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Abstract: This work reviews the dataset-driven advancements that have occurred in the area of lip
motion analysis, particularly visual lip-reading and visual lip motion authentication, in the deep
learning era. We provide an analysis of datasets and their usage, creation, and associated challenges.
Future research can utilize this work as a guide for selecting appropriate datasets and as a source of
insights for creating new and innovative datasets. Large and varied datasets are vital to a successful
deep learning system. There have been many incredible advancements made in these fields due to
larger datasets. There are indications that even larger, more varied datasets would result in further
improvement upon existing systems. We highlight the datasets that brought about the progression in
lip-reading systems from digit- to word-level lip-reading, and then from word- to sentence-level lip-
reading. Through an in-depth analysis of lip-reading system results, we show that datasets with large
amounts of diversity increase results immensely. We then discuss the next step for lip-reading systems
to move from sentence- to dialogue-level lip-reading and emphasize that new datasets are required to
make this transition possible. We then explore lip motion authentication datasets. While lip motion
authentication has been well researched, it is not very unified on a particular implementation, and
there is no benchmark dataset to compare the various methods. As was seen in the lip-reading
analysis, large, diverse datasets are required to evaluate the robustness and accuracy of new methods
attempted by researchers. These large datasets have pushed the work in the visual lip-reading realm.
Due to the lack of large, diverse, and publicly accessible datasets, visual lip motion authentication
research has struggled to validate results and real-world applications. A new benchmark dataset is
required to unify the studies in this area such that they can be compared to previous methods as well
as validate new methods more effectively.

Keywords: lip reading; machine vision; biometrics; datasets; deep learning

1. Introduction

Deep learning has revolutionized the computer vision and natural language process-
ing (NLP) worlds. Advancements such as AlexNet [1], VGG [2], and ResNet [3] in the early
2010s ushered in a new era of computer vision. The introduction of attention [4] and the
transformer architecture [5] brought about huge leaps in the NLP world. The two worlds
of computer vision and natural language processing are joined together in vision-based lip
analysis. There have been vast amounts of research dedicated to applying these network
architectures to lip-reading and lip authentication tasks. While reviewing these two emerg-
ing fields, we recognized the crucial role that datasets play in their potential, progression,
and advancements. Thus, in this work, we focus on the data-driven advancements in lip
motion analysis. Our comprehensive analysis of data-driven advancements in these fields
aims to support future research in the selection, usage, and creation of datasets.

Automated lip-reading (ALR) is an exciting area of research. These systems take
videos of individuals speaking and, without audio, attempt to predict what was spoken.
There are many promising future applications of ALR systems, such as computer text
input, accessibility tools, and speech therapy. This work will highlight the progress that has
occurred in this field with a large emphasis on the datasets that have enabled this progress.
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Particularly, we emphasize the progress from digit-/letter- to word- and sentence-level
ALR systems and the datasets that enabled these large steps. We propose that the natural
next frontier for ALR systems is dialogue-level ALR. This is the natural step forward to
improve accuracy and real-world applicability.

Lip motion analysis has proven to be a highly successful authentication method
compared to other biometric authenticators. This entails authenticating a user based on
the motion their lips make in a video. This adds a large benefit over other biometric
authentication methods because it acts as a liveness detection as well as an awareness
detection layer of security. However, there is a dataset issue that will be discussed that is
holding back the lip motion authentication research community.

This work contributes the following:

1. A comprehensive overview, analysis, and comparison of ALR methods and datasets
and results on said datasets. We show that larger and more comprehensive datasets
result in immense improvements in performance.

2. We propose the next frontier for ALR systems is to move toward dialogue-level
ALR. To our knowledge, no works have attempted or mentioned dialogue-level ALR
systems or datasets. We propose that this will be the next step to increase accuracy
and approach real-world applicability. This transition must be preceded by datasets
to be used for training and testing.

3. We provide a comprehensive overview, analysis, and comparison of lip motion au-
thentication methods and datasets. We show that the datasets in the literature for lip
motion authentication are severely lacking in size, variation, and accessibility.

4. We identify the need for a large open access lip motion authentication dataset to be
used as a benchmark dataset. When compared with the large open access dataset in the
ALR research, the lip motion authentication research field is severely lacking. There is
no large benchmark dataset to compare these methods, which prohibits comparison
and growth. This type of dataset is vital for further improvements in this area.

2. Background

There are many areas of research that stem from the connections between facial
image(s), authentication, audio, and text, as can be seen in Figure 1. On the conjunction
between text and audio, we see NLP tasks, speech-to-text systems, and text-to-speech
systems, which are seen commonly in human computer interfaces today. These are areas
that have already found commonplace uses in our daily lives with digital assistants and
voice-to-text dictation on our smart devices. Sequence-to-sequence models, such as the
LSTM [6] and transformer [5] architectures, have been found to be very successful in
these areas.

On the intersections between lip images and text, we have lip-reading and text-based
lip synthesis. Lip-reading takes sequential images of an individual speaking and attempts
to interpret what the person spoke without the audio signal. We will be covering lip-reading
in depth in this work. Text-based lip synthesis research focuses on taking text and an image
or images of an individual and generating images that make the individual appear to
utter the text given [7–15]. Similar to text-based lip synthesis is audio-based lip synthesis.
Systems take as input an audio stream of a person speaking and image(s) of the individual
that they would like to appear to speak the given audio track [16–19]. These applications
can give interesting insight when determining future directions for other lip-reading and
authentication systems but will not be covered in this work.

Analysis of lip motion can also be utilized to improve or even create audio signals
of the individual speaking. This research is found on the conjunction from lip images to
audio in Figure 1. Adeel et al. utilized an LSTM [6] lip-reading model in parallel with an
enhanced, visually-derived Wiener filter (EVWF) [20] to enhance the audio of a speaker,
such as removing background noise and fortifying the speaker’s voice [21]. They found that
utilizing lip-reading results in cleaner audio compared to conventional audio enhancers
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that do not utilize visual lip-reading methods. Creating audio of individuals speaking is an
even more difficult task [22–27] that also gives interesting insights into lip-reading systems.

Figure 1. The many research areas connecting the modalities of text, authentication, lip images, and
audio. This work provides an in-depth analysis of the two junctions highlighted in green: lip motion
authentication and visual lip-reading. The other junctions between these modalities are not covered
in this work and are mentioned only briefly.

Dating back to 1976, researchers found that humans utilize vision to aid understanding
while talking with each other, even in easy-to-hear circumstances [28]. This is an area that is
researched and has proven useful. Audio–visual speech recognition (AVSR) is a thoroughly
researched area as well. Many of the datasets and research that we reviewed can be
employed for both VSR and AVSR systems. Adding the visual aspect has slightly improved
audio speech recognition systems [29]. This area has been well researched, and because
of the already high accuracy that audio-only speech recognition systems achieve (being
as high as 98.7% [29]), visual-only speech recognition is the more challenging problem
and thus where larger improvements can occur. Therefore, this is where we will focus
our review.

An automated visual Russian sign language recognition pipeline was created [30].
This research discovered that adding a lip-reading module to analyze the lip movements
of deaf individuals improved accuracy. This indicates that lip motion is a viable way to
extract information from the speaker.

Lip-reading is not a new idea. Deaf individuals have been utilizing the visual aspects
of speech for centuries to understand spoken language. It has been determined that deaf
individuals can only distinguish 20–40% of speech [31–35]. A lip-reading experiment was
conducted on eighty-four normal hearing undergraduate students [36]. These students
were tested on 25 sentences. The results were very interesting. The average sentence success
rate was 12.41%, with two outliers achieving around 30%. This is disheartening for those
that hope to teach a neural network to lip-read when average people cannot even lip read
very well.

Human lip-reading accuracy was compared to machine lip-reading accuracy on word,
phoneme (audibly distinct sounds), and viseme (visually distinct sounds) levels [37]. On
the word level, the machine performed worse than a person, with 3.75% compared to
18.42%. The machine, however, performed significantly better on phonemes and visemes.
On phonemes, humans achieved on average 31.6%, and the machine achieved 80.27%. On
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visemes, humans achieved 35.4%, and machines achieved 91.6%. Ref. [37] attributes the
machine’s deficiency in word-level accuracy to the fact that it lacks previous knowledge
of language and words. Since their study took place in 2009, their machine model was
not a neural network. Modern neural networks are able to learn the previous knowledge
and expectations that humans have and thus lead to better results on the word level. Their
results, however, show that automated lip-reading systems have the potential to match and
outperform humans.

There are numerous automatic lip-reading (ALR) review articles in the literature.
Sooraj et al. conducted a review of the general structure of ALR systems and how they
work [38]. Oghbaie similarly reviewed the general structure of ALR systems and de-
termined areas for future advancements in the systems’ structures [39]. Agrawal et al.
conducted a literature review that focused on the methods by which the networks are
trained, particularly comparing the prepossessing and pretraining methods that benefit
ALR systems [40]. These reviews did not focus much attention on datasets and their role
in ALR systems. Hao et al. similarly conducted a review of ALR technology [41]. They
highlighted current ALR systems and specifically pointed out the difficulties due to vi-
sual factors such as lighting, background, and variation of speakers’ appearances. They
concluded that larger, more varied datasets are required to advance ALR systems.

Fernandez et al. analyzed the advances over a 20 year period in automatic lip-reading
(ALR) [42]. They found that since the introduction of deep learning, there has been an
increased interest in ALR systems as seen by the number of publications on the subject
over time, shown in Figure 2. They additionally determined that deep learning models
performed very similarly to traditional approaches in simpler lip-reading tasks, such as
single digits and letters, but that deep learning approaches widely outperformed traditional
approaches on more complex tasks, such as word- and sentence-level lip-reading. Deep
learning ALR systems were able to master digit- and letter-level lip-reading quickly, thus
overtaking the conventional methods. The next task was word-level lip-reading, which, as
can be seen in Table 1, has seen steady improvement over the years and is seeing very good
results. Following word-level lip-reading, the next step is sentence-level lip-reading, which
is much more challenging, however, steady progress has been made in sentence-level lip-
reading research. The improvements and the limitations in the sentence-level research give
insight into the following steps for the natural progression of ALR datasets and systems.

Figure 2. The cumulative number of papers on ALR systems published between 2007 and 2022.
This indicates the increase in research and interest in the area of visual lip-reading systems over
the years and validates the necessity for this work as a review of the progress made in this field
due to dataset availability. The conceptual foundation for our diagram is rooted in the work of
Fernandez et al. [42]. Inspired by their approach, we developed an updated version of the figure,
drawing on more recent data obtained from Google Scholar. This updated diagram aims to provide a
contemporary perspective, reflecting the latest trends in the field.
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Table 1. Progression of state-of-the-art lip-reading on the Lip-Reading in the Wild (LRW) dataset [43].
Illustrates the steady progression made on large benchmark datasets. Neural network architectures
are listed for convenience and are not discussed at length in this work. A large portion of the table is
provided by [44].

Method Data LRW

Author’s Name (Year) Frontend Backend Input Image Size Input Accuracy (%)

Chung et al. (2016) [43] 3D and VGG M - 112 × 112 Mouth 61.10

Son et al. (2017) [45] 3D and VGG M
version LSTM & Attention 120 × 120 Mouth 76.20

Petridis et al. (2018) [46] 3D and ResNet-34 M Bi-GRU 96 × 96 Mouth 82.00

Stafylakis et al. (2017) [47] 3D and ResNet-34 Bi-LSTM 112 × 112 Mouth 83.00

Cheng et al. (2020) [48] 3D and ResNet-18 Bi-GRU 88 × 88 Mouth and 3D
augmentations 83.20

Wang et al. (2019) [49] ResNet-34 and
DenseNet3D-52 Bi-LSTM 88 × 88 Mouth 83.34

Courtney et al. (2019) [50] Alternating ResNet
Bi-LSTM

Alternating ResNet
Bi-LSTM 64 × 64 Mouth 83.40

Luo et al. (2020) [51] 3D and 2-Stream
ResNet-18 Bi-GRU 88 × 88 Mouth and gradient

policy 83.50

Weng et al. (2019) [52] 3D and 2-Stream
ResNet-18 Bi-LSTM 112 × 112 Mouth and optical

flow 84.07

Xiao et al. (2020) [53] 3D and 2-Stream
ResNet-18 Bi-GRU 88 × 88 Mouth and

deformation flow 84.13

Zhao et al. (2020) [54] 3D and ResNet-18 Bi-GRU 88 × 88 Mouth and mutual
information 84.41

Zhang et al. (2020) [55] 3D and ResNet-18 Bi-GRU 112 × 112 Mouth (aligned) 85.02

Feng et al. (2020) [56] 3D and SE ResNet-18 Bi-GRU 88 × 88 Mouth (aligned) &
augmentations 85.00

Martinez et al. (2020) [57] 3D and ResNet-18 MS-TCN 88 × 88 Mouth (aligned) 85.30

Ren et al. (2021) [58] ResNet-18 TM-Seq2Seq&KD [59] N/A Mouth (aligned) 85.7

Tsourounis et al. (2021) [44] ALSOS and
ResNet-18 blocks MS-TCN 88 × 88 Mouth (aligned) 87.01

Peng et al. (2022) [60] 3D and ResNet-18
blocks MS-TCN 88 × 88 Mouth (aligned) 87.7

Ma et al. (2021) [61] 3D and ResNet-18 MS-TCN 88 × 88 Mouth (aligned) 88.50

Koumparoulis et al. (2022) [62] EfficientNetV2-L TCN & Transformer 88 × 88 Mouth (aligned) 89.52

Ma et al. (2022) [63] 3D and ResNet-18 DC-TCN 88 × 88 Mouth (aligned) 91.6

Fenghour et al. similarly reviewed the past 24 years and determined that deep learn-
ing models performed better on word- and sentence-level lip-reading tasks compared to
conventional methods [64]. They particularly pointed out the issue of classification for ALR
systems due to the large possible lexicon, meaning that the dataset the network is trained
on cannot cover every possible word in the language; thus, the network must learn how to
recognize and dictate words that it has never encountered. They determine that this is a
large hurdle that lip-reading systems need to overcome to reach higher accuracies.

Pu et al. very recently conducted a literature review of ALR systems [65]. They
determined a few advancements that need to be made to improve ALR systems. It was de-
termined that a standard for viseme classification would help standardize the results found
by these systems and help direct future research. They recognized that the exploration of
useful lip regions has led to improved results and impressed a need for further research in



Electronics 2023, 12, 4698 6 of 28

that area. It was determined that larger unconstrained datasets are needed, especially for
the Mandarin Chinese language.

In this paper, we will discuss the need for larger, more varied datasets similar to [41,65],
with the added evaluation of the advancement of scope that ALR systems are run in. We
propose that ALR systems are ready for an expanded scope from sentence-level lip-reading
to dialogue-level lip-reading. This expanded scope will be brought about by new datasets
made for this previously unexplored level of lip-reading.

With the breakthroughs in ALR systems thanks to deep learning, another area of
research was poised to benefit from these improvements: that of lip motion authentication.
There are many authentication methods in our modern world. Conventional text pass-
words have been the default authentication method for years, but biometrics have gained
recent popularity with the rise of mobile electronics. Facial [66], fingerprint, and voice
authentication have particularly gained attention in recent years. Research has found that
many facial authentication systems can be easily fooled by images, projections of images
onto 3D heads, and 3D silicone masks [67]. Lip motion authentication comes in two forms
to solve this problem. One is to identify an individual based on their unique way of moving
their lips, and the other is to have the individual enroll a lip motion passphrase.

Facial, fingerprint, and voice biometric systems are heavily researched, and therefore,
there are immense benchmark datasets to evaluate new methods created [68,69]. Lip motion
authentication is not quite as popular and thus lacks large varied benchmark datasets to
evaluate systems on. This results in a difficult problem when attempting to compare various
methods, as well as determine future steps to improve on what has been done, which we
attempt to do in this survey.

Chowdhury et al. conducted a survey on lip biometrics [70]. They covered static
lip biometrics as well as lip motion biometrics. They came to the conclusion that most
solutions do not address unconstrained scenarios, which limits the applications for this
technology. We reiterate this point and add that there is a large dataset issue when it comes
to comparing various techniques to perform lip motion authentication.

3. Automated Lip-Reading

Automated lip-reading (ALR), also known as visual speech recognition (VSR), is a
challenging problem to solve. The datasets consist of silent video clips of people talking.
The goal of these systems is to determine what is being said by the person by just analyzing
their facial/lip movements. This has a wide range of challenges to overcome, as well as a
wide range of applications. The limitation to visual input alone in ALR results in an issue
when it comes to visemes, which are speech sounds that are distinguishable audibly yet
visually identical. As one would expect, these cause many difficulties for vision-only ALR
systems. Word-level datasets [43,71] tend to sidestep this problem by avoiding words that
are visemes of each other, which yields good results, as seen in Table 1. This “solution”,
however, weakens the implications of the results and indicates the lack of robustness of
these systems.

Another solution to this issue is to do sentence- or phrase-level ALR rather than word-
level ALR. This enables the network to be able to distinguish between visemes based on the
context of the words before and after it. This is a preferable method to address the viseme
issue because it correlates much more to the real-world applications of ALR technology
and makes for much more robust systems. Sentence-level lip-reading, however, brings on a
whole new host of challenges for networks, namely determining the beginning and end of
a word, as well as the timing between them.

3.1. Word-Level ALR

There has been much research in the scope of word-level vision-based automated
lip-reading. There are many datasets and networks that have been used to show competent
lip-reading solutions. Table 2 lists the more popular word-level ALR datasets and their
various statistics.



Electronics 2023, 12, 4698 7 of 28

3.1.1. CMU AVPFV

The CMU AVPFV dataset [71] contains videos collected from 10 subjects, each reciting
the same 150 words 10 times each. The videos were collected from two angles, frontal and
profile. Utilizing a hidden Markov model (HMM), they were able to achieve ∼45% accuracy
when analyzing the profile view, ∼32% when analyzing the frontal view, and ∼49% by
analyzing the profile and frontal views combined. These results are not too impressive
when compared to the state-of-the-art accuracies achieved on more varied datasets, such as
LRW with deep learning, but the results are informative to camera positioning for future
datasets and solutions such as OuluVS2. This dataset is no longer used as a metric for ALR
systems due to the small amounts of videos and limited variation as compared to newer,
diverse datasets.

3.1.2. NDUTAVSC

Chitu et al. created a Dutch dataset (which many papers incorrectly label as German)
called NDUTAVSC [72]. The data were collected in a lab with set lighting, camera position,
and head position for all individuals. It contains both word and sentence videos. This
dataset and the solutions evaluated on it predated the deep learning revolution. Rothkrantz
et al. achieved the state-of-the-art result on the NDUTAVSC dataset with an accuracy of
84.27% [73]. This dataset is not used as a metric for many ALR models due to the fact that
it is in Dutch and due to the lack of variation within the dataset.

3.1.3. AVAS

The AVAS dataset [74] is an Arabic lip-reading dataset collected in a lab, but the
subjects were required to record their utterances on two separate days. This requirement
introduced variation due to changes in mood, make-up, levels of attentiveness, etc. They
also varied light in the lab, as well as the head position. The dataset contains 35 words
and 12 phrases in the Arabic language that each individual repeated multiple times. The
state-of-the-art results were achieved by the creators of the dataset by utilizing the k-nearest
neighbor algorithm with an accuracy of 85% [75]. Due to this dataset’s less commonly
spoken language, its limited variation, and its creation before deep learning was utilized, it
has not become a benchmark dataset for new ALR systems.

3.1.4. MIRACL-VC1

The MIRACL-VC1 [76,77] dataset was collected in a controlled environment. This
dataset contains 10 words and 10 phrases. This limitation to words and phrases allows
for an easy way to compare subject-dependent and subject-independent methods of ALR.
The dataset was collected with a Microsoft Kinect sensor [78], thus allowing the collection
of RGB-D data. The extra depth information was proven as beneficial when comparing
subject-independent lip-reading, which is likely because different people have different
facial structures; thus, the extra depth information enabled the SVM (support vector
machine) model to normalize better. Using the SVM model, they were able to achieve
respectable results of 96.4% (79.2% on phrases and 63.1% on words). These results are
reasonable, especially in the pre-deep-learning era. Using an LSTM network, Parekh et al.
were able to achieve 98% accuracy on the MIRACL-VC1 dataset [79]. This demonstrates the
growth and improvements that deep learning systems bring over conventional systems.

3.1.5. AusTalk

The AusTalk [80] dataset was collected in a controlled environment. Each subject was
given a script to read for half of the videos, and the other half are spontaneous speech. This
dataset actually contains digits, words, and sentences. It contains the largest amount of
videos compared to other word-level datasets, as indicated in Table 2. Despite it being the
largest word-level dataset that we highlight, it is limited due to the controlled environment.
and it also has added complexity due to it containing digits, words, and sentences. It
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thus has not become a benchmark dataset for new research methods. The state-of-the-art
accuracy on the AusTalk dataset is 69.18%, achieved by [81].

Table 2. List of commonly used word-level ALR datasets, the number of speakers, classes, and video
counts, and current state-of-the-art results. It is important to acknowledge that the comparison of
state-of-the-art (SOTA) accuracies between datasets can be challenging. The accuracies presented
are intended to illustrate potential areas for improvement in the field rather than be used for direct
comparison between datasets. This perspective recognizes the inherent variability and specific
conditions of each test environment, emphasizing that these metrics are indicative benchmarks rather
than definitive comparisons. Data retrieved from [41,42,64] and individually cited papers. * Accuracy
percent from combined dataset with words and phrases.

Dataset Year Language Speakers Classes Total Videos Environment State of the
Art Accuracy

CMU AVPFV [71] 2007 English 10 150 15,000 Lab ∼49% [71]
NDUTAVSC [72] 2010 Dutch 66 6907 6907 Lab 84.27% [73]

AVAS [74] 2013 Arabic 50 48 13,850 Varied Lab 85% [74]
MIRACL-VC1 [76] 2014 English 15 10 1500 Lab 98% [79] *

AusTalk [80] 2014 English 1000 966 966,000 Lab 69.18% [81]
LRW [43] 2016 English 1000 500 400,000 Wild 91.6% [63]

LRW-1000 [82] 2019 Mandarin 2000 1000 718,018 Wild 57.5% [83]

3.1.6. LRW

Chung et al. collected and labeled a dataset named lip-reading in the wild (LRW) from
BBC television network recordings [43]. This is one of the first lip-reading datasets that
utilizes a large public media database to allow for much more real-world variation in the
data. This type of data is called “wild” data because it was not collected under constrained
conditions. This idea of collecting datasets from large television and other media databases
is very important to lip-reading datasets. To do so, they developed a pipeline for large-scale
data collection from TV broadcasts. They also created a CNN architecture trained on LRW.
When collecting their dataset, they aligned the text with the video timestamp using a
Penn Phonetics Lab Forced Aligner and IBM’s Watson speech-to-text service. Then, to
determine which face is speaking in the frame, they ran a landmark tracker, found the
distance between the center top point of the lips and the center bottom point of the lips,
and took the Fourier transform of this distance over time data. A linear SVM classifier was
trained on the frequency spectrum that distinguishes between a face that is speaking and
one that is not. These methods were utilized to extract a word-level dataset that contains
the words that occurred the most in the TV broadcasts. These words are between 5 to
10 syllables.

This dataset is frequently used as a benchmark for researchers to evaluate lip-reading
solutions. The creators of this dataset went on to create the LRS family of datasets, which
are arguably the best sentence-level datasets currently publicly available. The current state-
of-the-art result is 91.6% [63]. Even higher accuracy has been achieved by supplementing
the pre-training dataset with the LRS2-BBC, LRS3, and AVspeech datasets (discussed in
Section 3.2), resulting in an accuracy of 92.1%. The creators even further improved upon
this by supplying their model with the word-boundary data supplied with the LRW dataset.
This resulted in an accuracy of 94.1%. This is not listed as the state-of-the-art result in
Tables 1 and 2 because of the addition of data, which detracts from a fair comparison of
models. This, however, is indicative that future advancements can be made by supplement-
ing the training datasets. This dataset is one of the largest datasets collected for word-level
ALR, as well as one of the most varied; for this reason, it is a very popular choice as a
benchmark of word-level ALR systems.

Because LRW is the most commonly used benchmark dataset for word-level ALR
systems, the history of the state-of-the-art results on this dataset are very indicative of
the overall growth of the word-level lip-reading research as a whole. Table 1 shows the
progression that has occurred across the LRW since its creation and initial evaluation in
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2016. As we can see, initially, there was a large 15.1% jump in accuracy with the addition of
the LSTM and attention methods by [84], and another large 5.8% jump with the utilization
of the bi-directional GRU [85] model by [46]. After this advancement, the accuracy grows
at a much slower rate, as is expected when so many methods have been tried and tested.
The increase in results here is very promising and indicates that there is much progress yet
to be made in lip-reading for sentence-level solutions and beyond.

3.1.7. LRW-1000

A large Mandarin Chinese lip-reading dataset named LRW-1000 was generated in
2019 [82]. The data were extracted from TV programs in China. The creators of this
dataset used iFLYREC to retrieve time-aligned sentences and separate out different speak-
ers [86]. They manually annotated who was speaking, and then used the landmark
SeetaFaceEngine2 detector [87,88] to locate the full face and compare it to manually an-
notated coordinates. A kernelized correlation filter was used to ensure that the sequence
retrieved the same face. Audio-to-video synchronization was carried out with the SyncNet
described in [8]. This dataset contains one of the largest vocabularies of any of the word-
level lip-reading datasets; this and the fact that it is a very recent dataset has resulted in it
being a good benchmark to evaluate ALR models on. The state-of-the-art result is 57.5%
accuracy [83]; the same model resulted in a much higher accuracy on the LRW dataset
at 88.5% [43]. This indicates that the LRW-1000 dataset is much more difficult and could
possibly be a good metric for how lip-reading systems perform. The language difference is
likely also a large factor in the difficulty difference.

3.1.8. Methods

There are various methods used for the collection of said datasets. This is a crucial
difference in datasets. Many use static, controlled environments to collect data, e.g., in-
dividuals will go into a well-lit room and repeat 100 words 10 times each. Datasets in
such controlled environments were necessary for the early development of ALR systems
to ensure first that it was possible to distinguish motions in controlled environments. The
CMU AVPFV [71], NDUTAVSC [72], AVAS [74], AusTalk [80], and MIRACL-VC1 [76,77]
datasets are such datasets collected in controlled environments but were useful for initial
proof-of-concepts. The more real-world method of collecting a dataset is to extract image
sequences from large collections of videos, such as TV programs. This results in more varia-
tion in head poses, lighting, resolution of the lip area, etc. The LRW [43] and LRW-1000 [82]
datasets are examples of in-the-wild datasets collected in similar manners. Because of their
increased difficulty, as well as increased alignment with real-world systems, in-the-wild
datasets drive developments much more than controlled datasets.

Word-level ALR datasets are generally set up in such a way that the networks trained
on them need only classify which word a single sample is. This simplifies the training
process and methodology to a simple classification problem. These large benchmark
datasets mentioned thus unify the research work conducted to a common goal and method.
The methods by which classification is carried out with the image sequence as inputs vary,
as they should, but the actual method of lip-reading is unified. This is crucial for comparison
and advancements of various neural network architectures and training methodologies. As
this work’s primary focus is data-driven advancements, we will not be analyzing neural
network architectures or training methodologies.

3.1.9. Findings

Word-level lip-reading has progressed immensely since the deep learning revolution.
The datasets and their corresponding ALR systems have proven that machines can distin-
guish between spoken words even better than humans can. The limitation of vocabulary
that most of these datasets utilized resulted in an easier problem to solve in comparison
with sentence-level ALR systems. Word-level ALR systems are stepping stones toward
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sentence-level ALR systems. The lessons learned on these datasets have been applied to
sentence-level lip-reading with encouraging results.

As can be seen in Table 2, the LRW dataset and LRW-1000 dataset are the only datasets
collected in the wild. As such, these two datasets have become the typical benchmarks
used when new word-level lip-reading systems are trained and tested. The LRW dataset
tends to be used more often, which is likely due to the fact that the language spoken in the
dataset corpus is English.

3.2. Sentence-Level ALR

Sentence-level lip-reading brings its own types of challenges and advantages over
word-level lip-reading. For one, the context from the other words around a word makes
it more easily distinguished from visemes and visually similar words. However, a large
challenge presents itself when thinking about the differences in the structure of a sentence in
text versus a sentence in a video. Text contains spaces that naturally indicate the separation
of words, but there is no such indication in a video of a person talking. In the NLP world, a
similar issue occurs in translation from one language to another due to the fact that not
all translations are word-for-word translations. In the NLP world, this is overcome by
utilizing bi-directional sequence-to-sequence networks, such as bi-GRUs and transformers,
so that the new information can directly improve previous outputs. A similar approach
is taken with sentence-level ALR systems. Table 3 describes some of the more commonly
used sentence lip-reading datasets and their various details, as well as the latest state-of-
the-art results.

Each sentence-level ALR dataset contributes something different to the research field.
They each have the benefits as benchmark systems or as stepping stones for future datasets.
Below, we will go into further detail about each dataset, its use, and its contribution to the
ALR community.

Table 3. List of commonly used sentence-level ALR datasets, their number of speakers, classes, and
video counts, and current state-of-the-art results. Data retrieved from [41,42,64,89] and individually
cited papers. * Seems to have a different definition of utterances. ** Exact number not recorded.
*** Used in training to increase accuracy on LRS3-TED.

Dataset Year Language Availability Speakers Vocab Utterances Hours Env. SOTA Accuracy

GRID [90] 2006 English Public 34 51 1 k 37.5 Lab 98.7% [91]
OuluVS2 [92] 2015 English Public 52 550 1560 N/A Lab 98.31% [93]

MODALITY [94] 2017 English Public 35 182 231 31 Lab 54.00% [94]
LRS [45] 2017 English Retired 1000+ ** 17 K 118 K 246 Wild 49.8% [45]

MV-LRS [84] 2017 English Retired 1000+ ** 15 K 504 K 155 Wild 47.2% [84]
LRS2-BBC [95] 2018 English Public 1000+ ** 18 K 144 K 224 Wild 64.8% [96]
LRS3-TED [97] 2018 English Public ∼10 K 17 K 165 K 437 Wild 63.7% [98]

GRID-Lombard [99] 2018 English Public 55 51 5.4 k N/A Lab N/A
LSVSR [100] 2018 English Private ∼464 K 127 K 2.9 M 3.9 k Wild 59.1% [100]
CMLR [101] 2019 Mandarin Public 11 3.5 k 102 k N/A Wild 67.52% [101]

YTDEV18 [102] 2019 English Private N/A N/A 20 k * 31 k Wild N/A ***
SynthVSR [103] 2023 English Private N/A N/A N/A 3k Gen. N/A ***

3.2.1. Grid

The GRID dataset [90] contains sentences in the following form: verb, color, prepo-
sition, letter, digit, and adverb. For example, “Lift blue to A 3 fast”. This restriction of
sentence structure and vocabulary makes the GRID dataset easier to learn than other more
in-the-wild datasets [43,45,95,97,101]. Due to these constraints, evaluation results on this
dataset tend to be much higher, with the state-of-the-art being 98.7% [91] compared to that
of LRS2-BBC being 66.5% [95]. The results on this dataset also indicate that with proper con-
text and understanding of language, ALR systems can obtain very encouraging results. The
GRID dataset is often used as a metric for sentence ALR systems; it is, however, important
to keep in mind that the results are not as real-world indicative as other datasets’ results.
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Alghamdi et al. collected an expanded version of the GRID dataset named GRID-
Lombard [99]. They added faces from varying poses, similar to [92]. This dataset has not
been evaluated on ALR methods as other datasets have but has been found useful for
audio-to-video generation evaluation [25].

3.2.2. OuluVS2

Anina et al. collected a dataset titled OuluVS2 [92]. This dataset was recorded with
multiple cameras mounted at five different angles, including frontal, profile, 30°, 45°, and
60° views. Naturally, the dataset was recorded in a controlled environment to be able
to obtain such viewpoints of individuals. The number of speakers and the number of
classes are also very low in this dataset, containing 52 individuals with each individual
repeating 10 phrases (repeated 3 times), which are the same phrases as in the less popular
OuluVS [104] dataset: a 10-digit sequence (repeated three times) and 10 sentences (recorded
only once per subject). The phrases and digit sequences were the same across individuals,
but the sentences differed per individual. Thus, this dataset is much less varied compared
to similar datasets that were collected in the wild [45,84,95,97] with varied head pose
positions and no limitations on classes.

The results of research on this dataset can, however, be informative for real-world
applications of lip-reading when determining the position of the camera or cameras in such
systems. See Table 4 for individual angle results from different research. Based on those
results, it seems as though which angle is bests is dependent on the network that is being
used to achieve the lip-reading. On average, however, the frontal view obtains the highest
accuracy. We can also see the bidirectional LSTMs and GRUs result in higher accuracies on
this dataset.

Maeda et al. trained their network using both frontal and 90° videos [105]. They then
evaluated each camera position individually and found that 30° was the most accurate
view with this method. Zimmermann et al. analyzed the results with an LSTM network
when using the five different angles individually as well as in pairs [106]. They found that
individually, the 30° viewpoint resulted in the highest accuracy and that the frontal view
paired with the 30° viewpoint resulted in the best results compared to individual angles as
well as paired angles. Petridis et al. further explored these angles by evaluating all possible
combinations of the angles provided in the OuluVS2 dataset [107]. They found that the
best results are achieved when the frontal, profile, and 45° views are used in parallel to
determine what was spoken. They were able to achieve a then-state-of-the-art result on the
OuluVS2 dataset of 96.9%.

The current state of the art is 98.31% [93]. The results on this dataset tend to be much
higher than those collected in the wild due to the limitation of vocabulary (digit sequences
and assigned phrases) as well as the constrained lab scenario the dataset was collected in.
This dataset remains a benchmark dataset for those wanting to test networks on specific
angles. The results on the OuluVS datasets pair well with results from the LRS line-up of
datasets [45,84,95,97] to indicate good performance on specific angles as well as in-the-wild
varying angles.

3.2.3. MODALITY

The MODALITY dataset [94] is relatively small compared to other sentence-level ALR
datasets. It was collected in a lab under controlled conditions. The videos were recorded
on a stereo pair of time-of-flight cameras and thus include depth data for each individual,
which is useful for specific research. The size of this dataset, its limited variation, and the
focus on depth information, however, led to it not being a commonly used benchmark
dataset. Thus, the state-of-the-art results for this dataset were achieved by its creators with
an accuracy of 54%. Many succeeding datasets compare themselves to MODALITY to show
the progress in amounts of videos, vocabulary, and variety.
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Table 4. Comparison of accuracy from different camera angles in the OuluVS2 dataset across different
network architectures. This informs the collection and selection of data for future datasets and
methods to ensure real-world applicability. Neural network architectures are listed for convenience
and are not discussed at length in this work. Data retrieved from [107] and individual papers.
* These models are first trained with data from more than one view and then fine-tuned with data
from the corresponding view. ** This model was pre-trained on the MV-LRS dataset [84] and then fine-
tuned on the OuluVS2 dataset. Bolded results indicate the camera angle on which the given method
performs best. DA: data augmentation, LVM: latent variable model; ATT: attention variable models.

Network Architecture + Additions 0° 30° 45° 60° 90°

CNN + DA [108] 85.6% 82.5% 82.5% 83.3% 80.3%
End-to-end CNN + LSTM [109] 81.1% 80.0% 76.9% 69.2% 82.2%

CNN + LSTM * [109] 82.8% 81.1% 85.0% 83.6% 86.4%
PCA + LSTM + GMM-HMM [106] 74.1% 76.8% 68.7% 63.7% 63.1%

Raw Pixels + LVM [107] 73.0% 75.0% 76.0% 75.0% 70.0%
VGG-M+LSTM+ATT ** [84] 91.1% 90.8% 90.0% 90.0% 88.9%
Multi-view 3DCNN * [93] 88.6% 89.4% 88.1% 85.6% 83.9%

CNN + Bi-LSTM [110] 90.3% 84.7% 90.6% 88.6% 88.6%
CNN + Bi-LSTM * [110] 95.0% 93.1% 91.7% 90.6% 90.0%

End-to-end Encoder + Bi-LSTM [107] 94.7% 89.7% 90.6% 87.5% 93.1%
3D CNN + SAM + Bi-GRU + Local self-attention + CTC + DA [93] 98.31% 97.89% 97.21% 96.78% 97.55%

Average 86.78% 85.54% 85.21% 83.08% 84.00

3.2.4. LRS

The Lip-Reading Sentences dataset (LRS) [45] was one of the first in-the-wild sentence-
level ALR datasets. It was created by the same team of researchers as the LRW dataset [43],
and thus, the methods used to extract the data are practically the same, with slight differ-
ences to account for sentences instead of only words. They extracted their videos from the
BBC television network’s collection of interviews, just like the LRW dataset. These videos
offer a large range of individuals with high variation in age, gender, ethnicity, etc. This
utilization of a large database of videos introduced much-needed variation and noise that
sentence-level ALR systems needed to challenge them and test how robust they can be.
During the collection of this dataset, the research team determined that a head pose of any
angle between 0° and 30° was acceptable, and thus, the dataset is also more varied in head
position compared to other datasets with head pose limitations. The LRS dataset set a new
standard for sentence-level datasets in size and variation.

The LRS team had a professional lip-reader attempt to read the lips of the dataset as a
comparison for the results. The professional lip-reader achieved a word error rate (WER) of
73.8%, meaning that he correctly annotated 26.2% of words. The initial evaluation carried
out by the LRS team utilizing a CNN + LSTM front-end and an LSTM + attention back-end
achieved 49.8% accuracy. While these results are not incredibly impressive, they do show
that machines can outperform even a professional lip-reader. Due to licensing restrictions,
the LRS dataset is not public; thus, the same team quickly followed up by creating the
MV-LRS [84], LRS2-BBC [95], and LRS3-TED [97] datasets, as described below.

3.2.5. MV-LRS

The Mulit-View Lip-Reading Sentence (MV-LRS) dataset [84] expands upon the
LRS [45] dataset. Instead of only using videos from BBC TV interviews, they also used
videos from dramas and factual programs to increase the variety and, likely, the emotional
variance in the speakers’ faces. They also increased the allowed range of angles for head
position to up to 90°. This introduced a lot more variety and difficulty in the dataset. Due
to licensing restrictions, the MV-LRS dataset is not public, thus increasing the need for
LRS2-BBC and LRS3-TED, as described below. This restriction results in the state-of-the-art
results being achieved by the creators of the dataset. They achieved 47.2% accuracy using
a VGG-M [111] and LSTM front-end and an LSTM and attention back-end. They also



Electronics 2023, 12, 4698 13 of 28

evaluated this method on the OuluVS2 dataset and found then state-of-the-art results, as
seen in Table 4.

3.2.6. LRS2-BBC

Due to the license limitations on the LRS [45] and MV-LRS [84] datasets, the LRS team
created the LRS2-BBC [95] and LRS3-TED [97] datasets to supersede the LRS and MV-LRS
datasets. The LRS2-BBC dataset was collected in the same manner as the LRS dataset
with an expanded video set for the BBC TV programs. As seen in Table 3 the LRS-BBC
dataset has more videos and higher vocabulary coverage than the LRS dataset. It has fewer
videos than the MV-LRS dataset but higher vocabulary coverage. This dataset has become
a benchmark dataset for many new ALR systems thanks to its variation, its large number
of videos, and its vocabulary.

Ref. [96] has achieved the state-of-the-art results at 64.8% on the LRS2-BBC dataset. To
achieve this level of accuracy, they created a neural network pipeline that first classifies
visemes, then detects what words are likely said based on those visemes. The visual front-
end is made up of 3D convolution and 2D ResNet; this is followed by the transformer-based
viseme classifier. The visemes are then fed into the transformer-based word classifier, which
predicts what words are said. This method is very intriguing because visemes are what
can be discerned from visual-only systems, so separating it out at that point allows for the
network to become very good at viseme classification. Then, the word classifier has to use
the context from all the visemes to determine the actual words.

3.2.7. LRS3-TED

The LRS3-TED [97] was collected in the same way as the LRS2-BBC dataset. It was
extracted from TED and TEDx talks from YouTube. As seen in Table 3, it is a very large
dataset. It does not have as many videos as the MV-LRS [84] dataset, but unlike the MV-LRS
dataset, it is publicly available and, therefore, has become a benchmark dataset for many
new ALR systems. The current state-of-the-art accuracy is 63.7%, achieved by [98], who
utilized a 3DCNN and ResNet-18 front-end and a conformer encoder [112] as the back-end.
They found that supplementing their training dataset with other publicly available datasets
further improved their system to achieve 80.9%. This is not listed as the state-of-the-art
because there is possible overlap between individuals, but it does show that even better
results are possible. The conformer encoder is an example of another NLP network that
has been found to yield impressive results in ALR systems.

3.2.8. CMLR

The CMLR dataset [102] is a large, highly varied Mandarin Chinese sentence-level
ALR dataset collected from Chinese TV programs, much like LRS [45]. It is small when
compared to the LRS family of datasets [45,84,95,97] but is useful for evaluating models on
other possibly more difficult languages. The state-of-the-art results on this dataset were
achieved by the creators, with an accuracy of 67.52%.

3.2.9. LSVSR

Shillingford et al. trained on a large custom dataset named Large-Scale Visual Speech
Recognition (LSVSR; see Table 3), which contains 3886 h of content [100]. For reference, the
LRS3-TED dataset contains under 500 h. They evaluated their model on LRS3-TED and
achieved a then-state-of-the-art result of 53%. These results, however, are very insightful,
as they indicate that higher-variation datasets will bring incredible results to the ALR
research community.

3.2.10. YTDEV18

Makino et al. created and trained on a YouTube dataset named YTDEV18, which is
not publicly available [102]. They did, however, say that it contains 31,000 h of lip-reading
footage. They evaluated their network on LRS3-TED [97], which is publicly available, and
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achieved a higher-than-state-of-the-art accuracy of 66.4%. This is not listed as the state-of-
the-art accuracy in Table 3 due to the fact that this model was not exclusively trained on
LRS3-TED. They ensured that the training data in YTDEV18 and the test data in LRS3-TED
had no specific video overlap; they could, however have overlapped individuals. They
implemented an RNN-T or transducer [113]. They exhibited that using a high-variation
dataset (YTDEV18) can result in very good results, as indicated by their LRS3-TED results.

Serdyuk et al. improved upon this work. Using YTDEV18 for training and evaluating
the LRS3-TED dataset, they achieved a staggering 74.1% accuracy [114]. This was achieved
by implementing the first (to their knowledge) purely transformer-based model for this task.

This team at Google further improved their results by using a conformer encoder [115].
Again, they used the large YTDEV18 dataset for training, as well as an even larger dataset
scraped from YouTube for pretraining. They achieved an immense increase in performance
with an accuracy of 87.2% on the LRS3-TED dataset.

These examples demonstrate one of the huge issues in visual lip-reading right now.
These researchers’ models are trained on a dataset that had much more variation, which
led to state-of-the-art results, but that dataset, along with its labels, is not accessible to the
public and thus is unable to be authenticated as a reliable dataset. Furthermore, it cannot
be used in future works to improve results [65].

3.2.11. Other Supplemental Datasets

The landscape of ALR system training has recently been transformed, largely due to the
significant accuracy gains achieved through the use of the massive YTDEV18 dataset [115].
However, the exclusivity of this dataset necessitates that other researchers seek alternative
supplementary datasets. In this context, the work of Ma et al. [98] is particularly noteworthy.
They demonstrated that augmenting the training dataset with automatically transcribed
data from the VoxCeleb2 [69] and AVSpeech [116] datasets using open-source speech-to-
text software could substantially enhance network performance. Additionally, their use
of the LRW [82] and LRS2-BBC [95] datasets further enriched the training process. This
comprehensive approach resulted in a leap from 63.7% accuracy without supplemental data
to 80.9% accuracy with the addition of approximately 3000 h of extra training data. While
these results do not quite match the performance achieved with the 31,000-h YTDEV18
dataset [115], the public availability of these alternative datasets offers a valuable re-
source for future research, holding the promise of even further advancements in ALR
system training.

3.2.12. SynthVSR

Building on the need for supplemental datasets to improve performance, Liu et al.
demonstrated that incorporating synthetic data significantly enhances performance in
visual lip-reading (VLR) systems [103]. Their study revealed that training solely on the
438 h LRS3-TED training set yielded an accuracy of 63.3%. However, integrating an
additional 3652 h of synthetic data boosted this figure to 71.6%. The inclusion of previ-
ously mentioned auto-labeled data from the VoxCeleb2 [69] and AVSpeech [116] datasets,
amounting to 2630 h, further augmented the accuracy to an impressive 83.1%. This synthetic
dataset was meticulously crafted by animating CelebA [117] images with lip movements
synchronized to audio samples from the LibriSpeech [118] and TED-LIUM 3 [119] databases
using a specially developed speech-driven lip animation model. Regrettably, this extensive
3652 h synthetic dataset is not yet available for public use. The authors point out that the
data used to train and create their synthetic data are, however, publicly accessible. The
findings of Liu et al. underline the significant role synthetic data can play in elevating the
accuracy of VLR systems, showcasing its potential as a rapid and efficient means to enrich
training datasets.
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3.2.13. Methods

The methods of data collection for sentence-level ALR datasets are very similar to those
used for word-level ALR datasets. Some initial datasets were similarly collected in con-
trolled, consistent environments, such as GRID [90], OuluVS2 [92], and MODALITY [94].
These datasets were integral for preliminary sentence-level lip-reading and are often used
as a way for researchers to validate new datasets that are released; i.e., when Chung et al.
released the LRS dataset [84], they trained a model on the LRS dataset and validated it on
the GRID dataset [90] to authenticate their proposed dataset. The other method of collection
is extracting videos of individuals speaking from large video libraries. These datasets are
termed “in-the-wild” datasets due to their large variety of individuals, vocabulary, lighting,
resolution, etc. The common in-the-wild datasets used are LRS [45], MV-LRS [84], LRS2-
BBC [95], LRS3-TED [97], LSVSR [100], CMLR [101], and YTDEV18 [102]. This method of
dataset extraction has proven very useful to increase accuracy across all datasets. It is also
crucial to highlight the variance in speech characteristics across these datasets. Some offer
more structured and formal speech contexts, while others encompass a broader and more
varied range of speech situations. For a comprehensive comparison of the speech contexts
in each dataset, refer to Table 5.

The advancements in synthetic data utilization, as illustrated by Liu et al. [103], signal
an imperative for continued research in this area. The YTDEV18 dataset exemplifies the
principle that larger datasets typically yield superior results. However, compiling extensive
datasets such as YTDEV18 poses significant challenges, often being both resource-intensive
and costly. Synthetic data emerges as a promising solution to this dilemma, offering a
cost-effective and rapid means of acquiring substantial data volumes. This approach could
potentially mitigate the challenges associated with the collection of large-scale datasets,
underscoring the necessity for further exploration and development in the field of synthetic
data generation and application.

The neural network architecture and training methods vary greatly in the literature.
This will not be covered in this work as we focus on the data-driven advancements. It
is important to note, however, that the method of input and output to these sentence-
level ALR systems is quite consistent. The goal of such a system is to take an image
sequence and dictate what the subject is saying based purely on visual information. Because
the goal of these systems is aligned, they can be compared by evaluating them on the
datasets highlighted.

Table 5. This table delineates key sentence-level audio–visual lip-reading datasets, outlining their re-
lease year, language, peak accuracy achieved, and the specific context of data collection. It underscores
the variety in dataset environments ranging from controlled, structured settings to diverse, real-world
scenarios, including TV programs, formal lectures, and YouTube content. Additionally, it reflects on
the innovative use of synthetic data, offering a holistic view for researchers to assess the datasets’
relevance and potential applicability in the evolving domain of audio–visual speech recognition.

Dataset Year Language SOTA Accuracy Speech Scenario

GRID [90] 2006 English 98.7% [91] Structured sentences
GRID-Lombard [99] 2018 English N/A Structured sentences

OuluVS2 [92] 2015 English 98.31% [93] Controlled sentences
MODALITY [94] 2017 English 54.00% [94] Controlled sentences

LRS [45] 2017 English 49.8% [45] TV interviews
MV-LRS [84] 2017 English 47.2% [84] TV programs

LRS2-BBC [95] 2018 English 64.8% [96] TV programs
LRS3-TED [97] 2018 English 63.7% [98] Formal lectures

CMLR [101] 2019 Mandarin 67.52% [101] TV programs
LSVSR [100] 2018 English 59.1% [100] YouTube videos

YTDEV18 [102] 2019 English N/A YouTube videos
SynthVSR [103] 2023 English N/A Synthetic data
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3.2.14. Findings

Comparing the datasets by looking at Table 3, we can see that the in-the-wild datasets
firstly contain much more data (as indicated by the utterances and hours columns) and are
much more difficult for ALR systems to achieve high accuracy on. Due to this difficulty
and variation, many previous works choose these datasets as the benchmark to validate
their methods. In particular, the LRS3-TED dataset has been used most frequently due to
its large hour and utterance counts, its difficulty, and its availability. The LRS family of
datasets brought about new standards and challenges to the ALR research community. Due
to the medium in which the videos were collected, they contain highly variant videos when
it comes to head position, lighting, ethnicity, and vocabulary.

The supplemental training datasets, including the LSVSR, YTDEV18 and SynthVSR
datasets, illustrated that there is even more room to grow when it comes to large-scale
datasets. These datasets, unfortunately, are not made publicly available and thus cannot be-
come benchmark datasets for future research. This illustrates a need for even larger datasets
that are publicly accessible for the research community to make even more progress. The en-
hancement in performance achieved by incorporating substantial supplemental datasets is
a recurring theme in recent research, as evidenced in a range of studies [98,114,115,120,121],
including those utilizing synthetic datasets [103]. These findings reflect a broader trend
within the field of deep learning, emphasizing the pivotal role of large datasets in augment-
ing training processes. The significant improvements garnered through the integration of
extensive data volumes not only validate the current methodologies but also lay a founda-
tion for future breakthroughs. This trend underscores the ever-increasing importance of
data quantity in driving advancements in deep learning, suggesting that further exploration
and utilization of large and diverse datasets will continue to be a key factor in propelling
the field forward.

With the transition from word- to sentence-level ALR datasets and systems, new
solutions were found to address issues such as visemes and provide much-needed context.
The results on the sentence-level datasets are still not very high when compared to audio-
based dictation or when compared to word-level ALR systems. Therefore, the next logical
step to enable even more context and challenges is to expand the context past single
sentences. In the case of the LRS3-TED dataset, this could mean using the context from the
previous sentence to increase results on the current one. New datasets must also be created
to allow for dialogue level ALR systems that take the context from the previous sentence
independent of who said it to inform the network on the current sentence.

4. Lip Motion as Authentication

Lip motion authentication is a less-researched yet interesting biometric authentication
method that allows an individual to authenticate by repeating a facial password. Due
to the lower development of these systems, there are many different ways to achieve
authentication with lip motion. This makes it difficult to determine which system is more
accurate and to determine what dataset is the best benchmark for these systems. A common
metric for these authentication systems is the equal error rate (EER). This is the percentage
at which the false-positive and false-negative rates are equal. Thus, if the EER is 5%, then
that system will result in 5% false positives as well as 5% false negatives.

4.1. Datasets

Because this area of research is less explored compared to other biometric methods,
there are fewer datasets to utilize when attempting a new method for lip motion authenti-
cation. There are a few, however, that can prove useful.
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4.1.1. XM2VTS

Messer et al. created the XM2VTS dataset, which many lip authentication methods
use to validate their methods (see Table 6) [122]. This dataset consists of 295 speakers who
repeated the same 3 sentences. The sentences are as follows: “0 1 2 3 4 5 6 7 8 9”, “5 0
6 9 2 8 1 3 7 4”, and “Joe took fathers green shoe bench out”. Each subject repeated the
sentences during four separate sessions, which were uniformly spaced out over 5 months.
These individuals speaking the same and different sentences are tested against each other
to discover how well a system works. This dataset has advantages and disadvantages
compared to other datasets. For example, there is a high number of individuals, but the
amount of “passwords” is relatively low.

4.1.2. VidTIMIT

Sanderson et al. created a dataset named VidTIMIT [123]. It contains recordings of 43
individuals across 3 separate sessions. The sessions were, on average, 6.5 days apart. Each
person was assigned 10 different sentences chosen from the TIMIT speech dataset [124],
which were recorded only once, resulting in 430 recordings. While this dataset’s variation
in sentences is better than that of VM2VTS, it does not contain multiple recordings of each
sentence and thus is less useful in authentication settings.

4.1.3. qFace and FAVLIPS

Wright et al. created two datasets that are available upon request [125]. The first
dataset is qFace. It was collected to determine if networks trained on XM2VTS would be
applicable to the real world. It contains 10 individuals saying 10 different digit sequences
8 times each. The videos were collected on a mobile device. This dataset is limited but
fulfills its intended purpose of testing the real-world applicability of the XM2VTS dataset.
Using the same network, the authors achieved an equal error rate (EER) of 1.65% on the
XM2VTS dataset and an EER of 6.25% on the qFace dataset. This discrepancy is somewhat
expected when the XM2VTS dataset’s lack of variation is considered.

The second dataset is the FAVLIPS dataset, which contains data collected on a mobile
device from 42 individuals over 4 sessions with one month of time between each session.
During each session, the individuals would repeat the following: utter ten digits in series,
utter a randomized 10-digit sequence (which was the same for all users), subvocalize the
same two digit sequences, utter the randomized 10 digit sequence in 3 different lighting
conditions, and utter a randomly selected sentence from the TIMIT speech dataset [124].

The FAVLIPS dataset is a useful dataset to evaluate change over time. Table 7 demon-
strates the utility of the FAVLIPS dataset. We can see that only training on the XM2VTS
dataset does not result in very high accuracies on the FAVLIPS dataset due to the real-
world variation. Updating a model with new weights based on the FAVLIPS training data
improves the results immensely. Further improvement is seen in some lighting conditions
when a network is trained concurrently on the XM2VTS and FAVLIPS datasets. While
the FAVLIPS dataset lacks in the subject count compared to XM2VTS, it has more diverse
sentences, as well as more diverse lighting and background conditions. The qFace results,
as well as the FAVLIPS results, illustrate a need for a large-scale, highly varied dataset for
this authentication method. The FAVLIPS dataset is a dataset that could be used by other
researchers to determine how robust their lip motion authentication systems are on a more
varied dataset.
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4.1.4. Existing Datasets

Another method for testing lip motion authentication is by evaluating on an already
existing lip-reading dataset. Ref. [126] trained and tested on the OuluVS [104] dataset
mentioned previously and found that adding lip motion tracking to a conventional facial
authentication system increased accuracy from 83.75% to 93.25%. Ref. [127] similarly
evaluated their lip motion authentication method on a portion of the AV Digits lip-reading
dataset [128]. These methods of using more varied lip-reading datasets appear to be very
viable due to their variation and large size.

4.1.5. Private Datasets

Most of the other lip motion authentication methods utilize datasets collected for their
specific task. These are most often not publicly available and therefore will not be covered
in detail. This illustrates one of the large issues with lip motion authentication research at
present. Each system comes at the problem in a different way.

4.2. Methods

Faraj et al. utilizes lip motion as a form of liveness detection [129]. Their system
ensures that the lips have temporal changes in shape, thus indicating if the person is, in fact,
there compared to a static image. Similarly, Ref. [130] designed a system that authenticates
based on if the person’s lips move, as well as their lip structure.

The systems [125,131–134] that utilize the XM2VTS dataset compare individuals speak-
ing the same phrases and distinguish between them by determining how each individual
utters the same phrases. Similar approaches are often used by other systems as well.
Ref. [135] designed a system that distinguishes between individuals based on how they
smile. Ref. [136] designed a system that authenticates based on the physiological char-
acteristics of lip contour movements while a person speaks. Ref. [137] utilizes audio
biometrics in addition to lip motion tracking carried out by ultrasonic signals to determine
an individual’s unique way of speaking audibly as well as physically.

Many systems allow the user to choose their own unique lip motion passphrase or
password. One system was designed to track the motion of the entire face for authenti-
cation [138]. It allows each individual to select a face or lip motion as their password to
authenticate. This is combined with conventional facial authentication to increase security.
Ref. [139] introduced a visual passphrase system that separates out each word in the user’s
phrase or sentence passphrase and creates a unique feature vector for each word, which
is compared to the stored feature vectors to authenticate. Refs. [140,141] both designed
a system that authenticates a person based on the structure of their lips as well as a lip
motion passphrase. Refs. [67,142] utilized acoustic signals to track the lip motion patterns
of individuals as they speak their passphrase to authenticate in combination with conven-
tional facial authentication. Refs. [67,143] both similarly used ultrasonic lip motion tracking
to authenticate a user when they speak their chosen passphrase. Ref. [144] designed a
four-factor authentication system. They used conventional facial authentication, lip-reading
to ensure the person said the same phrase, speech authentication to ensure the person
sounds the same, and lip motion authentication to ensure that the user moved their lips in
the same way as they did for their stored password.
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Table 6. Comparison of lip motion authentication systems’ architecture, the datasets used, and
the results achieved. XM2VTS is the only generally used benchmark dataset, but the number of
speakers is still immensely small compared to datasets used for ALR systems. It can be very difficult
to compare these systems due to dataset differences, method differences, and metric differences.
Neural network architectures are listed for convenience and are not discussed at length in this
work. It is important to acknowledge that the comparison of datasets can be challenging when
looking at the various metrics. These metrics presented are intended to illustrate potential areas for
improvement in the field rather than be used for direct comparison between datasets. This perspective
recognizes the inherent variability and specific conditions of each test environment, emphasizing
that these metrics are indicative benchmarks rather than definitive comparisons. * Number of videos
(number of speakers not provided); ** Motion only results; HMM: hidden Markov model [145];
GMM: Gaussian mixture model; GMVE: generalized minimum volume ellipsoid; DP: dynamic
programming matching; LMK: CNN-based landmark detector [146]; EV: eigenvectors; ELM: extreme
learning machine; UT: ultrasonic; AL: audio–lip motion tracking; SNN: Siamese neural network.

Paper (Year) Method(s) Dataset Speakers Network Architecture Metric Results

[131] (2000) Motion XM2VTS 295 GMVE EER 14%
[147] (2003) Motion M2VTS 36 HMM EER 19.7%

[148] (2004) Voice and
motion VidTIMIT [123] 43 GMM EER 1.0%

[141] (2004) Motion Private 40 HMM EER 5.1%

[149] (2006) Face and
motion BioID [150] 25 2D-DCT + KNN Accuracy 86%

[129] (2006) Voice and
motion XM2VTS 295 GMM EER 22% **, 2%

[151] (2007) Voice and
motion XM2VTS 295 GMM Accuracy 78% **, 98%

[140] (2011) Structrue and
motion Private 21 DTW Accuracy 99.5%

[132] (2012) Voice and
motion XM2VTS 295 GMM Accuracy 94.7%

[152] (2013) Motion Private 43 DP FAR@ 3% FRR 14.5%
[139] (2014) Motion Private [153] 20 KNN + DTW [154] Accuracy 92.4%
[155] (2015) Motion XM2VTS 295 GMM EER 2.2%
[136] (2017) Motion Private 20 GMM Accuracy 96.2%
[143] (2018) UT Motion Private 50 SVM TNR & TPR 86.7% & 76.7%

[126] (2018) Face and
motion OuluVS [104] 20 EV + ELM Accuracy 71% **, 93.25%

[135] (2018) Face and
motion Other [135,156] 400 & 104 CNN + LSTM EER 0.37%

[133] (2019) Motion XM2VTS 295 STCNN + Bi-GRU EER 1.03%
[125] (2020) Motion XM2VTS 295 SNN EER 1.65%
[127] (2020) Motion AV Digits [128] 39 3DCNN + Bi-LSTM EER 9%

[67] (2021) AL, voice, and
face Private 44 CNN + LSTM EER 5%

[144] (2021) Voice and
motion Private 240 * LMK + 3D Resnet FAR & FRR 0.25% & 18.25%

[137] (2021) Voice and
motion Private 50 N/A Accuracy 95.89%

[138] (2021) Face and
motion Private 10 LMK + RNN + FC AP 98.8% **

[157] (2022) Face and
motion Private 10 [138] + 38 LMK + Transformer AP 94.9% **

[158] (2022) Face and
motion Private 48 [157] + 11 CNN + Transformer AP 98.8% **

[134] (2022) Motion XM2VTS 295 DWLSTM + GRU Accuracy 96.78%

4.3. Findings

As illustrated, lip motion authentication research is very fragmented. The datasets that
are publicly available are small and very limited when it comes to variation.
Chowdhury et al. concluded that the work that has been conducted largely avoids uncon-
strained scenarios and larger population evaluations [70]. This coincides with what we have
determined here. The datasets built for lip motion authentication are small and very con-



Electronics 2023, 12, 4698 20 of 28

strained. While implementing our facial and lip motion authentication system [138,157,158],
we found that the real-world unconstrained scenario resulted in a decrease in accuracy and
revealed many oversights in our dataset [159]. For these types of authentication methods
to succeed, immensely large datasets are required to verify their validity. As shown, there
is also a very wide range of implementations for lip motion authentication systems. This
has made it difficult to compare the various implementations and thus difficult to gauge
the contribution of the research that has been conducted. A new benchmark dataset would
unite the lip motion biometric research field to allow for comparisons and reviews that
would increase the validity of the research conducted.

Table 7. Write et. al found that the small lip motion authentication benchmark dataset (XM2VTS)
was not sufficient for training [125]. They collected the FAVLIPS dataset to validate their lip motion
authentication system, which was trained on the XM2VTS dataset. The FAVLIPS dataset contains
more variation when it comes to lighting and spaces in time that are very beneficial when analyzing
the real-world applicability of such a system. As seen, the XM2VTS dataset is not sufficient for
real-world applicability. They then used a section of the FAVLIPS dataset to train the network and
saw improvements, as shown. It is apparent that further improvements are needed as the lowest
error achieved is only 13.79% even in neutral lighting. All numbers reported are the equal error rate
(EER).

Training Data

Evaluation Data XM2VTS Only Pretrained on XM2VTS; Updated on FAVLIPS XM2VTS + FAVLIPS

XM2VTS: evaluation set 1.21% 1.95% 5.60%

FAVLIPS: neutral nums 22.43% 13.79% 10.83%

FAVLIPS: light front 28.44% 17.50% 20.54%

FAVLIPS: light side 42.29% 36.67% 30.00%

FAVLIPS: light behind 44.91% 24.17% 29.12%

5. Future Directions
5.1. Automated Lip-Reading

The ALR datasets have driven immense improvements in the literature. There are signs
that training on more and more data will continue to improve
accuracy [98,103,114,115,120]. The highest accuracies achieved are often from models
trained on as much data as possible. Unfortunately, the data they train on are either not
verified to be distinct from the validation/test set, or the data they train on are not publicly
accessible. This makes it difficult to validate the results and makes it more difficult to
progress past the work conducted previously. We propose that there is a need for even
larger benchmark datasets that are publicly accessible to drive the research solutions to
new capabilities.

As described, we propose the next modality shift in ALR systems is to move from
sentence-level lip-reading to dialogue-level lip-reading. A dialogue-level ALR system has
the potential to use dialogue-level context to improve results. Such a system would be
able to have a broader understanding of the context of given speech and thus work in
more cases that are not present in datasets as they stand thus far. This would help systems
become more general ALR systems rather than be specific to a particular type of speech,
e.g., a model trained on the LRS3-TED dataset [97] is trained only on technical presentation
speech and thus would likely perform more poorly in a conversation context or in the
context of general speeches. This is an advancement that cannot occur without a large
dataset first being collected for future works to train and test on. A dataset that is collected
in the wild and contains even more data than the datasets thus far is required to advance
past the current systems.
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5.2. Lip Motion Authentication

As discussed, the previous systems in lip motion authentication struggle to validate
their results due to the lack of an unrestricted, large dataset. We propose that the lip motion
authentication research requires such a dataset for advancements to occur and real-world
applications to be viable. This dataset should learn from the dataset extraction pipelines
used to collect lip-reading datasets, such as LRS3-TED [97]. Such a dataset collected from a
large video library would have the much-needed real-world variation in lighting, timing,
background, etc.

The other large issue in the current literature of lip motion authentication systems
is due to the variations in methods of authentication. Some use an enrolled passphrase
to compare against, thus ensuring the subject uttered the same word, phrase, or sentence.
Others attempt to train a neural network to recognize a person based on how their lips move
in general, thus ensuring the subject is the same because their lips move similarly enough
to the enrolled subject. Future work needs to compare these two methods and consider
the viability of both. Benchmark datasets for both of these cases would be paramount to
determine which of these methods is more viable and accurate.

6. Ethics

As with many applications that neural networks are being used in, there are ethical
considerations that need to be addressed. Many of the previous works in datasets and
methods do not address the ethical concerns surrounding their work.

6.1. Dataset Collection

A growing industry in the era of deep learning is data collection, labeling, acquisition,
and magnetization. The ethics behind the collection and use of this data has been brought
into question recently, particularly by the European Union [160]. Many of the datasets
collected thus far in the areas of automated lip-reading and lip motion authentication fail
to discuss how they are addressing the ethical concerns around the data collected. This is
something that is becoming ever more important to the general public. Thus, future works
that aim to collect the large-scale datasets required for these tasks should consider and
mention the ethical collection of said datasets.

6.2. Dataset Usage

The use of the datasets collected can also bring up many ethical considerations that
have not been discussed sufficiently. The neural networks trained with these large, diverse
datasets are very intriguing for improving human–computer interfaces and aiding disabled
individuals, but they can also be used to invade the privacy of individual’s conversations
and privacy. Prajwal et al. points out that the limitations of the current datasets, such
as resolution and head poses, make it more difficult to use in these situations. It is,
however, important to keep this in mind with future datasets and development [120]. As
the datasets described and proposed in this work will enable real-world applicability, use,
and commercialization, the ethical considerations need to be addressed by those collecting
and releasing the datasets, as well as those that use them.

6.3. Ethnic and Dialect Issues

A significant yet under-explored factor impacting the performance of automatic lip-
reading (ALR) and lip motion authentication systems is the influence of dialects, accents,
and the effects of subjects not natively speaking the language under evaluation. This
element becomes crucial in the collection and utilization of datasets for training, as well as
in the real-world application of these systems in unconstrained environments. Ethnicity
and dialect variations can introduce complexities in accurately interpreting lip movements,
which, in turn, can affect the efficacy of these technologies. Furthermore, these consider-
ations raise ethical questions regarding inclusivity and bias, aspects that have received
limited attention in prior research on ALR and lip motion authentication. Addressing
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these issues is essential to ensure that these technologies are equitable and effective across
diverse populations.

7. Conclusions

Lip-reading has progressed immensely in the last twenty years. There have been many
advancements in the realms of datasets that have ushered in new advancements in the algo-
rithms. As discussed, there has been a shift in the focus and goal of lip-reading models as
advancements have been made, moving from single sounds, to digits, to words, to phrases,
and now to sentences. While sentences have much room for improvement, Ref. [36] points
out that there is a limit to how many words can be recognized by vision alone. This limit is
reduced and partially overcome by sentence-level lip-reading due to the temporal context
introduced by the sentence structure [161]. This temporal context can be even further im-
proved by broadening the scope even further from sentences to larger sections of sentences
and even to conversations between people.

The natural language processing (NLP) field of research has shown that more context
can improve accuracy. Applying current ALR strategies to data throughout a dialogue
could allow for ALR systems to gain even more context and result in even higher accuracy
levels to further this exciting area of research. To move forward to this next step in increased
accuracy and real-world unconstrained scenarios, new datasets are required. We propose
such datasets will usher in a new round of advancements in the ALR research community
and help these systems come much closer to applicability and generalizability in the
real world.

There is also strong evidence, as shown in this work, that the larger the training dataset
a system is trained on, the higher the accuracy. We propose the need for even larger, more
diverse, publicly accessible benchmark datasets to further the research in the ALR field.

The lip motion as authentication world also needs an overhaul when it comes to
datasets. There has not been a dataset similar to the LRS family of datasets that has high
amounts of variation and in-the-wild data that also has large amounts of individuals.
Due to the limited datasets available, the previous lip motion authentication research
works struggle to compare their contributions to previous works and struggle to prove
their applicability in unconstrained scenarios. To reach the desired levels of accuracy,
applicability, and comparability, new datasets are required for training and evaluating such
systems.

This work offers an in-depth analysis of the data-driven advancements that have
emerged in the fields of visual lip-reading and visual lip motion authentication. We high-
light the significance of large datasets and the potential growth in these fields as new
datasets become available. By conducting a comprehensive review of previous advance-
ments facilitated by new benchmark datasets, our objective is to assist future research
endeavors in locating the datasets required for their tasks and to foster further dataset
creation, thereby facilitating even more data-driven advancements in these exciting fields.
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