) → so(3), which indeed is an association
of left multiplication by Q and right multiplication by QT . We denote by so∗(3) the
dual space of so(3) and define the dual of AdQ as Ad∗Q : so∗(3) → so∗(3) such that the
inner product 〈·, ·〉 : so∗(3) × so(3) → R is preserved under adjoint transformations,
i.e., 〈pr, ωr〉 = 〈Ad∗Q pl , AdQωl〉 = 〈Qpl , Qωl〉.
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In order to characterize the distance to the element of group identity, an error function
is defined as a scalar function φ : SO(3)→ R with

φ = 1
2 tr(I3×3 −Q).

Its gradient ∇φ ∈ R3 is then identified by computing the time derivative of the error
function d

dt φ = 〈∇lφ, ωl〉 = 〈∇rφ, ωr〉. The resulting explicit expression for the gradient
writes in terms of the skew-symmetric part of Q:

∇lφ = ∇rφ = [skew(Q)]∨ = [ 1
2 (Q−QT)]∨. (1)

By letting ∇φ = 0, we obtain four critical points, i.e., one minimum point Q = I with
φ = 0 and three maximum points Q = diag{1;−1;−1}, diag{−1; 1;−1}, diag{−1;−1; 1}
with φ = 2. The minimum point is a stable equilibrium, while the other three are un-
stable equilibrium points corresponding to the attitudes with a π rotation around three
principle axes.

In what follows, we use the abbreviated notation ω, instead of ωl , to describe left-
invariant vectors, while the notations ωl and ωr are only used when emphasizing their
difference is necessary. The norm of a matrix A is defined as ‖A‖ =

√
λmax(AT A) and the

norm of vector v follows ‖v‖ =
√

vT · v. The operation “·” in A · v and vT · w represents
algebraic multiplications of matrices or vectors. When the dimension of In×n is clear from
the context, we always simplify the notation of kIn×n into k.

3. System Model and Controller Design
3.1. System Model

Following the kinematics on SO(3) and Euler’s rotation equation, we obtain a con-
trolled second-order system on SO(3) in body frames

QT d
dt Q = [ω]∧ (2)

J d
dt ω = Jω×ω + u + Fl

b (3)

where J = diag{J1; J2; J3} ∈ R3×3 denotes the inertia matrix, the cross product Jω×ω is in-
ternal force, the term u is externally applied control inputs to be designed and ub = Fl

b ∈ R3

represents the biased torque in the body frame. In this paper, our goal is to reject inertially
fixed biases, and thus, we need to translate the right-invariant bias Fr

b ∈ R3 into that
expressed in body frames

Fl
b = QT Fr

b . (4)

As Q varies, the biased term Fl
b does not remain invariant for constant Fr

b ; its derivative follows

d
dt Fl

b = −ω× (QT Fr
b ). (5)

Countering the effects of this Q-dependent bias is significantly challenging for
controller design.

3.2. Controller Design

The goal of controller design is to stabilize the state of system (Q, ω) to the equilibrium
point (I, 0) despite the influence of bias Fr

b . In order to reach this goal, we propose a
controller design that consists of two components, i.e., a feed-forward term and a PID
control algorithm,

u = u f f + upid. (6)

The first term u f f is used as a feed-forward term to compensate for the cross product term
in (3), and thus is defined as

u f f = −Jω×ω. (7)
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The second term upid represents inputs of PID control whose geometric definition follows

upid = −kp∇φ− kdω + kiui (8)

J d
dt ui = −kp∇φ− kdω (9)

where the terms Fp = −kp∇φ, Fd = −kdω and Fi = kiui correspond to three different
feedback loops of action, i.e., proportional, derivative and integral actions; and kp, kd, ki > 0
are their tuning parameters.

For the traditional PID control defined in Euclidean spaces, computing the propor-
tion, derivative and integral of error vectors is straightforward. For systems evolving on
nonlinear spaces, however, we need to adjust the geometric definition of proportional and
integral control. First, we must use the gradient of an error function, rather than the error
itself, to define the proportional control. Second, as integrating the error function makes no
sense, we need to integrate the PD input commands, which are vectors in tangent spaces.
The definition in this paper is almost the same as that in our previous work [6], but with a
slight difference. The tangent and cotangent spaces were identified in [6], and the influence
of inertia matrix J has been ignored. In the present paper, controller design is performed in
cotangent space, i.e., u is applied to J d

dt ω. By following the same fashion, we express the
dynamics of integral action in terms of J d

dt ui.
Submitting the feed-forward and PID control (7)–(9) into (6) and replacing the input

commands u in system model (2) and (3) by (6) gives a closed system:

QT d
dt Q = [ω]∧ (10)

J d
dt ω = −kp∇φ− kdω + kiui + Fl

b (11)

J d
dt ui = −kp∇φ− kdω. (12)

The algorithm of geometric PID for the stabilization of rigid-body attitudes is summarized
as shown in Algorithm 1.

Algorithm 1: Geometric PID Stabilization of Rigid-Body Attitudes

1 Set control parameters kp, kd, ki;
2 Set initial condition ui(0) = 0;
3 while (Q, ω) 6= (I3×3, 0) do
4 measure the pitch, yaw and roll angles and the rotation velocity of a rigid body;
5 turn the measured angles into an orthogonal matrix Q describing the attitude;
6 compute the gradient of error function ∇φ in Equation (1);
7 update the integral actions by Equation (9);
8 compute the feed-forward and PID control inputs by Equations (7) and (8);
9 apply the input commands to the actuators of a rigid body.

10 end

In next, we study the convergence performance based on the closed system (10)–(12)
and justify the required conditions for parameter tuning of this geometric PID control
algorithm.

4. Convergence Analysis

Before coming up with the construction of a Lyapunov function, we first perform two
steps of variable change for the resulting close system. In the first stage, we show that
there exists a negative proportion of∇φT · ∇φ in d

dt φ, which ensures the gradient decline of
the error function. The second stage of variable change allows us to find a suitable metric
function whose exponential decrease proves that Fd and Fi approach the opposite of Fp and
Fb, respectively, in a gradient-descent manner.
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4.1. First-Stage Variable Change

It is not convenient to analyze the stability of a geometric PID-controlled system
in the coordinates (Q, ω, ui). We thus, at this first stage, take a new coordinate system
(Q, X, Y) with

X = −kp∇φ− kdω (13)

Y = kiui + Fl
b. (14)

The inverse of this coordinate change allows us to express ω, J d
dt ω and J d

dt ui in terms of X
and Y:

ω = −β∇φ− ρ X

J d
dt ω = X + Y

J d
dt ui = X

with β = kp/kd, ρ = 1/kd. Performing this first-stage variable change leads to a transfor-
mation of the original system into that expressed in the renewed coordinates:

QT d
dt Q = [−β∇φ− ρX]∧

J d
dt X = −kdX− kdY− kp JH(−β∇φ− ρX)

J d
dt Y = kiX + J∇Fl

b(−β∇φ− ρX)

where H is a Hessian matrix satisfying d
dt∇φ = H ·ω and ∇Fl

b represents the gradient of
Fl

b with regard to the attitude such that d
dt Fl

b = ∇Fl
b ·ω. It is easy to check that ‖ d

dt∇φ‖ is
upper-bounded by H̄‖ω‖ with a positive H̄ such that ‖H‖ ≤ H̄; see [4,20].

By defining vectors v = [X; Y] and p = [JX; JY], we obtain a representation of the
resulting close system in a more compact form:

QT d
dt Q = [−β∇φ + bφ]

∧ (15)
d
dt p = Av + bv (16)

with matrix A and vectors bφ, bv:

A =

[
−kd −kd

ki 0

]
(17)

bφ = −ρX, bv =

[
−kp JH(−β∇φ− ρX)
J∇Fl

b(−β∇φ− ρX)

]
. (18)

The process of first-stage variable change and the property of resulting representation
can be summarized as follows.

Proposition 1. Suppose that the moments of inertia and the Hessian matrix of a rigid-body system
are upper-bounded by ‖J‖ ≤ J̄ and ‖H‖ ≤ H̄, and the gradient of bias has an upper bound
‖∇Fl

b‖ ≤ B. Then, the closed system (10)–(12) has a representation of the form (15) and (16) under
the coordinate change (13) and (14). The norms of vector bφ and bv are upper-bounded by ‖∇φ‖
and ‖v‖

‖bφ‖ ≤ k0‖v‖ (19)

‖bv‖ ≤ k1‖∇φ‖+ k2‖v‖ (20)

with k0 = ρ, k1 = kpβ J̄ H̄ + β J̄B and k2 = β J̄ H̄ + ρ J̄B.
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Proof of Proposition 1. It is straightforward to obtain the renewed representation of the
system by following the above computation. The remaining task is to identify the upper
bounds for ‖bφ‖ and ‖bv‖. From their expressions in (18), we know that ‖bφ‖ = ρ‖X‖ ≤
ρ‖v‖ and obtain the result in (19) for the upper bound of ‖bφ‖ with k0 = ρ . The vector
bv can be considered as a combination of two terms bv1 = [kpβJH∇φ;−βJ∇Fl

b∇φ] and
bv2 = [βJHX;−ρJ∇Fl

bX]. By the assumptions of ‖J‖ ≤ J̄, ‖H‖ ≤ H̄ and ‖∇Fl
b‖ ≤ B, we

then have

‖bv1‖ ≤ (kpβ‖J‖ · ‖H‖+ β‖J‖ · ‖∇Fl
b‖) · ‖∇φ‖

≤ (kpβ J̄ H̄ + β J̄B)‖∇φ‖
= k1‖∇φ‖

‖bv2‖ ≤ (β‖J‖ · ‖H‖+ ρ‖J‖ · ‖∇Fl
b‖) · ‖v‖

≤ (β J̄ H̄ + ρ J̄B)‖v‖
= k2‖v‖

which allows us to reach the conclusion of (20) for the upper bound of ‖bv‖ with k1 and k2
justified accordingly.

After applying the first-stage variable change, we have established a result with d
dt φ

having a term −β‖∇φ‖2, by which gradient-descent decrease in φ is possible. However,
vT Av is not always negative for arbitrary nonzero vectors. Therefore, we need to further
perform a second-stage variable change, which actually is a similar transformation ṽ = S · v
and Ã = S · A · S−1, such that the term ṽT Ãṽ is definitely negative for all vectors ṽ 6= 0.

4.2. Second-Stage Variable Change

The second-stage variable change is mainly about the diagonalization of matrix A.
By letting ki = γkd, we turn the matrix A in (17) into

A =

[
−kd −kd
γkd 0

]
.

This matrix has two eigenvalues:

λ̃1 = −λ1kd, λ̃2 = −λ2kd

with λ1 and λ2 having explicit expressions

λ1,2 = 1
2 ±

√
1
4 − γ (21)

which indeed are two solutions of the equation

λ2 − λ + γ = 0.

We then define the second-stage variable change as

X̃ = λ1X + Y (22)

Ỹ = λ2X + Y (23)

or in matrix form, as ṽ = S · v for ṽ = [X̃, Ỹ]. The matrix S is then justified as

S =

[
λ1 1
λ2 1

]
.
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By defining p̃ = [JX̃, JỸ] and computing its derivative, we further obtain the transfor-
mation of systems (15) and (16) into that expressed in terms of p̃, ṽ, b̃φ and b̃ṽ:

QT d
dt Q = [−β∇φ + b̃φ]

∧ (24)
d
dt p̃ = Ãṽ + b̃ṽ (25)

with the matrix Ã and vectors b̃φ, b̃ṽ:

Ã = SAS−1 =

[
λ̃1

λ̃2

]
(26)

b̃φ = −ρ
λ1−λ2

(X̃− Ỹ), b̃ṽ = S · bv. (27)

The process of second-stage variable change and the property of the resulting repre-
sentation can be summarized as next proposition.

Proposition 2. Suppose that the Proposition 1 is satisfied and 0 < m ≤ γ ≤ M < 1/4. Then,
there exists a coordinate change (22) and (23), such that the closed system (15) and (16) has a
representation of the form (24) and (25). The quadratic form ṽT Ãṽ is then upper-bounded by ‖ṽ‖2:

ṽT Ãṽ ≤ −k̃A‖ṽ‖2 (28)

with k̃A =

(
1
2 −

√
1
4 −m

)
kd > 0. The norm of vectors b̃φ and b̃ṽ is upper-bounded by ‖∇φ‖

and ‖ṽ‖

‖b̃φ‖ ≤ k̃0‖ṽ‖ (29)

‖b̃ṽ‖ ≤ k̃1‖∇φ‖+ k̃2‖ṽ‖ (30)

with k̃0 = 2ρ√
1−4M

, k̃1 = 2k1 and k̃2 = 4k2√
1−4M

.

Proof of Proposition 2. It is straightforward to obtain the renewed representation of the
system by following the above computation. The remaining task is to identify the upper
bounds of ṽT Ãṽ, ‖b̃φ‖ and ‖b̃ṽ‖. From (26), we know that

ṽT Ãṽ ≤ −
(

1
2 −

√
1
4 − γ

)
kd‖ṽ‖2

≤ −
(

1
2 −

√
1
4 −m

)
kd‖ṽ‖2

= −k̃A‖ṽ‖2

by which k̃A is identified accordingly. From the solutions for λ in (21), we know the fact
that λ < 1 and

√
1− 4M < |λ1 − λ2| = |

√
1− 4γ| <

√
1− 4m. Following the definition of

matrix norm and applying the Gershgorin circle theorem allows us to estimate the upper
bound of ‖S‖ and ‖S−1‖,

‖S‖ =
√

λmax(STS) < 2

‖S−1‖ =
√

λmax((S−1)TS−1) < 2√
1−4M

.

From (19) and (27), we know that
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‖b̃φ‖ = ‖bφ‖
≤ ρ‖v‖
≤ ρ‖S−1‖ · ‖ṽ‖
≤ 2ρ√

1−4M
‖ṽ‖

= k̃0‖ṽ‖.

The term b̃ṽ in (27) can be considered as a combination of two terms b̃ṽ1 = S · bv1 and
b̃ṽ2 = S · bv2. With the results in (20) for ‖bv1‖ ≤ k1‖∇φ‖ and ‖bv2‖ ≤ k2‖v‖, we then have

‖b̃ṽ1‖ ≤ ‖S‖ · k1‖∇φ‖
≤ 2k1‖∇φ‖
= k̃1‖∇φ‖

‖b̃ṽ2‖ ≤ ‖S‖ · k2‖v‖
≤ ‖S‖ · k2‖S−1‖ · ‖ṽ‖
≤ 4k2√

1−4M
‖ṽ‖

= k̃2‖ṽ‖.

The above results allow us to reach the conclusion by (29) and (30) for the upper bound
of ‖b̃φ‖ and ‖b̃ṽ‖ with k̃0, k̃1 and k̃2 justified accordingly.

4.3. Almost Global Asymptotic Stability

Now, we are ready to present the main result of this paper.

Theorem 1. Suppose that the moments of inertia and the Hessian matrix of a rigid-body system
are bounded by J ≤ ‖J‖ ≤ J̄ and ‖H‖ ≤ H̄. Assume that the bias and its gradient are upper-
bounded with ‖Fl

b‖ ≤ F and ‖∇Fl
b‖ ≤ B. If the control parameters are identified as taking

kp > 1/
√

1− 4M and sufficiently large kd, ki with γ = ki/kd ∈ [m, M] ⊂ (0, 1/4), then
the stable equilibrium point of system (10)–(12) is almost globally asymptotically stable (AGAS).
Starting from the initial point Q(0) ∈ R0 = {Q|φ(Q) ≤ a0} with ω(0) = ui(0) = 0, and by
decreasing the Lyapunov function

V = αφ + 1
2 p̃T · ṽ (31)

the system’s state (Q, ω) is stabilized to the desired equilibrium (I, 0), while the bias Fl
b is rejected

by integral action kiui. Sufficiently large control parameters allow for the extension of attraction
region almost globally to SO(3).

Proof of Theorem 1. Submitting (24) and (25) into the time derivative of the Lyapunov
function (31) results into

d
dt V = α∇φT ·ω + ṽT · d

dt p̃

= −αβ∇φT · ∇φ + α∇φT · b̃φ + ṽT Ãṽ + ṽT · b̃ṽ.

Exploring the results (28)–(30) established in Proposition 2, we obtain

d
dt V ≤ −αβ‖∇φ‖2 + (αk̃0 + k̃1)‖∇φ‖ · ‖ṽ‖+ (−k̃A + k̃2)‖ṽ‖2.

By defining z = [‖∇φ‖; ‖ṽ‖], we further have

d
dt V ≤ zTWz
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with the matrix

W =

[
−αβ αk̃0+k̃1

2
αk̃0+k̃1

2 −k̃A + k̃2

]
.

By the Gershgorin circle theorem, zTWz < 0 requires

αβ > αk̃0+k̃1
2

k̃A > αk̃0+k̃1
2 + k̃2.

We replace k̃A, k̃0, k̃1, k̃2 with explicit expressions and rewrite the conditions as(
kp − 1√

1−4M

)
kα > kp J̄ H̄ + J̄B (32)(

1
2 −

√
1
4 −m

)
kd > kα β+4(β J̄ H̄+ρ J̄B)√

1−4M
+ kpβ J̄ H̄ + β J̄B (33)

with kα = α/kp. The resulting requirements are possible to be fulfilled by choosing the
parameters for controller design appropriately and taking right value of the weight in
Lyapunov function. Firstly, we take a large kp such that kp > 1√

1−4M
. Once the value of kp

is justified, the condition (32) can be satisfied by enlarging kα. In next, for fixed kp and kα,
we have the chance to reach the condition (33) by taking a sufficiently large value for kd,
as it makes β = kp/kd and ρ = 1/kd sufficiently small.

In order to prove almost global stability, we need to ensure that Q does not reach the
unstable equilibria, i.e., φ(Q(t)) ≤ a < 2 is always satisfied for all t. LetR0 = {Q|φ(Q) ≤
a0 < 2} and R1 = {Q|φ(Q) ≤ a < 2}; then, we need to prove that Q(0) ∈ R0 and
ω(0) = ui(0) = 0 implies Q(t) ∈ R1.

Firstly, we show that ‖∇φ‖2 is upper-bounded by φ. We know the fact that
φ = ‖∇φ‖2 = 0 at the stable equilibrium point Q = I, and the values of φ(Q) and
‖∇φ(Q)‖2 for arbitrary Q can be represented as the path integral along a curve parameter-
ized by t ∈ [0, 1], starting from an initial point I at t = 0 and ending at the point Q at t = 1.
Without loss of generality, we take the special curve whose tangent vector equals∇φ as the
candidate path for computing integration. Therefore, we have

φ(Q) =
∫ 1

0

d
dt φ(Q(t)) · dt =

∫ 1

0
∇φ(Q(t))T · ∇φ(Q(t))dt =

∫ 1

0
‖∇φ(Q(t))‖2 dt

‖∇φ(Q)‖2 =
∫ 1

0

d
dt‖∇φ(Q(t))‖2 · dt =

∫ 1

0
2∇φ(Q(t))T · H(Q(t)) · ∇φ(Q(t))dt.

As the norm of the Hessian matrix is upper-bounded by H̄, we in further obtain

‖∇φ(Q)‖2 ≤ 2H̄
∫ 1

0
‖∇φ(Q(t))‖2dt = 2H̄φ(Q).

Next, we prove that ‖ω(t)‖ is upper-bounded. As d
dτ V(τ) < 0 for all τ ∈ [0, t), we

thus obtain the estimate of the upper bound for V(t):

V(t) = V(0) +
∫ t

0

d
dτ V(τ)dτ

< V(0)

≤ αφ(Q(0)) + J̄
2‖ṽ(0)‖

2

≤ 2α + 2 J̄(4H̄k2
p + F2).



Electronics 2023, 12, 4735 11 of 16

with

‖ṽ(0)‖ ≤ ‖S‖ · ‖v(0)‖

≤ 2
√
‖X(0)‖2 + ‖Y(0)‖2

= 2
√
‖ − kp∇φ(Q(0))− kdω(0)‖2 + ‖kiui(0) + Fl

b(0)‖2

≤ 2
√

4H̄k2
p + F2.

We further obtain the value of the upper bound for ‖ω(t)‖ as follows.

‖ω(t)‖ ≤ β‖∇φ(Q(t))‖+ ρ‖X(t)‖
≤ 2β

√
H̄ + ρ‖v(t)‖

≤ 2β
√

H̄ + ρ‖S−1‖ · ‖ṽ(t)‖

≤ 2β
√

H̄ + 2ρ√
1−4M

√
2
J V(t)

≤ 2β
√

H̄ + 4ρ√
1−4M

√
α
J +

J̄
J (4H̄k2

p + F2)

= E.

Finally, we prove that the value of φ does not reach its maximum. The nominal part of
the system’s dynamics d

dt v = Av actually represents a damped oscillator whose frequency
is proportional to kd. Enlarging kd to infinity allows us to reduce the period T of this
oscillator to zero. Therefore, we have the chance to restrict the value of φ(Q(t)) over a
period t ∈ [t0, t0 + T] sufficiently close to that of φ(Q(t0)), i.e.,

φ(Q(t))− φ(Q(t0)) =
∫ t

t0

∇φ(Q(τ))T ·ω(τ)dτ

≤ T · 2
√

H̄ · E.

This means that, given an arbitrary value of a0 < 2 , we can figure out a real value of
a satisfying a0 < a = a0 + 2T

√
H̄ · E < 2 by making kd sufficiently large, such that

φ(Q(t0)) ≤ a0 implies φ(Q(t)) ≤ a for all t ∈ [t0, t0 + T]. Over a period, the action by −ρX
in ω is averaged out, and the action by −β∇φ decreases the value of φ, i.e., φ(Q(t0 + T)) <
φ(Q(t0)) ≤ a0. Thus, the condition φ(Q(t)) < a remains valid for all t > t0 + T, and the
attitudes are ensured to be prevented from reaching the unstable equilibrium points.

Now we complete the proof by reaching a conclusion on almost global asymptotic
stability of the desired equilibrium point (I, 0), i.e., sufficiently enlarging control parameters
allows us to extend the attraction regionR0 almost globally to SO(3).

For a rigid body system with a right-invariant bias Fr
b ∈ R3 upper-bounded by F,

we have ‖Fl
b‖ = ‖Fr

b‖ ≤ F and ‖ d
dt Fl

b‖ = ‖∇Fl
b · ω‖ ≤ F · ‖ω‖ by following the explicit

expressions in (4) and (5). Thus, the condition ‖∇Fl
b‖ ≤ B is satisfied by taking B = F.

With ‖Fl
b‖ ≤ F and ‖∇Fl

b‖ ≤ B, and by the results in the above theorem, we can claim
that left-invariant PID controller almost globally stabilizes attitudes of a rigid body with
right-invariant biases.

5. Simulations

The effectiveness of the proposed geometric PID controller and our framework of
stability analysis is verified by the following numerical simulations. The rigid body to
be controlled allows for rotation around three perpendicular axes with different values
for moments of inertia, i.e., J = diag{J1; J2; J3} = {1; 1.1; 1.2} kg ·m2. The rigid body is
assumed to admit an inertially fixed bias Fr

b = [0.1; 0.2; 0.3] kg ·m2 · rad/s2.
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In order to satisfy the conditions required in the stability analysis, the parameters of the
controller are carefully identified as kp = 2, kd = 10 and ki = 2.4 such that β = kp/kd = 0.2
and γ = ki/kd = 0.24. The weight coefficient in the Lyapunov function is taken as
α = 10 with kα = α/kp = 5. We let the controlled system start to move with zero
velocity and without integral action at initial time and from an arbitrarily specified value of
initial attitude, which is an association of 2π/3 clockwise rotation around z axis after π/6
clockwise rotation around x axis.

Q0 = Qz

(
2π

3

)
Qx

(π

6

)
=

 cos(2π/3) sin(2π/3) 0
− sin(2π/3) cos(2π/3) 0

0 0 1

 1 0 0
0 cos(π/6) sin(π/6)
0 − sin(π/6) cos(π/6)


Figure 1 shows the evolution of proportional (dashed on the figures) and derivative

(solid on the figures) parts of input commands. After a very short initial transient, the deriva-
tive input Fd = −kdω does converge to the opposite of proportional input Fp = −kp∇φ; see
Figure 2. This behavior implies that ω is forced to approach −β∇φ rapidly, which confirms
the ability of derivative control in tracking the gradient of error function. The benefit of
performing PD control is then reasonably straightforward: by letting ω = −β∇φ, the error
function declines in a gradient-descent manner, i.e., d

dt φ = −β‖∇φ‖2. Unfortunately, this is
also a limitation for this design of PID controller. For a fixed kp, enlarging kd will accelerate
the tracking speed of ω towards −β∇φ, but at the same time will decrease the value of β
and thus will slow down the convergence speed of error function. Balancing the value of
kd and β is worth further studies.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1. Evolution of the proportional control Fp and the derivative control Fd over time.

Figure 3 shows the evolution of integral action (solid on the figures) and bias expressed
in body frames (dashed on the figures). Similar to that in Figure 1, the integral action
Fi = kiui rapidly converges to the opposite of biased term Fl

b = QT Fr
b after a short initial

transient (see Figure 4), which illustrates the advantages of integral action in dynamically
countering state-dependent biases, rather than just compensating for the effect of steady-
state errors.
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Figure 5 explains the evolution of Lyapunov function. As the Lyapunov function
converges to zero, the values of φ and ‖ṽ‖ (or equivalently ‖v‖) are reduced to zero.
Furthermore, this fact allows us to conclude that (Q, ω) is robustly stabilized to the exact
value of targeted equilibrium point (I, 0) while the influence of biases Fr

b is completely
attenuated by the integral action Fi.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2. Evolution of the proportional-derivative input commands Fp + Fd over time.
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Figure 3. Evolution of the integral control Fi and the bias Fb over time.
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Figure 4. Evolution of the term Fi + Fb over time.
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Figure 5. Evolution of the Lyapunov function V over time.

6. Conclusions

This paper addresses the issues in attitude control of rigid bodies. A geometric PID con-
troller is rigorously defined in so∗(3) to robustly stabilize the configurations of left-invariant
dynamical systems evolving on a Lie group SO(3), by attenuating the time-varying effects
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caused by right-invariant biases. The proportional input is justified as a proportion of the
gradient of an error function, while the integral action is identified as an time integral of the
PD commands. We provided a Lyapunov analysis framework specifically for the resulting
geometric PID-controlled system. A gradient-descent Lyapunov function is established
by performing two steps of variable change. A criterion for parameter tuning is given
by making the Lyapunov function decrease. Along with the decline of the Lyapunov
function, the states are almost globally asymptotically stabilized to the desired equilibrium.
However, accelerating the convergence speed of the error function that is limited by the
value of β = kp/kd requires more effort in further studies. In this paper, we simplified the
model by incorporating a feed-forward term to counter the cross product in Euler rotation
equation, which in fact, requires accurate knowledge of the inertial matrix. Relaxing this
requirement by investigating the possibility of integral action in replacing more or less the
role of feed-forward control is worthy of further attention. The results of the present paper
have generalized the effectiveness of integral control in suppressing the influence of state-
dependent biases. Further improvement of robustness in dealing with velocity-dependent
biases is of next interest.
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