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Abstract: Aiming to solve the problem of the identity switching of objects with similar appearances
in real scenarios, a multi-object tracking approach combining contextual features and trajectory
prediction is proposed. This approach integrates the motion and appearance features of objects. The
motion features are mainly used for trajectory prediction, and the appearance features are divided
into contextual features and individual features, which are mainly used for trajectory matching. In
order to accurately distinguish the identities of objects with similar appearances, a context graph is
constructed by taking the specified object as the master node and its neighboring objects as the branch
nodes. A preprocessing module is applied to exclude unnecessary connections in the graph model
based on the speed of the historical trajectory of the object, and to distinguish the features of objects
with similar appearances. Feature matching is performed using the Hungarian algorithm, based on
the similarity matrix obtained from the features. Post-processing is performed for the temporarily
unmatched frames to obtain the final object matching results. The experimental results show that the
approach proposed in this paper can achieve the highest MOTA.

Keywords: contextual features; trajectory prediction; trajectory matching; similarity matrix; prepro-
cessing; postprocessing

1. Introduction

Object tracking, which combines digital image processing and machine learning,
has long been of interest to researchers [1]. It is important in military planning, medical
treatment, and even all aspects of life, and has been widely recognized and applied in many
fields [2,3]. Research on object tracking has been ongoing since the 1980s. The initial object
tracking algorithms primarily focused on analyzing a solitary object within a video and
needed to calculate the position and size of the specified object in each frame of the video
or image sequence, which is generally called single-object tracking or visual object tracking.
Multi-object tracking aims to track all specific types of objects on the screen. In single-object
tracking, a particular object is selected for tracking, and its initial position and size are
provided in the first frame. The objective of this task is to devise an appearance model or
motion model for the object, addressing challenges such as variations in shape and scale,
alterations in the background, changes in speed, and occlusions encountered during the
tracking process. Conversely, in multi-object tracking, the emphasis lies in determining
the number of objects to be tracked while ensuring their individual identities remain
distinct [4]. Pedestrians are the most important research object in multi-object tracking and
have the characteristics of non-rigidity, slow speed, density, etc. In crowded scenes such as
subway stations, shopping malls, and squares, accurate and efficient pedestrian tracking is
a rather difficult task, and the study of real-time pedestrian tracking in crowded scenes is
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very challenging and of practical value. The occlusion problem is a difficult problem in
multi-object tracking, especially in crowded scenes where occlusion between pedestrians is
especially frequent. At the time of intersection, just before object occlusion, the similarity of
features in the object area is high, making it susceptible to confusion and resulting in the
identification of multiple objects as a single entity, ultimately leading to tracking failure.
Following object occlusion, the task of multi-object tracking entails not only the immediate
detection of the object once it reappears, but also the preservation of the occluding object’s
identity consistency. In the process of multi-object tracking, new objects will appear, and
the newly emerged objects lack historical information modeling. If the newly emerged
objects cannot be detected, there will be missed detection, and the subsequent follow-up
will be affected [5]. Simultaneously, when an object goes out of the field of view, failure to
process the tracking frame within the tracking algorithm can lead to an erroneous focus
of the frame on the background, resulting in tracking errors. Furthermore, in multi-object
tracking, it is crucial to differentiate between the scenarios of object disappearance and
brief occlusion. Additionally, the tracking speed is the standard parameter used to measure
whether it can meet the real-time requirements of the algorithm, and also to guarantee the
fluency of the video. Object tracking requires the algorithm to be able to replace eyes to
overcome more advanced visual challenges [6]. Most of the tracking algorithms found
in the current research are in the stage of theoretical analysis, and further research and
discussion are still needed to apply them in the actual detection scenarios to meet the needs
of social progress. The research in this area is of great importance and of theoretical and
practical significance.

The graph neural network was first proposed in 2005 [7], which aggregates the in-
formation of neighboring nodes on object nodes through a recurrent neural architecture,
but it is not applicable in large-scale graph models because of the large computational
effort required [8]. Aiming to solve the problems of the above existing approaches, this
paper uses the graph model to extract the contextual features of object appearances, adds
pre-processing and post-processing, and integrates the object appearance information as
well as the motion information. The innovations are as follows:

(1) During the tracking process, both the appearance and motion information of the object
are taken into account.

(2) Contextual features as well as individual features are used to better represent similar-
looking objects.

(3) The graph model uses different weights depending on the distance between objects.
(4) A preprocessing module is applied to categorize the object velocities and exclude

unnecessary connections between the graph model objects.
(5) Post-processing of temporarily unmatched trajectories is conducted to reduce the

impact of occlusion and other factors on the object tracking results.

The rest of this paper is organized as follows: The second part introduces the common
multi-object tracking approaches, which are divided into traditional multi-object tracking
and object detection-based multi-object tracking approaches. The third section introduces
the extraction of the motion and appearance features after preprocessing. The fourth section
introduces the object association matching approach and the post-processing technique for
temporarily unmatched frames. The fifth section presents the analysis of the experimental
results, and the sixth section summarizes the paper, presenting the limitations of the current
approach and discussing future research.

2. Related Works
2.1. Traditional Multi-Object Tracking Methods

The initial multi-object tracking algorithms used traditional tracking techniques such
as particle filtering [9], Meanshift [10], and feature-point-based optical flow approaches.
The optical flow method is a classical motion estimation algorithm. The concept of optical
flow was first proposed by Gibson in 1950, and it describes the instantaneous speed of
motion of pixels of space-moving objects on the observed imaging plane. In 1981, Horn
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and Schunck connected the two-dimensional velocity field with the gray level of the image,
added the global smoothing hypothesis on the basis of the basic constraint equation of
optical flow, and proposed the basic model of optical flow calculation, which laid the
foundation for the theoretical research and mathematical derivation of the variational
method for the estimation of optical flow. In general, the optical flow method needs to
meet three assumptions: (1) the brightness between adjacent frames is constant; (2) the
movement of objects between adjacent frames is small; and (3) spatial consistency, that
is, pixels within a certain neighborhood have the same motion. But these approaches are
not well adapted to the complex tracking process; therefore, the technique of correlation
filtering was developed. The cyclic matrix-based kernel tracking algorithm [11] (CSK) was
proposed to solve the problem of intensive sampling during data acquisition and to speed
up detection using Fourier transform [12]. Then, the KCF algorithm and its derivative
algorithms were successively proposed. With the gradual increase in feature and scale
information considered, the computation volume also gradually increases, but in general,
the algorithms in this category have better real-time performance [13]. However, the
tracking accuracy is lower when the object moves faster and there are large deformations.

2.2. Multi-Object Tracking Method Based on Object Detection

(1) Tracking based on appearance features
Firstly, the appearance features of all objects in each frame are utilized to detect and

obtain the corresponding detection boxes [14]. Subsequently, the detection box in the
current frame is matched with the tracking box from the previous frame [15]. Leveraging
the impressive feature representation capabilities of deep neural networks can significantly
enhance the performance of multi-object tracking, both simply and effectively. The first
multi-object tracking method based on deep learning was proposed by Wang et al. in
2014 [16]. This method leverages a two-layer neural network to extract appearance features,
subsequently computing the similarity based on appearance. Ultimately, it transforms the
multi-object tracking problem into a minimum spanning tree problem for resolution. Ex-
periments show that the appearance features extracted based on a simple two-layer neural
network greatly improve the performance of multi-object tracking [17]. With the rapid
development of deep learning technology in recent years, most of the current multi-object
tracking methods use the appearance feature extraction method based on convolutional
neural networks. For example, after Kim et al. integrated CNN features into the classi-
cal multi-hypothesis tracking method, its multi-object tracking performance jumped to
first place in the MOT15 dataset at that time. The appearance feature extraction of some
multi-object tracking methods uses ResNet, GoogLeNet, pedestrian recognition, and other
different types of depth features.

The result of object detection will seriously affect the effect of subsequent tracking.
With the progress of deep learning technology in recent years, object detection techniques
such as YOLO and Faster RCNN can meet most of the needs both in terms of accuracy and
speed [18]. The association matching can be performed by calculating the Intersection over
Union (IOU) ratio between objects or the distance between the centroids of object boxes in
two adjacent frames [19]. However, when the object has large deformation or moves fast,
the association is often accomplished by constructing a deep network to learn the matching
score directly or by comparing the distance of the deep features of the object [20].

(2) Tracking based on trajectory prediction
Common trajectory prediction approaches include Kalman filtering [21] and LSTM. In

2016, Bewley et al. proposed the Sort algorithm, which adopts the Faster R-CNN algorithm
for object detection and uses the intersection ratio between the predicted trajectory and
the current frame detection results by Kalman filter to perform Hungarian matching to
complete the data association. Some multi-object tracking methods use recurrent neural
networks to extract appearance features or motion features. For example, Maksai et al.
considered both the appearance features based on the ReID model and the appearance
features based on the LSTM [22]. There are also some multi-eye tracking methods that
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use twin networks to extract deeper features with more discriminating power [23]. The
characteristics learned make it easier to distinguish between different goals. Kim et al. also
proposed to use a twin network to monitor the depth features of the learning object [24], in
which the two images to be matched, the intersection ratio, and the area ratio are input,
and the matching loss between the two images is output [25]. Finally, the similarity score
between the two objects is determined by the Euclidean distance based on the above depth
features, the intersection ratio of the object frame, and the area ratio.

Because the Sort algorithm only uses simple IOU for data association, it will cause a
large number of identity switches in crowded scenarios. In order to solve this problem, they
also proposed the Deepsort algorithm, which added cascade matching on the basis of the
IOU matching of the Sort algorithm to form a two-level data association mechanism. Mean-
while, a pre-trained pedestrian re-recognition network was used to extract the appearance
features of the object to assist data association, effectively solving the identity switching
problem in the case of occlusion. It lays the foundation for subsequent research. The above
methods of trajectory matching based only on detection results are greatly affected by the
accuracy of the detector, and the tracking performance will be significantly reduced when
the detector has unreliable detection, such as missing or false detection. For example, Byte-
track uses the Kalman trajectory prediction approach, which treats the high and low scoring
boxes separately according to the detection box score [26]. Initially, the high-scoring boxes
are matched with pre-existing tracked trajectories to assign identities to each high-scoring
box. Subsequently, the low-scoring boxes are matched with the tracking trajectories that
were not initially associated with the high-scoring boxes, effectively extracting the true
objects from the low-scoring boxes.

In this paper, trajectory prediction is combined with object contextual features, i.e.,
both appearance and motion features of the object are employed for better object tracking.

3. Feature Extraction Methods
3.1. Kalman Trajectory Prediction

The Kalman filter is a powerful filter that uses an autoregressive model to estimate
and predict the state of a system in the presence of continuous inputs containing noise. By
observing the measured value of the system state, the Kalman filter constantly updates
the prediction results and thus optimally estimates the system state. The Kalman filter
is quite effective in predicting the position of an object moving regularly and has certain
characteristics of anti-noise information interference.

The Kalman filter consists of two parts: prediction and update [27].

1. The predicted value of the state in the k − 1 frame and the predetermined equations
of motion are used to estimate the state of the object, and the estimated value of the
state of the object is obtained.

(1) Calculate the predicted values:

x̂k = Ak x̂k−1 + Bkuk (1)

(2) Calculate the a priori covariance matrix between the true and predicted values
at the current moment:

Pk = AkPk−1 AT
k + Qk (2)

2. Correct the state estimate with the current moment’s detection result to obtain the
final object state prediction.

(3) Calculate the Kalman gain:

Kk = Pk HT
k /HkPk HT

k + R (3)

(4) Estimate the true state of the object based on measured values and calculate
predicted values:

x̂k = x̂k + Kk(zk − Hk x̂k) (4)
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(5) Calculate a posteriori covariance matrix for the error between the true and
estimated values:

Pk = (I − Kk Hk)Pk (5)

where the subscript k denotes the current frame, k− 1 denotes the previous frame, k denotes
the predicted value of the current frame, xk is the state vector, x̂k is the optimal estimation
of the a posteriori state, x̂k is the predicted value of the Kalman filtering algorithm, Ak is the
state transfer matrix, Bk is the control variable matrix, uk is the state control vector, Q de-
notes the system noise covariance matrix, Hk and denotes the state vector-to-measurement
vector conversion matrix.

3.2. Graph Neural Networks

A graph convolutional neural network (GCN) is a specialized type of convolutional
neural network designed for graph-structured data [28]. Similar to convolutional neural
networks (CNNs), GCNs serve as feature extractors, but they are specifically tailored for
processing graph data. GCNs employ a clever mechanism to extract meaningful features
from the graph structure, which makes them suitable for learning representations of player
context features and measuring player similarity.

The core operation of graph convolution in GCN is fundamentally similar to the
convolution operation in CNN, as it involves aggregating information from neighboring
nodes using a convolution kernel. However, there is a key difference: the convolution
kernel in CNN has a fixed length, whereas the convolution kernel size in GCN is variable.
This flexibility enables GCN to adapt to varying numbers of adjacent nodes within graph-
structured data, addressing the issue of inconsistent neighborhood sizes. A graph is defined
as follows: G = (V, E, A), where V is the set of nodes, E is the set of edges, A is the adjacency
matrix, vi ∈ V describes a point and eij = (vi, vj) ∈ E describes an edge between two
nodes [28]. The Laplacian matrix is defined as L = D− A where D is the degree matrix and
A is the adjacency matrix, which represents the adjacency between any two nodes, 1 for
adjacency and 0 for non-adjacency. The node i in the l+1 layer of the graph neural network
is updated as follows:

h(l+1)
i = σ

hl
iw

l
0 + ∑

j∈N(i)
cijhl

jw
l
j

 (6)

where hl
i represents the features of node i in layer l, j ∈ N(i) is the neighbor node of node i,

cij is the normalized coefficient of the neighbor node features, σ is the nonlinear activation
function, wl

j is the convolution kernel parameter of layer l. The hl
iw

l
0 is the information of its

own node, and the ∑
j∈N(i)

cijhl
jw

l
j is the information of the neighbor node after normalization.

Graph neural networks can be further simplified as follows:

H(l+1) = σ(AHlWl) (7)

where Hl is the node features of layer l and Wl is the weight parameter matrix of layer l.
For the update of the edge, the node feature and the original edge weight are updated

through the MLP process. It can be seen that the graph neural network can capture the
global relationship of objects between neighboring frames and improve the precision of
multi-object tracking.

3.3. Processing Methods for Contextual Features

The paper proposes a trajectory prediction approach based on velocity preprocessing,
which aims to reduce the computational load of trajectory prediction and narrow the scope
of the graph model in the object matching process. Specifically, this approach involves
excluding unnecessary connections between objects, thereby streamlining the prediction
process and improving the model’s efficiency. We preprocess the objects based on observed
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historical object information and classify trajectories according to different velocities to
improve the accuracy of subsequent tracking.

By incorporating contextual information, we can more accurately represent the ap-
pearance features of objects.

Firstly, we construct a contextual graph G = {V, E} for each object and its neighboring
objects. Then, we use graph neural networks to integrate the contextual information of
neighboring objects into a new feature for the designated object, referred to as the contextual
feature. The integration of contextual information from surrounding objects can better
represent the object’s features.

The closer two objects are, the greater the weight of the edge connecting them. The
formula for the edge weight is as follows:

X(l+1) ∈ σ(D̃
−1

ÃX(l)W(l)) (8)

where D̃ represents the distance matrix, and each element in the matrix represents the
geometric distance between the object and its neighboring objects. In order to make
the distance negatively correlated with the edge weights, the inverse of D̃ is taken to

obtain D̃
−1

.
Contextual features contain features of the object itself as well as neighboring objects

and therefore have stronger feature representation capabilities. The similarity can be
represented by the cosine distance of the object contextual features and learned using the
Cosine Embedding Loss (CEL) function and the similarity labels. The formula and the
schematic diagram in Figure 1 are as follows:

loss(x1, x2, y) =
{

1− cos(x1, x2), y = 1
max(0, cos(x1, x2)−margin), y = −1

(9)

where x1, x2 are the feature vectors, y is the similarity label, 1 means similar, −1 means not
similar, and margin is taken as 0–1.
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In daily life, humans often rely on contextual information to distinguish objects.
For instance, when an object is obstructed and cannot be effectively tracked, it is often
possible to identify the object by considering the surrounding objects. In this paper, we use
contextual graph modeling to better learn the appearance features of objects and then solve
the problem of identity exchange of similar-looking objects in the tracking process.



Electronics 2023, 12, 4720 7 of 13

4. Object Linkages
4.1. Hungarian Algorithm

The Hungarian algorithm is a combinatorial optimization method for solving task
assignment problems in polynomial time. The key of this algorithm is to find an augmenta-
tion path to obtain the maximum matching of the bipartite graph. The algorithm flow is
as follows:

(1) First, the bipartite graph is constructed, the vertices are numbered, and the relationship
between the vertices of the two sets is represented by the adjacency list.

(2) Take the unmatched vertices in set M, i, and then traverse the vertices connected to
it in set N. If the vertices in set N do not match, then match the two points. Then,
continue to traverse the unmatched vertices in set M using the same principle. If the
vertex in set N is already matched, then try to recursively match the matching point
of the matched vertex in set N with another vertex match.

(3) Perform step (2) recursively until all vertices in M have been traversed to obtain the
maximum match [29].

In frame t− 1 we obtain c̃ real frames based on the existing trajectories, and in frame t
we obtain ã detection frames [30], and we construct an IOU matrix of size c̃× ã, which is
solved as shown in Equation (10):

IOU = (Area(∂1)∩Area(∂2))/(Area(∂1)∪Area(∂2)) (10)

where ∂1, ∂2 are the object box and Area is the area of the object box.

4.2. Trajectory Post-Processing

To address the association matching problem more effectively, the paper proposes
obtaining accurate motion features or appearance features of the objects first. Based on
these features, the similarity between the objects to be matched is calculated. However, it
is worth mentioning that in certain scenarios, such as occlusion or significant changes in
motion state, the obtained information may not always be entirely accurate.

So, we first record the number of unmatched frames N for each trajectory i. If a
trajectory does not have an object to match with it for t frames, the value of N is recorded
as t. When a trajectory finds an object to match it in the current frame, N is set to 0. The
intersection and concurrency ratio, individual features, contextual features, and Mars
distance can be used as the main basis for calculating the similarity matrix for object
matching as follows:

1. When N = 0, the similarity matrix is first calculated based on the contextual features.
Then, the similarity matrix obtained from the Mahalanobis distance, as well as the
intersection and merger ratio, is used as constraints to exclude matching errors due to
occlusion, etc. This stage completes the majority of the matches.

2. When N > 0, the contextual features of neighboring objects become more distinguishable,
and we obtain the similarity matrix for matching based on these contextual features.

3. When N ≥ 3, we need to match the object in two frames that are far apart. Due to the
object’s movement, the contextual features of the object tend to change significantly.
Therefore, in such cases, we match the object based on its individual features.

Once we have obtained the similarity matrices for each stage, we subtract 1 from
the corresponding matrices to obtain the respective cost matrices. At this point, the goal-
association problem can be converted into a binary assignment problem and further solved
using the Hungarian algorithm.

The general flow of this paper is given in Figure 2.
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5. Analysis of Experimental Results
5.1. Assessment Criteria

This experiment was conducted on the Windows 11 operating system. To enhance
the analysis of the performance of the approach proposed in this paper, we selected the
Transcenter, Transtrack, Fairmot, SUSHI, and Bytetrack algorithms for comparison.

(MOTA ↑) : Multi-object tracking accuracy, which combines the number of false
positives (FP ↓) , the number of false negatives (FN ↓) , and the number of identity switches
(IDS ↓) . The calculation formula is as follows:

MOTA = 1− (FN + FP + IDS)/GT (11)

where GT represents the number of real objects.
MT(↑) : the proportion of tracked trajectories to the total number of object trajectories

(greater than eighty percent means that most objects are tracked accurately).
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ML(↓) : the proportion of untracked tracks to the total object tracks (less than twenty
percent means that most object tracking tracks are missing).

IDS(↓) : the number of times the object ID information was switched.
IDF1(↑) : analyzes the global tracking result of an object in the whole video, which

is no longer limited to a single frame. It is a reflection of the accuracy of ID recognition
during tracking [31].

5.2. Simulation Analysis

Figure 3 shows the tracking results intercepted by the approach in this paper on
MOT17-09; object 4 is a small child, but it is not missed because the object is too small, and
it still does not switch IDs after it has been occluded by object 3 several times.
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Table 1 compares the tracking results of the six approaches—Transcenter, Transtrack,
Fairmot, SUSHI, and Bytetrack—in the above scenarios. From the data in the table, it can
be seen that the multi-object tracking accuracy of the approach in this paper is almost equal
to that of the SUSHI (Unifying Short and Long-Term Tracking) algorithm, which is better
than the other algorithms. The IDF1 of this approach can reach 84, while the IDF1 of the
rest of the algorithms is 62.4 for Transcenter, 63.5 for Transtrack, 72.3 for Fairmot, 83 for
SUSHI, and 77.2 for Bytetrack. The number of times the object ID information is switched
in this paper is 2303, which is less effective than SUSHI, but still better than the rest of the
algorithms. However, compared with the rest of the algorithms, it still has a big advantage.
The speed of the SUSHI algorithm is difficult to meet the real-time demand, but the FPS of
this paper’s approach can be up to 55, although it is slightly lower than Transtrack’s 59.2,
and the rest of the evaluation indexes are far more than that of Transtrack. To sum up, this
paper’s approach can realize better tracking of multiple objects.

Table 1. Comparison of metrics for different algorithms.

Algorithm MOTA (↑) IDF1 (↑) IDS (↓) FPS
(Frame/s)

Transcenter 73.2 62.4 4614 1
Transtrack 75.2 63.5 3603 59.2
Fairmot 73.7 72.3 3303 25.9
SUSHI 81 83 1149 21
Bytetrack 78.9 77.2 2359 29.8
Proposed 80 84 2303 55

As can be seen from the tracking results of MOT17-11 in Figure 4, object 3 can still be
tracked well when a large area is occluded, and object 24 as well as object 6 still have the
correct ID after being occluded.
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Figure 5 shows the video of an object of similar appearance taken with a cell phone, in
which most of the people are wearing uniform clothes and the backs are obviously mostly
occluded. The approach in this paper obtains a better representation of the appearance of
similar objects because of the use of contextual features, which makes the tracking results
better. In the figure, objects 17 and 18 are standing in place, talking, and almost stationary.
This paper takes into account the appearance information and motion information and
uses the preprocessing module to reduce the computation of the graph model.
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Figure 6 shows the tracking results of similar-looking objects under backlit conditions.
Because of the light, the object’s facial features are blurred, and the same dress also brings
more challenges for tracking. At this time, it is quite important to post-process the trajecto-
ries that are not matched in the current frame for the time being. Some objects are running
faster and some are walking slower; the motion information and the use of preprocessing
also play a crucial role in the tracking results.
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Table 2 compares the tracking results before and after the improvement of the al-
gorithm in different scenarios. Scene 1 is shown in Figure 5, and Scene 2 is shown in
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Figure 6. From the data in the table, it can be seen that the approach in this paper combines
the motion features with the appearance features, and utilizes both pre-processing and
post-processing, which can achieve better multi-object tracking.

Table 2. Comparison of the tracking results before and after improvement in different scenarios.

Similarity Type

Scene 1 Scene 2

MOTA
(↑)

IDS
(↓)

MOTA
(↑)

IDS
(↓)

Similarity of motion features 69.7 96 72.6 214
Similarity of appearance features 72.4 95 74.7 159
Motion + Appearance features similarity 84.2 90 80.5 103
Motion + Appearance + Preprocessing similarity 88.9 72 82.6 99
Motion + Appearance + PostProcessing Similarity 94.3 68 86 92
Proposed Similarity 96.1 6 92 20
Real similarity 99.3 1 92.4 4

6. Summary

This paper integrates contextual features and trajectory prediction using Kalman fil-
tering to predict the motion state of an object in the frame preceding the current frame.
Initially, a graph model is employed to extract the contextual features of each object. Subse-
quently, the Hungarian algorithm is applied to match the object in the current frame with
the object in the previous frame, and the unmatched frames undergo further processing.
The method presented in this paper exhibits superior capabilities for extracting and dis-
tinguishing contextual features. The integration with trajectory prediction demonstrates a
significant improvement in overall tracking performance compared to earlier multi-object
tracking algorithms.

This paper improves the tracking effect to a certain extent through geometric constraint
information and context features and solves the redundancy detection problem in the
detection-based tracking model. Although the algorithm improves the tracking speed in
crowded scenes and achieves excellent results on the MOT data set, there is still a lot of room
for improvement in extremely crowded scenes. Due to the severe occlusion of human bodies
in highly congested environments, conventional methods face challenges in detecting the
entire human body. The model can be enhanced through head detection and other methods.
Simultaneously, processing speed is crucial. In future practical applications, it is imperative
to further improve the processing speed of tracking while ensuring high accuracy.
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