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Abstract: The increasing performance demands for processors leveraged in mission and safety-
critical applications mean that the processors are implemented in smaller fabrication technologies,
allowing a denser integration and higher operational frequency. Besides that, these applications
require a high dependability and robustness level. The properties that provide higher performance
also lead to higher susceptibility to transient faults caused by radiation. Many approaches exist
for protecting individual processor cores, but the protection of interconnect buses is studied less.
This paper describes the importance of protecting on-chip bus interconnects and reviews existing
protection approaches used in processors for mission and safety-critical processors. The protection
approaches are sorted into three groups: information, temporal, and spatial redundancy. Because
the final selection of the protection approach depends on the use case and performance, power, and
area demands, the three groups are compared according to their fundamental properties. For better
context, the review also contains information about existing solutions for protecting the internal logic
of the cores and external memories. This review should serve as an entry point to the domain of
protecting the on-chip bus interconnect and interface of the core.
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1. Introduction

Mission-critical applications (e.g., space satellites/probes) or safety-critical applica-
tions (e.g., automotive) require nowadays more processing performance than ever before.
The deep-space applications may also require low power consumption. To fulfill these
demands, the processors are implemented in smaller fabrication technologies, allowing
a denser integration and higher operational frequency, which increases performance. On
the other hand, they can preserve the performance with lower power consumption. The
mission-critical space applications need to deal with high-radiation environments. Al-
though this is a smaller problem for automotive applications thanks to the atmosphere
and magnetic field of Earth, the safety of passengers requires extra attention. Radiation is
a source of random hardware failures, a concern in functional safety standards like ISO
26262 [1]. These applications must preserve (at least) the dependability and robustness
level with the transition to smaller fabrication technologies.

Radiation can be defined as a set of particles, charged or not, that can interact with the
electronic system through an exchange of energy. When such a particle hits the semicon-
ductor, it creates a scattering track during its penetration into the material and produces
secondary particles [2]. If this ionization track traverses or comes close to the depletion
region, the electric field rapidly collects carriers, creating a current/voltage glitch at that
node. In general, the farther away from the junction the event occurs, the smaller the
charge that will be collected. The sensitivity of the device depends primarily on the node
capacitance, the operating voltage, and the strength of feedback transistors; all these factors
define the amount of charge, or critical charge, required to trigger a change in the data
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state [3]. Generally, the outcomes of particle hits are called single-event effects (SEE). More
precisely, a single event transient (SET) is an event when the glitch occurs in combination
logic. This can result in save of incorrect values in a downstream memory element. A single
event upset (SEU) means that the glitch occurs inside the memory element and directly
causes a flip of the saved value.

A comprehensive study of the sensitivity of different fabrication technologies to the
SEE effects was made in [4]. The outcomes are that the critical charge required to cause SEU
in the static random-access memory (SRAM) constantly decreases, mainly on the supply
voltage and load capacitance scaling trends of affected transistors. To analyze susceptibility
to SET, a chain of inverters is used. The study points out that the SET pulse of inverters
monotonically decreases but with a large spread. However, the frequency of the circuits
also must be considered. As the frequency of the circuit increases, the pulse with the
same duration has a higher probability of being latched. Another important factor is the
increasing number of transistors per chip, which increases the number of places where the
charge can be collected.

This paper reviews the existing protection approaches against transient faults of
on-chip bus interconnects. It focuses on embedded processors used in safety/mission-
critical applications like the automotive or space sector. Unfortunately, the standard bus
communication protocols typically do not provide dedicated signals that could be leveraged
for protection against these faults. Due to this, it is interesting to summarize and analyze
which protection approaches are used in state-of-the-art processors. The efficient protection
of processor cores is an interesting and hot topic, and many protection approaches have
been published. However, their primary focus is to protect the processor core(s). It is
common that they either completely omit the bus protection or that it is reduced only for
providing checksum for data wires. We identified and compared several properties of three
existing bus protection approaches: information, temporal, and spatial redundancy. This
review should serve as an entry point to the domain of bus protection.

The paper is organized as follows. Section 2 describes basic approaches for protecting
individual cores. Section 3 describes the solutions for protecting memory, including state-
of-the-art examples. Section 4 describes the importance of protecting on-chip buses and
reviews and compares current protection approaches. Section 5 provides a summary of the
paper, and Section 6 discusses future steps.

2. Protection of CPU Cores

The protection of the processor cores against soft errors could be realized at different
design, manufacture, or usage levels. We have covered this topic in depth in [5]. Some
processors use radiation hardened by process (RHBP) technologies [6,7], while others lever-
age commercial fabrication processes. The latter either leverage specialized technology
libraries [8,9], lockstep execution [10–12], or redundant multithreading [13–15] or integrate
the protection directly into the architecture of the pipeline [5,16–18]. These protection ap-
proaches are called radiation hardening by design (RHBD). Using a commercial fabrication
process maximizes integration and performance capabilities and lowers cost, but the RHBD
also offers a similar or higher tolerance to radiation effects than RHBP [19].

Sphere of Replication

The RHBD approaches are mostly based on hardware redundancy. Thus, we need to
know the sphere of replication, which abstracts both the physical and logical redundancy
of components. The components inside the sphere of replication enjoy fault coverage
due to redundant execution. In contrast, components outside the sphere do not, so other
techniques must cover them, such as information redundancy. All activity and state
within the sphere are replicated in time or space. Values that cross the boundary of the
sphere of replication are the outputs and inputs that require comparison and replication,
respectively [20]. Any fault that occurs within the sphere of replication and propagates to
its boundary will be detected by the fault detection scheme corresponding to the sphere of
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replication. Any outputs leaving the sphere of replication must be protected and checked
for mismatch and corresponding faults. Any inputs into the sphere of replication must
be appropriately replicated and delivered to the correct points within the sphere [21].
Figure 1 shows the sphere of replication that includes redundant copies of a processor. The
data coming from not replicated memory, accompanied by a checksum to enable error
detection and correction, enters the sphere of replication. The data and checksum provided
by redundant cores are compared for detecting mismatches. They leave the sphere of
replication as a protected pair without replication.
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Replication of the memories would lead to high costs. For example, systems on chip
(SoC) have more than half of their silicon area devoted to the static random-access memory
(SRAM) for various purposes [22]. This means that in most cases, the sphere of replication
includes only the processing core, and the boundary is its interface to other cores, memories,
and peripherals. The core must be able to check the correctness of the inputs and provide
protection at the outputs.

3. Memory Protection

The processing cores receive instructions from memory and provide results back to
the memory (or peripherals). Due to the limitations of available technologies, we often talk
about memory subsystems. Typically, the subsystem does not contain only one memory
unit but contains a complex memory hierarchy. It consists of multiple levels of memory
with different speeds and sizes. The faster memories are more expensive per bit than the
slower memories and, thus, are smaller. The main memory is often implemented from
dynamic random-access memory (DRAM), while levels closer to the processor (caches) use
SRAM. DRAM is less costly per bit than SRAM, although it is substantially slower. The
slowest memory types are nonvolatile memories like flash or magnetic disks [23]. Using
a hierarchy also means that there may be more than one copy of data or instructions at
different levels at a given time. This is when a copy value is preserved in a cache while
the original value is kept in the main memory [24]. Memory can be a very sensitive part
of integrated circuits concerning radiation effects. They often exhibit a high density of
memory units and are a priority when reducing SEU effects [25]. This section provides
information about available memory protections. Although this paper focuses on bus
protection approaches, it is important to understand how the data can be protected in
memory after being transferred through the bus.
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3.1. Information Redundancy

Mitigation strategies based on spatial redundancy (duplication or triplication) are
usually not well suited for large arrays of memory cells because of the high area cost.
Information redundancy is a less costly solution for the required area. For example, parity
or error correction and detection codes (EDAC) combined with bit interleaving or data
scrambling can be used. Algorithms behind these codes can detect and correct errors in
data by adding some redundant data to the original data. When the original data are
read, their consistency can be checked with the redundant data [25]. The original data
combined with the redundant (checksum) are called code words. A limit to the number of
errors a code can detect or correct is determined by its minimum Hamming distance. The
Hamming distance refers to the number of distinct bits between two code words. Given a
code word space, the minimum Hamming distance of the code is defined as the minimum
Hamming distance between any two valid (fault-free) code words in the space [21]. The
bit-interleaving technique prevents that when a single ion hit provokes several physically
adjacent bit flips inside the memory bank; those close-by bits do not belong to the same
code word [25]. Due to optimizations [26], data scrambling occurs as part of the normal
design practice of random-access memories (RAM). An example of memory cell scrambling
is shown in Figure 2. The disadvantage is that interleaving makes the memory design
more complex and requires more area. An alternative is to use EDACs that can correct
adjacent errors [24]. In main memory systems composed of multiple DRAM chips, the
interleaving is often performed across multiple chips, with each bit in the DRAM being
covered by a different checksum. Then, if an entire DRAM chip experiences a hard fail
and stops functioning, the data in that DRAM can be recovered using the other DRAM
chips and the checksum [21]. The studies [27,28] compare different EDAC schemes for
memories regarding hardware overhead, time overhead, and error correction and detection
capabilities. Similarly, the study [29] compares existing approaches for L1 data cache error
protection concerning performance, L2 cache bandwidth, power consumption, and area.
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Parity and EDAC are the most popular cache protection techniques due to their design
simplicity. Parity protection is preferred for higher-level (closer to a core, e.g., level 1)
caches, while lower-level caches (far away from the core, e.g., level 2 or main memory)
are commonly protected by EDAC in processors [30]. Even DRAM manufacturers have
begun to use on-die EDAC, which silently corrects single-bit errors entirely within the
DRAM chip, to cope with random single-bit errors that are increasingly frequent in smaller
process technologies [31]. Parity-based methods often provide only fault detection, and
error recovery is performed by bringing the correct copy of data from the lower-level
memory. If a new value is written to the memory, the parity bits or checksum for the
corresponding code word must also be updated. Information redundancy can bring
additional complications to the design of the core. To calculate or check the checksum for
data, the core must know the value of all bytes the checksum protects. Therefore, if the core
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is supposed to change only a subset of bytes, it must perform additional read accesses for
the remaining bytes to calculate the checksum of the final code word.

Although the EDAC codes can detect and correct a specified number of faults in a
code word, there is a possibility that particular faulty data are not needed for a longer
period. Eventually, these data may receive another fault, leading to uncorrectable or even
undetectable errors. For this reason, microcontrollers often incorporate scrubbing and
monitoring functions. For example, the Hercules [32] EDAC controller gives developers the
flexibility to manage the level of responsiveness to single-bit memory errors. There is an
option for logging single-bit errors and setting a threshold to trigger a system-level alert if
a critical number of errors occur. Some processors [9,33] integrate scrubbing of the memory
blocks protected by EDAC to prevent fault accumulation. A GR740 SoC [33] includes a
hardware memory scrubber peripheral. It can be programmed to scrub a memory area
by reading through the memory and writing back the contents using a locked read-write
cycle whenever a correctable error is detected. If an uncorrectable error is detected, that
location is left untouched. The memory scrubber keeps track of the number of correctable
errors and can be set up to interrupt when the counters exceed given thresholds. The
EDAC-protected L2 cache of GR740 contains an additional internal scrubber to prevent
the build-up of errors in the cache memories. Even the memories themselves can contain
built-in self-repair mechanisms [34].

As discussed above, the core does not need to be responsible for correcting memory
errors since other SoC components can be programmed to do that. On the other hand,
the core should have access to information that errors were detected. If this is the case,
a monitoring approach presented in [35] can be leveraged. The solution involves imple-
menting an error handler component in the processor core that requests exception traps
when detecting errors. Besides monitoring the internal structures of the core, the error
handler also includes an external error input. The purpose of this signal is to enable the
SoC to report errors in its structures, such as interconnections and peripherals. The study
proposes the SoC error handler, which signals exceptions to the external error input of the
error handler in the core. The SoC error handler gathers information about correctable
and uncorrectable errors from the SDRAM EDAC controller and about bus access timeout
events from the bus master controller.

3.2. Hardening of Individual Memory Cells

Some techniques pursue hardening the individual bit storage cells by several means.
They add resistors or capacitances on the feedback loop of the cell to increase its critical
charge and, thus, increase its bit-flip threshold. Another solution is specific transistor sizing.
Consequently, these cells do not scale easily as the device size is shrinking. The area cost of
these cells can also be high. They can also increase the number of cell nodes, thus allowing
for easier scaling. The cells are usually based on redundant storage of the information
and feedback paths to restore the correct data [25]. An example of a hardened memory
cell is the dual interlocked storage cell (DICE), which embeds 12 transistors in a memory
cell structure [36]. Several emerging nonvolatile technologies are under development by
major commercial foundries. They include a spin-transfer torque magnetic random-access
memory (STT-MRAM), resistive random-access memory (ReRAM), phase change random-
access memory (PCRAM), and conductive bridge random-access memory (CBRAM). These
memories are relatively insensitive to ionizing radiation, SEEs, and displacement damage as
there is no direct mechanism for interaction between radiation and the storage mechanism.
When radiation-induced errors occur, it is most often a result of interaction with the
select device or supporting complementary metal-oxide semiconductor (CMOS) peripheral
circuitry [37].
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3.3. State-of-the-Art of Memory Protection

The L1 system of the Cortex-R5 [38] processor can contain access to caches (instruction
and data) and tightly coupled memory (TCM). Both can be configured to detect and correct
errors in their RAM. When the processor reads data from the RAMs, it checks that the
redundant data are consistent with the real data and can either signal an error or attempt
to correct it. The redundant data can be either parity or EDAC with different granularity.
The processor leverages a read-modify-write process if a write of fewer bytes is required
than the EDAC protects. For example, such a situation happens when the EDAC protects
32 bits, but the core should update only 16 bits. To compute the checksum for such a write,
the processor must first read the 32-bit data from the RAM, then merge the data to be
written with it to compute the checksum, and then write the data to the RAM, along with
the new checksum. When a correctable error is detected in data read from the RAM, the
processor has various ways of generating the correct data that follow two schemes. In the
correct-inline scheme, the checksum bits are only used to correct the data read from the
RAM, and these data are used. In the correct-and-retry scheme, the checksum is used to
correct the data, which are then written back to the RAM. The processor then repeats the
read access by re-executing the instruction that caused the read and reads the corrected
data from the RAM if no more errors have occurred. This takes more clock cycles, at least
nine, in the event of an error. It also increases the number of memory accesses required to
execute the program, leads to higher power consumption, and can also lead to a decrease
in performance. The behavior after detection of errors is more complex and depends on
configuration—refer to the [38] for more information. Similar EDAC protection is also used
for the Cortex-R4 [39] processors.

The AT697F [16] provides a direct memory interface to programmable read-only mem-
ory (PROM), memory-mapped I/O, asynchronous static RAM (SRAM), and synchronous
dynamic RAM (SDRAM) devices. A protection with single error correction double error
detection (SECDED) EDAC is available on each interface except I/O. A single-bit error
qualifies as a correctable error. The correction is performed on the fly inside the processor
during the current access, and no timing penalty is incurred. The correctable error event is
reported in the registers, and an interrupt is generated if enabled. An uncorrectable error
results in an exception. The processor can be configured to have an 8-bit SRAM. In this
case, 32-bit load/store instructions are always performed as a sequence of 4 consecutive
memory accesses. If EDAC protection is activated, a 5th byte read access is also performed
to retrieve the checksum. The processor will always perform a full-word read-modify-write
transaction on any sub-word store operation. The processor also contains cache memories
protected using two parity bits per tag and per 4-byte data sub-block.

The GR740 SoC [33] contains an SDRAM memory controller with EDAC support.
When writing, the controller generates the check bits and stores them along with the data.
When reading, the controller will transparently correct any correctable errors and provide
the corrected data on the bus. An extra corrected error output signal is asserted when a
correctable read error occurs at the same cycle as the corrected data are delivered. This
signal is connected to the memory scrubber. In case of an uncorrectable error, this is
signaled by giving a bus error response. Only writes of 64-bit width or higher will translate
directly into write cycles to the external memory. Other types of write accesses will generate
a read-modify-write (RMW) cycle to update the checksum correctly. The SoC also contains
memory control for the PROM/IO interface where the PROM area can be protected with
SECDED EDAC. The behavior is similar to the previously mentioned controller, although
some differences exist. Refer to the [33] for more information.

4. Bus Protection

It is not uncommon in an SoC for the AXI bus matrix to constitute around 20–30% of
the die area, which, with increasing bus matrix sizes, means that a significant amount of
logic is susceptible to soft errors [40]. Unfortunately, the standard protocols typically do not
provide dedicated signals for protection against transient faults. So, it is up to the designers
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of the processor cores or SoC to integrate the protection. Otherwise, having protected
memory would be worth nothing if the transfers between the memory and processing core
were susceptible to faults. It was examined that transient faults on the bus matrix could
have severe consequences, possibly leading to deadlock, memory corruption, or undefined
behavior [40,41]. A simulation study [42] observed the highest rate of erroneous application
outcomes due to soft errors in the crossbar interconnect (only components external to the
core underwent fault injection). This section provides a review of proposed and currently
used bus protection approaches.

The study described in [43] mentions that interconnect signal wires are at low risk
of radiation-induced errors because currents resulting from radiation impact events are
only induced in active regions and, thus, will only impart charge to the signal wires via
an impact at the transmitter. In contrast, the large RC of the wire limits its effect at the
receiver. However, it also notes that the receiver storage element nodes may be susceptible,
particularly during the evaluation clock edge, when receiver designs target a minimal
area. If the signal should run at high speed with appropriate integrity, it is often required
to add buffers during physical synthesis. Such a buffer is a gate, typically two serially
connected inverters, which regenerates a signal without changing functionality. In modern
high-performance designs, buffers can comprise 10–20% of all standard cell instances [44].
Each buffer creates an active region. A particle strike on a regenerator buffer may result
in a significant voltage glitch [45]. Such an event can result in sampling a faulty value
from the affected signal. Existing approaches [45] for protecting these buffers come with
disadvantages like increased area, power consumption, or constrained immunity.

The level-1 cache is typically part of the core, so the interface is proprietary. The
communication with the remaining memory subsystem or peripherals is accomplished
across industry-standard interfaces that sacrifice some performance for compatibility across
multiple vendors [46]. Some of the popular standards include ARM Microcontroller Bus
Architecture (AMBA) with several versions and specifications (e.g., AHB, AXI), IBM Core-
Connect, STMicroelectronics STBus, Sonics SMART Interconnect, OpenCores Wishbone,
and Altera Avalon [47]. In our research, we found that many automotive or space-grade
processors leverage some version of the AMBA. It is widely used in various application-
specific integrated circuits (ASIC) and SoC parts, including application processors in the
Internet of Things (IoT) subsystems, smartphones, and networking SoCs [48]. Both specifi-
cations, AMBA AXI and AMBA AHB, share some properties, but the AXI is more complex
and can also provide outstanding and out-of-order transactions. The exact description of
protocols is outside the scope of this paper, but it is useful to provide a quick introduction.
We chose AHB as it is simpler. A simplified block diagram is shown in Figure 3. The man-
ager initiates the transfer. The decoder selects one of the subordinates (RAM, ROM, I/O)
according to the address provided by the manager (processor). The selected subordinate
receives requests and provides a response. The transfer consists of an address and a data
phase. In the address phase, the request is delivered to the subordinate, and in the data
phase, the data goes either from the manager to the subordinate or vice versa. The protocol
has a pipelined nature, so both phases of the same transfer happen in different clock cycles.
For detailed information about the AMBA protocols, refer to [48,49].

Integrating additional components to the SoC for direct monitoring of glitches in the
bus may not be a safe solution. The particle hitting the regeneration buffer can affect only
the output of the buffer, so the component would need to monitor the wire after the last
buffer and before the intended destination component (subordinate, manager, or decoder).
This can be a problem since the position of buffers is not known until synthesis. Due to this
reason, the protection should ensure that the destination component will either tolerate
faults or be able to detect and signal those events.
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4.1. Existing Protection Approaches

For older technologies, the transient pulse generated by radiation-induced charge
was quickly attenuated due to a large load capacitance and large propagation delays [25].
The combination of the low clock frequency of processors and the high critical charge
leads to a low probability that a transient pulse is latched in the downstream latch. This
means that processors implemented in those technologies focused mainly on protecting
the memory elements. On the other hand, the newer state-of-the-art processors running
at higher frequencies and implemented in the latest fabrication technologies, with lower
critical charge, tend to protect the bus interconnect.

A wide range of protection approaches is primarily focused on providing protection
for the processor core; we covered them in [5]. However, it is common that these approaches
usually focus only on protecting the logic inside the sphere of replication while mentioning
that the protection of the bus is outside the scope of the paper. Sometimes, the bus protection
is reduced only to providing data EDAC checksum, or the protection is completely omitted.
For example, it is assumed in [50] that the EDAC mechanism protects instruction and
data memory, whereas the core in [18] provides only a checksum for data. Study [51]
implements a soft-core processor into a field-programmable gate array (FPGA) while
connecting a dedicated EDAC module between the core and memory, providing data
encoding/decoding. The bus between memory and the multithreaded processor in a study
detailed in [14] is EDAC-protected, but the study does not provide additional information.
On the other hand, studies [52,53] do not mention protecting the external bus/memory. Our
protection scheme presented in [5] also does not provide protection for the bus/memories.
However, we have provided a guide on how the EDAC can be integrated with minimal
impact on maximal frequency.

Arguably, most of the bus-based topologies leverage EDAC protection. The study [24]
notes that using the same EDAC in the memory and for data movement is not recom-
mended. Despite the simplicity, the achievable performance may not be optimal due to
several factors. The different widths of the data bus and memory array can require different
code rates, while the different types of errors that can occur during storage and transmis-
sion can be faced efficiently by different types of codes. As an example, interleaving is
widely used in memories to prevent multiple adjacent upset of bits, but when a code word
is fetched from the memory, it is no longer protected against this type of error. The data in-
tegrity of on-chip interconnection can be enhanced working at the layout level, for example,
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using suitable space rules, shielding, etc., or at the electrical level, using signal repeaters,
low noise buffers, etc. Unfortunately, these solutions are strictly technology-dependent and
are very sensitive to the technology shrink [24].

4.1.1. Information Redundancy

The study [54] analyzes the energy–reliability trade-off of using different protection
approaches for on-chip communication in SoC using a 0.25 µm synthesis library and Leon
processor. The on-chip interconnect was modeled as a noisy channel, and the focus was on
reducing the power consumption while introducing additional information redundancy.
The authors showed that the EDAC could, among enhancing reliability, reduce energy-per-
bit dissipation. The reduced voltage swings counterbalance the energy overhead introduced
by redundant signals. Although the study was not focused on soft errors, it provided an
interesting outcome that retransmission (after fault detection) turns out to be more efficient
than correction from the energy viewpoint. This is because the error-correcting decoder
introduces a larger overhead (propagation delay and power consumption) for each transfer.
In comparison, an error-detecting decoder incurs a smaller overhead at each transfer and
an additional overhead (due to retransmission) of a few cycles only for corrupted transfers.
The analysis was performed on the AMBA bus present between the cache and memory
controller. The retransmission capability was integrated into the bus while preserving
compliance with the AMBA protocol.

The protection of the AMBA 3 AXI bus with three different approaches for each set
of signals is proposed in [40]. The control signals are protected with parity bits. The
authors wanted to avoid a high drop in frequency due to the protection of the entire 32-bit
address with inline parity, so they proposed to protect only a portion of the address bits
by the parity. The constraint is that any fault in the unprotected bits should result in a
transfer to the unmapped region, resulting in the AXI error response. It means that a special
rearrangement of the memory map is required, reducing available memory address space.
The data signals are protected with EDAC such that the checksum is sent on sideband
signals in a clock cycle after the data. If the checksum does not correspond to the previous
data, the entry is corrected according to the checksum. When an error is detected, the
master is stalled by one cycle (if another transfer is requested) to allow for correction so
that latency is only introduced when there is an error.

The L2 interface of the Cortex-R5 [38] processor can contain AXI and AHB interfaces
for accessing memory and peripherals. These interfaces can be configured with bus EDAC
to protect the integrity of individual signals. If enabled, the control and address signals
are protected with parity. Each parity bit protects a maximum of eight bits. EDAC with
SECDED capability is used to protect read and write data payload. Bus EDAC functionality
checks for errors on every bus transfer the processor performs. This can include speculative
accesses for which data are later discarded. The processor reports bus faults for all transfers
whose data it uses and never reports bus data faults for transfers where the bus master sees
an error response. The Cortex-R4 [39] may also support bus protection. If configured, the
AXI master and slave channels are protected with parity bits.

The AURIX [55] family of microcontrollers, integrating TriCore processors, contain the
shared resource interconnection (SRI) high-speed system bus. Each transaction consists of
an address and data phase. The address phase is protected by an 8-bit EDAC checksum,
covering all address phase signals except for request and grant. The data phase is protected
by the 8-bit EDAC checksum, which covers the read/write data and most of the related
address bits. Both EDACs have Hamming distance 4. The EDAC is only used for error
detection.

4.1.2. Temporal Redundancy

Although the AT697F [16] is fabricated in older 180 nm CMOS technology, and its
maximal frequency is 100 MHz, it also protects against SET. The SoC implements a temporal
sampling technique proposed in [56]. Each on-chip register is implemented using triple
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modular redundancy (TMR). The input data of each register making up one TMR module
are sampled at different times, with the periods between sampling times exceeding the
duration of a SET. The TMR connection of three registers with different input delays (0D,
1D, 2D) ensures that if the SET does not last more than D, a correct value is at the output.
So, the SET is filtered out from the bus if it does not last more than D. A block diagram
with waveforms is shown in Figure 4. The downside of this approach is that it reduces the
maximal operational frequency due to integrated delays. The safe operation is guaranteed
only if each register within the TMR sees the same clock period. For example, the clock
skew in AT697F is optional and programmable, but if the maximum D is used, the clock
frequency is decreased by 16.7%. This means the clock period is extended by two ns,
protecting against transient glitches lasting less than one ns.
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A natural temporal diversity is also present in redundant multithreading, where
the redundant threads use the same bus but in distinct clock cycles. The redundant
multithreading can be performed in hardware as in [13–15] or in software. The threads
in the hardware solution execute the same binary, so it must be ensured that the trailing
thread does not leverage already cached data requested by the leading thread. The software
solutions use different memory regions for each thread, so the caching is not a problem.

Other types of SET filtering are presented in [57,58]. We are not aware that such type
of filter has been used to protect bus signals in any processor yet. The filter uses an inverter
string to delay the signal along one path and a guard gate to pass only those transients
with widths exceeding the delay. A trade-off between performance and hardening is
unavoidable. The wider the filtered SET pulse, the lower the maximum frequency of
the design. The downside is that this penalty will become more severe with advancing
technologies and lower operation of core voltages [57].

4.1.3. Spatial Redundancy

Some cores leverage replication of the interface. For example, the bus interface of the
Hermes [17] core lies in the TMR region, allowing for a fully hard interface that can be voted
at the periphery. Another simple protection by triplication of the interconnect and peripher-
als was performed in [59]. Replication of memories is also seen in multithreaded cores [13].
Although such protection is straightforward, it significantly increases area/routing and
requires replicated memories/peripherals or additional voters before their inputs. The
Dara [60] processor does not protect on-chip caches and off-chip memories. It is assumed
that the I/O ports are far less vulnerable to soft errors than the in-chip units because they
are driven by higher voltage. However, it is also mentioned that the I/O buses can easily
apply EDAC or TMR to improve dependability. A processor protected with dual-core
lockstep was presented in [11]. The cores leverage mechanisms of verification points, while
each has its own data block RAM (BRAM) memory. Both cores have access to the same
DDR memory, but it is unclear whether some protection exists.
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4.2. Summary

Available bus protection approaches are based on one (or a combination) of the fol-
lowing principles: information redundancy, spatial redundancy, and temporal redundancy.
Each protection approach has pros and cons. We have summarized these properties in
detail in the following paragraphs and in Table 1, where colorized property means an
advantage of a particular protection approach over the remaining approaches.

Table 1. Comparison of bus protection approaches.

Property/Characteristic
Redundancy

Information Temporal Spatial

Concurrent glitches in multiple wires can be undetected Yes No Partially

Protection is limited by the duration of the glitch No Yes No

Impacts bus clock frequency Partially Yes Partially

Increases bus transfer latency (in clock cycles) Partially No Partially

Increases area for the interconnection Partially Partially Yes

Requires changes to the manager Yes No Partially

Requires changes to the subordinates Yes No No

Implementation is straightforward No Partially Yes

Usable for data protection of data in memory Yes No Yes

Some transactions may need several transfers Yes No No

Fine-tunable for a specific interface Yes No No

Used in state-of-the-art processors Yes Yes Partially

The parity and EDAC combination seems the most viable in the information redun-
dancy group: the parity for address and control wires and the EDAC for the protection of
data wires. Since the information redundancy constrains how many errors can be detected,
it is important to lower the probability that a single particle hit produces transient faults
in several wires protected by the same checksum. This requirement should be solvable
during physical synthesis by adjusting the proximity or regeneration buffer of individual
wires. The placement of encoders/decoders plays a critical role in affecting the operating
frequency. For example, an encoder can generate the checksum in the same cycle as the
data are being transferred (increasing register-to-output path) or a cycle before the transfer
(increasing register-to-register path). It has been measured that the encoder for 32-bit data
of SECDED code incurs 0.5 ns and the decoder 1.1 ns latency in a 90 nm standard cell
ASIC library [61], whereas in the 250 nm library, the encoder incurs 2.31 ns and decoder
4.85 ns [54]. The SoCs for embedded systems often do not require full memory space, so
reducing the timing penalty introduced for parity generation is possible by computing the
parity bits only for the required number of address bits. The use of parity for protecting
control wires should be fine-tuned, too. Some cores/interfaces may only require some of the
signals the bus communication protocol provides. The fetch interface requires only reading
from the memory and, most probably, does not require access to sub-word addresses and
does not require the use of exclusive transfers. This simplifies the parity computation.
It can also be worth providing look-up tables for the parity of control signals since the
interfaces often leverage only a subset of available combinations of signal values. The
subordinate unit should deny the transfer if the parity bits do not fit and respond with
some error signaling. The response mainly comprises data but can contain a few wires for
signaling errors or readiness. The parity generation should be easy and enough for those
signals. If the manager observes a mismatch, the transfer can be repeated. The pipelining
nature of communication protocols makes it hard (due to timing) to check, correct, and
potentially deny incoming data if they contain an error. We recommend protecting the
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bus data wires with EDAC and saving the checksum with the data without checking their
correctness during the transfer. In the case of memory, the data will be read together with
the checksum, and the manager can eventually correct the data before using them. The
system should contain some memory scrubber so the fault accumulation will not lead
to undetected errors. Both memories and peripherals can also check the integrity of the
data after completing the transfer. If an error is detected, they can use some signaling
(e.g., interrupt), so the scrubber or processor core can react and potentially correct the
data. Another important decision is to select how many bits the EDAC should protect. If
the processor can write to fewer bits than the checksum protects, the core needs to read
the content of the memory and merge it with the new data so the checksum of the code
word can be generated. This means that for a single transaction, several data transfers are
required. Although this has a big performance impact, the core can integrate a module with
a write buffer to provide this operation without stalling the pipeline. Similar buffers are
already used in the caches, so they can be modified instead of introducing new ones. The
bus protocols may also define interconnect modules that help decode the transfer address
and distribute requests to final subordinates. The protection of these modules is important,
too. The most important requirement is to guarantee that the request will be delivered to
the correct subordinate.

The usage of SET filtering represents temporal redundancy. It is a convenient type
of protection since it does not require any changes at the interface of the core. Another
benefit of the filters over the information redundancy is that it does not constrain the
maximum wires with a faulty value. But it comes with a limitation. The filter must be
set to the maximum duration of voltage glitch that can be tolerated. The wider the glitch
the filter tolerates, the lower the maximum frequency of the bus can be. This solution
also requires that the subordinates will either protect the saved data or the manager will
provide some EDAC checksum for the data. An important note is that although the used
filter will significantly constrain the maximum frequency of the bus, it does not mean that
the frequency of the core will be constrained, too. Most modern processors used in SoC
integrate L1 cache into the core while both running at the same frequency. The next-level
caches or main memory can be significantly slower and run at lower frequencies. This
means that introducing SET filters to the interface of the core does not have to result in
significant performance degradation.

The replication of the interface is a typical representation of spatial redundancy. It is a
straightforward protection approach, but it comes with many disadvantages. It increases
area and power consumption by more than 200% and can impact timing. Another important
question is whether the subordinates will be replicated or the subordinate side will vote on
signals from individual interface replicas. The former option can be viable for memories but
impossible for other peripherals. The latter option will require additional protection on the
subordinate side so the data, in the case of memory, remain protected. On the other hand,
if the memory is protected by replication, individual replicas may not need additional
protection for preserving data. The processor core can compare incoming values and send
the correct value to all replicas after the detected discrepancy.

5. Conclusions

To fulfill performance and power consumption requirements of mission/safety-critical
demands, the processors are implemented in smaller fabrication technologies, allowing
for a denser integration and higher operational frequency. Regardless of the size/count of
transistors on the chip and its operating frequency, they must provide a high dependability
and robustness level. Those performance-increasing properties lead to higher susceptibility
to transient faults caused by radiation. Many approaches exist to protect individual
processor cores, but they usually do not focus on the protection of the bus. This review
paper focuses on existing bus protection approaches used in state-of-the-art processors
and summarizes the proposed protection approaches. Individual approaches are sorted
into information, temporal, and spatial redundancy groups. We have described the pros
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and cons and compared their properties. The comparison should serve as an entry point
for a CPU architect to the domain of bus protection. The final selection of the protection
depends on the use case of the processor, the operational environment, and the possibility
of modifying components external to the processor. Information redundancy is viable for
high-performance applications, but its implementation is not straightforward, so it should
be reckoned at the beginning of the architecture design. The temporal redundancy may
be added to the design in the advanced phases, but the duration of glitches constrains its
protection. This means that it is suitable for low-performance applications and requires
precise analysis of transient glitch durations for the target fabrication technology and
operational environment. The spatial redundancy is the most straightforward, but it
arguably has the biggest impact on chip area and power consumption. Replication of
peripherals may be impossible, so voting of majority values would be necessary.

6. Future Directions

Our previous paper [5] proposed a novel redundancy-based protection scheme for
the processor cores. It was integrated into the Hardisc RISC-V core with negligible impact
on maximal frequency, whereas area and power consumption overheads were similar to
the dual-core lockstep approaches. The Hardisc is available as an open-source project on
GitHub; the link is provided in the Supplementary Materials. The proposed protection
scheme has yet to integrate bus protection. We will leverage the review of available bus
protection approaches present in this paper to protect the AMBA AHB bus interface of
the Hardisc. We will protect it with information redundancy as we want to have as much
protection integrated at the register transfer level as possible. Another reason is that the
protection of fetch and data can be fine-tuned because they require distinct functionalities.
The Hardisc also targets high operational frequency and low area and power overhead for
protection, so the spatial and temporal approaches are not viable.

Supplementary Materials: The Hardisc repository: https://github.com/janomach/the-hardisc
(accessed on 18 November 2023).
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