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Abstract: Rural mobility has a lack of innovative proposals in contrast with its urban counterpart.
This research aims to bring solutions that ease the implementation of reliable and flexible rural
transportation. Demand-responsive transportation is chosen to develop a public transportation
service providing interurban trips among several rural settlements. Given the characteristics of rural
displacement demand, a novel approach is introduced to optimize the service’s economic costs: the
dynamic transfer point allocation. The problem is fully formulated and an architecture is introduced
describing the workflow of the whole system. Data from an interurban bus transportation service are
used to build a case study of a rural area of Valencia, Spain, and develop several examples illustrating
the benefits of the proposed approach. The results reveal that the dynamic creation of transfer points
can simplify the transportation fleet’s itineraries and boost the amount of served travel requests. Fi-
nally, a discussion of the benefits and dangers of flexible features in rural transportation is developed,
underscoring the need to achieve a balance between dynamic operation and service quality.

Keywords: demand-responsive transportation; rural mobility; optimization; artificial intelligence

1. Introduction

Historically, better transportation services have been implemented in urban areas
than in their rural counterparts. Cities contain more potential customers and steadier
demand, making the economic viability of their transportation services easier to achieve.
Nevertheless, rural inhabitants have crucial displacement needs, such as commuting, school
transportation, and even trips to the nearest health center. In general, rural settlements
count on traditional public transportation options that provide no adaptability or flexibility
for their users’ experience. Because of the characteristics of rural areas, with a low and scarce
transportation demand, we aim for demand-responsive transportation (DRT) systems as a
potential service to provide flexible and user-tailored transportation. However, demand-
responsive services have shown a high failure rate in the past. With that in mind, our
research aims to determine how demand-responsive transportation can be effectively
implemented in rural areas. To answer such an inquiry, we introduce the notion of dynamic
transfer point allocation.

The problem of dynamic transfer point allocation in the field of rural demand-responsive
mobility revolves around the task of effectively designating transfer points to optimize the
operational efficiency of DRT services in rural settlements. Within this context, transfer
points denote specific locations where passengers have the opportunity to switch between
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distinct fleet vehicles, such as buses or vans, en route to their ultimate destinations. Con-
ventionally, transportation systems establish fixed transfer points. Nevertheless, such an
approach may prove inadequate for accommodating the diverse needs of rural passengers.
This issue arises from the inherent variability in transportation demand within rural areas,
wherein demand levels can exhibit significant fluctuations across different times of day,
days of the week, or even seasons of the year [1]. The proposal of activation and deactiva-
tion of transfer points according to real-time demand comprises a novel approach to DRT
optimization that avoids the issues that static transfer locations raise.

Viable solutions to address this challenge can be derived from the application of
data-driven methodologies, which leverage real-time data to enact adaptive changes in
response to prevailing demand patterns [2]. For instance, a transportation provider could
harness real-time data concerning passenger requests and travel behaviors to identify
regions experiencing heightened demand. Subsequently, based on this data-driven insight,
the provider could strategically allocate additional transfer points to facilitate efficient
passenger transit and ensure that travelers can reach their intended destinations expedi-
tiously. This data-driven approach holds the potential to enhance the effectiveness and
responsiveness of rural demand-responsive mobility services.

The exploration of these intelligent techniques in the context of rural DRT optimization,
however, remains relatively limited. Several factors contribute to this, including the scarcity
of relevant data and, to some extent, the lower socioeconomic incentive for developing
concrete solutions for rural mobility challenges [3].

In alignment with the aforementioned research gap, our research aims at the develop-
ment of artificial intelligence techniques to optimize flexible rural mobility. We believe that
the introduction of dynamic features in rural transportation has the potential to alleviate
the challenges derived from its demand shape. Continuously assessing passenger requests,
traffic conditions, and other relevant factors, these algorithms enable the dynamic reconfig-
uration of the transportation layout to enhance service efficiency and adapt to changing
conditions. From the many dynamic features, the current research focuses on the real-time
activation of transfer points, putting forth the following research question: How does the
creation of transfer points impact a demand-responsive service?

Our paper contributes to the topic at hand with an architecture proposal that integrates
a demand-responsive scheduling service together with a dynamic transfer point allocation
system. The data that such an architecture requires are explained, in addition to its work-
flow. Then, a case study is developed, deploying a DRT service over a real rural area. The
different examples of transfer point allocation developed illustrate how this method oper-
ates and its beneficial impact on the transportation service’s benefits. Finally, we provide a
discussion assessing our results and going over crucial challenges of rural transportation,
such as the necessary trade-off between operational cost optimization and service quality
in transportation services, as well as the adoption rate of flexible transportation, which is
generally harder on rural settlements.

This work is an extended version of the paper “Dynamic transfer point allocation
for rural demand-responsive mobility” [4], presented at the Sustainable Smart Cities and
Territories International Conference (SSCt 2023). The rest of the paper is structured as
follows: Section 2 presents previous related work; Section 3 formalizes the problem of
transfer point allocation for rural demand-responsive mobility; then, Section 4 illustrates
the optimization of rural DRT services through the development of a real-world-inspired
case study. Section 5 assesses the results of the case study, discussing the challenges that
flexible transportation systems face when implemented in a rural area; finally, Section 6
sums up the work and presents future contributions.

2. Literature Review

The analysis of prior research in this paper unfolds along three distinct aspects. First, it
revisits articles containing artificial intelligence techniques that could aid in the implemen-
tation of our proposal. Second, it delves into publications encompassing transfer point or
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hub allocation, independently of the domain in which they are situated. Finally, the analysis
also scrutinizes works that are intrinsically linked to the domain of demand-responsive
systems operating within rural environments.

2.1. Artificial Intelligence for Transfer Point Allocation

Artificial intelligence (AI) introduces a multifaceted approach to address the dynamic
transfer point allocation challenge in rural transportation, as detailed in recent research [5].
Regarding DRT optimization, one fundamental approach involves the development of AI
models capable of predicting demand for transportation services in rural regions [6]. These
models take into account a multitude of factors, including temporal aspects such as time of
day, day of the week, and seasonality, as well as external influences like weather conditions
and special events. By leveraging these predictive models, transportation providers can
proactively allocate transfer points in response to anticipated fluctuations in demand,
ensuring efficient service delivery.

Additionally, AI plays a pivotal role in route optimization for vehicles operating in
rural areas [7]. Real-time data on demand patterns and road conditions are harnessed
to guide the efficient deployment of vehicles, enabling them to traverse the most direct
and timely routes. This not only enhances operational efficiency but also ensures that
passengers reach their destinations swiftly and efficiently.

Regarding the explored problem, there are specific AI techniques that could be em-
ployed for the implementation of dynamic transfer point allocation. Genetic algorithms [8],
for instance, offer a powerful approach wherein they generate an initial set of potential
transfer point locations and subsequently refine them through iterative evolution guided by
real-time demand patterns. These algorithms adaptively optimize the locations of transfer
points to align with evolving passenger needs. Moreover, decision trees can be employed
to analyze real-time demand patterns and make informed decisions regarding optimal
transfer point locations based on predefined criteria. This structured approach enables the
system to select transfer points that maximize efficiency and align with specific operational
objectives. Finally, neural networks can be leveraged to analyze real-time demand patterns
and forecast the most efficient locations for transfer points. By processing complex data
and identifying subtle patterns, neural networks can provide valuable insights into transfer
point optimization.

The problem of transfer point allocation is closely related to vehicle routing. The
routes of vehicles have to be taken into account to dynamically choose positions within
the transportation network where transfers may occur. In addition, once a transfer point is
implemented, vehicle rerouting may be necessary to get the most out of transfers. There are
several AI techniques used as a base in the development of innovative routing techniques.
The authors in [9] employ genetic algorithms, a metaheuristic technique, to solve the
dynamic routing of shipping containers in a fuzzy environment, which brings a more
realistic approach to the problem. Similarly, the work in [10] addresses the multiple
traveling salesman problem, arguably a routing problem, through a novel metaheuristic
optimization algorithm referred to as penguin search. Finally, the problem modeling
employed in the research in [11], which is also interesting, deals with a multi-depot vehicle
routing problem. These proposals illustrate the potential that AI techniques have to aid in
transportation decision making and many of its specific problems.

2.2. Hub Allocation across Different Domains

In the topic of hub allocation, various research works have been conducted across
diverse domains. One notable approach involves the strategic distribution of hubs and the
allocation of non-hub nodes to these hub locations, with the objective of minimizing the
maximum travel time or distance between any origin–destination pair. This problem is
referred to as the p-hub center allocation problem. To address this challenge, researchers
have employed integer programming solutions, as demonstrated in notable studies such
as [12]. This work introduces a novel model for assessing the influence of fixed costs in
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the design of transportation hub networks. This model affords the flexibility for diverse
network types to emerge, contingent upon the inherent cost structure. By integrating
environmental hub location modeling methodologies with a three-index formulation, the
authors elucidate how a more intricate cost model can give rise to a range of network
configurations, each contingent on the relative magnitudes of the constituent cost elements.

Hub allocation is also important for the domains of the aviation and telecommunica-
tion industry. In the study [13], researchers introduce an innovative solution to efficiently
address larger instances of hub allocation problems. Their novel DBLSA (Diversity-Based
Large-Scale Algorithm) offers a promising avenue for tackling these complex challenges
effectively. By showcasing the efficacy of the DBLSA algorithm, this study paves the way
for further exploration of advanced metaheuristic methodologies that incorporate learning
mechanisms. Hailing from a distinct domain, the study presented in [14] introduces an
innovative approach centered on genetic algorithms to address the challenge of locating
hubs within an agricultural product transportation network. The primary objective is to
curtail transportation expenses while guaranteeing the punctual delivery of agricultural
goods. The authors conducted extensive testing utilizing data encompassing 48 states of
the United States to validate their approach. The results unveiled a notable achievement,
showcasing a remarkable 16.73% reduction in total transportation costs when compared to
the conventional approach of direct routing.

Hub identification within bus networks has garnered research attention as well. In
this endeavor, the study detailed in [15] proposes a node failure model to discern hub
stations and crucial lines within bus networks. The innovation extends to the introduction
of fresh evaluation indicators, specifically the neighborhood degree ratio and transfer
index, designed to assess station significance and line accessibility. The model is validated
utilizing the Xiamen bus network in China, demonstrating the effectiveness of the newly
introduced indicators in comparison to conventional complex network indicators.

Expanding on the same field, the study outlined in [16] introduces an innovative
bi-objective multi-modal hub location problem. This problem is devised to address the com-
plexities associated with the design of urban public transportation networks in the presence
of uncertainty. The model takes into account multiple assignment and capacity options and
uses a fuzzy multi-objective programming approach for small-sized problems and a meta-
heuristic algorithm for medium and large-sized problems. The aim is the maximization of
transportation benefits and the minimization of transportation time. The research conducts
practical demonstrations on a real-world case study related to the monorail project in the
holy city of Qom, Iran. Furthermore, sensitivity analyses are performed to validate the
model and the proposed approaches.

Within the domain of hub location literature, a particular and specialized challenge
emerges in the form of the allocation of transfer points. This unique problem is delineated
in the work presented in [17], where the authors introduce the transfer point location
problem, identifying the optimal location for a helicopter pad, serving as a transfer point,
to cater to a set of demand points necessitating emergency services originating from a
central facility, such as a hospital. The paper focuses its attention on a specific scenario
in which the location of the central facility is already known, being the primary objective
to determine the most strategic location for a single transfer point, delving into both the
“minisum” and “minimax” variants of the model, scrutinizing these approaches to ascertain
the most suitable configuration.

2.3. Rural Demand-Responsive Systems

On the other hand, previous research in the field of demand-responsive mobility also
addresses the challenge of optimizing service delivery, often with consideration of the
concept of transfer points.

The work in [18] introduces a methodology geared towards aiding decision makers
in making informed choices between two distinct operating policies, demand-responsive
and fixed-route, for establishing connectivity between a residential area and a major transit
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network. The concept of transfer points takes center stage as pivotal locations where
passengers can seamlessly transition between a demand-responsive transit service and a
fixed-route transit service, thereby bridging the residential area with the broader transit
network. In addition, the study identifies the most suitable policy that not only aligns
with the specific transportation needs of the residential area but also maximizes the overall
quality of service delivery.

Similarly, the authors in [19] delve into the implementation of a demand-responsive
connector designed to facilitate the transportation of commuters from their residential
addresses to transit hubs through a shuttle service. Their study also explores various
strategies for implementing the associated vehicle scheduling problems. In this regard,
the research offers a mixed integer linear programming formulation as well as a heuristic
method to address these challenges. An intriguing finding is that a more flexible transporta-
tion system, as exemplified by demand-responsive connectors, can yield cost advantages,
especially in scenarios where transit services are frequent or transit hubs are situated nearby,
without significantly compromising passenger convenience.

In summary, the review of related work presented in this paper shows the notable
diversity in domains and solution types that have been explored within the context of the
transfer point allocation. However, it becomes evident that there is a compelling need to
formulate the problem from a broader and more generalized perspective. Our particular
interest is to tackle the challenges encountered in rural environments, characterized by their
unique and often demanding conditions, as well as limited access to essential resources and
infrastructure. In essence, this comprehensive approach represents a pivotal step toward
addressing the challenges of rural transportation. By leveraging methodologies from a
wide array of disciplines and domains, we can develop impactful solutions that bridge the
gap between rural and urban mobility, fostering progress and well-being in underserved
communities across the globe.

3. Problem Formulation

This section provides a brief overview of DRT systems and outlines their optimization
through the dynamic allocation of transfer points. Then, it proceeds by formulating the
problem and introducing an architectural framework that illustrates the intended operation
of the entire system. Finally, it highlights the constraints that must be taken into account
when implementing a solution in this context.

3.1. Optimizing DRT Systems through Dynamic Transfer Point Allocation

A dynamic DRT system offers displacement services to its users without a fixed
schedule. Instead, vehicles depart on demand, according to the passengers’ necessities.
Passengers issue travel requests (or bookings) with a particular lead time indicating their
origin, destination, and the trip’s time window [20]. Such a window indicates the earliest
possible pick-up time and the latest possible arrival time of the passenger. The system uses
the flexibility given by these time intervals to allocate a passenger to a specific vehicle.

Once a booking is issued, the system assigns the issuing passenger to a vehicle. This
assignment will depend on the number of deployed vehicles and their location, capacity,
current route, and schedule. The assignment of a new passenger may involve a detour of
the current route and a change in the vehicle’s schedule. A passenger can be assigned to
a vehicle provided that the changes resulting from their inclusion do not breach the time
windows of other scheduled passengers. As can be deduced, demand-responsive systems
require allocation, routing, and scheduling algorithms able to return optimized solutions in
real time.

Consider a set of settlements in a specific rural area. A dynamic DRT system serves
those settlements providing transportation between them. In addition, trips between the
nearest city and any of the settlements are also provided.

Given the distinctive characteristics of transportation demand in rural regions, it
is anticipated that demand levels will be relatively low and scarce. With the primary
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objective of optimizing service efficiency and cost-effectiveness, the transportation provider
aims to explore the concept of creating dynamic transfer points. These transfer points are
intended to consolidate passengers originating from various locations into a single vehicle,
effectively maximizing vehicle occupancy. Importantly, the creation of these transfer
points will be dynamic and responsive to real-time demand patterns, with their formation
contingent on the actual demand revealed through the issuance of trip requests within a
specified timeframe.

A transfer point can be allocated by identifying a set of viable locations within the road
network that connects the rural settlements and the nearby city. Ideally, the introduction of
these transfer points should lead to a reduction in the total distance traveled by the vehicles
in the fleet. In certain scenarios, it may even obviate the necessity to deploy an additional
vehicle. However, it is essential to recognize that not all situations warrant the inclusion
of transfer points. For a particular demand, the incorporation of a transfer point may not
yield any discernible cost reductions. In such cases, it is deemed more efficient to operate
the fleet without any transfers.

The main argument in favor of the implementation of DRT with dynamic transfer
point allocation comes from the poor investment in quality transportation that rural areas
are subjected to. The implementation of the proposed method, as described, will enable us
to simulate DRT services in different rural areas, study their demand, and find out if they
would benefit from dynamic transfer point allocation. Given the difficulty of successful
implementation of DRT services, having the infrastructure to simulate and adjust them is
of the utmost importance.

3.2. Formulation

The dynamic transfer point allocation problem has a series of elements that must
be formalized to describe a solution. The DRT system provides services to various users
in need of displacement, each of them represented by their booking, an explicit request
for displacement. Such a need is fulfilled by a fleet of vehicles, each of them serving the
bookings it has assigned. In addition to the DRT elements, we must characterize a transfer,
the action of dropping off a passenger at a particular location within an established time
window and their subsequent pick-up by a different vehicle to complete their journey.
A transfer takes place in a concrete transfer point, a location dynamically selected by the
system to act as a transfer hub for the vehicle fleet during a certain period of the DRT
operation. In the following, we further describe each of the aforementioned elements.

Bookings. A passenger’s booking b has the following associated elements:

• Origin Ob: location at which the passenger will be picked up.
• Destination Db: location at which the passenger will be dropped off.
• Earliest pick-up time TO

b : time at which the passenger will be at their origin and ready
to be picked up.

• Latest arrival time TD
b : time at which the passenger needs to be at their destination.

• Set of vehicle transfers Tb: an initially empty set of transfer operations. Once a booking
is allocated to a vehicle, the DRT system computes the necessary transfers, if any, that
the passenger will perform during their trip.

Vehicles. A vehicle v has the following elements related to it:

• Capacity Cv: number of passengers the vehicle can carry simultaneously.
• Schedule Sv: an ordered finite list of tuples of (location ln, time tn) indicating the

order in which the vehicle will visit its route’s stops and the time it will arrive at each
one of them.

Sv = [(l1, t1), (l2, t2), . . . , (ln, tn)]

Each tuple must be associated with at least one of the assigned bookings of the vehicle.
• Route Rv: Physical route that connects every stop in the vehicle’s schedule. Repre-

sented in the system as a set of geographic coordinates.
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Transfer operations. A transfer operation tr is represented by:

• Associated booking btr: booking whose issuing passenger(s) is going to be transferred.
• Transfer point Ltr: location at which the passenger will be dropped off and subse-

quently picked up.
• Drop-off vehicle Vdo

tr : vehicle from which the passenger will be dropped off.
• Pick-up vehicle Vpu

tr : following vehicle the passenger will ride in after being picked
up from the transfer point.

• Earliest pick-up time Tpu
tr : time at which the passenger will be at the transfer point

and ready to be picked up.
• Latest drop-off time Tdo

tr : time at which the passenger needs to be at the transfer point
to ensure the completion of a trip within its time window.

Workflow. The procedure to dynamically allocate a transfer point operates as follows.
Figure 1 shows the system’s architecture and helps describe the workflow. The system-
wide objective function, for this work, is set to the minimization of the operational costs
of the DRT service, although other approaches could be configured. The system receives
as input a snapshot of the DRT service, describing its current state (Figure 1, Input data).
This includes:

• Vehicle location, capacity, and scheduled route for the whole fleet.
• Demand, in terms of customer bookings.
• A set of locations that describe possible transfer points.

The first step is to obtain a DRT solution (Figure 1, Step (1)). We say a DRT service
is solved when all of the known demand has been processed; that is, all passengers are
assigned to a vehicle so that their trip is guaranteed completion. Therefore, the DRT
solution describes the insertion of the maximum number of bookings to the schedules of
any fleet vehicle so that the time constraints of all customers (both new and those already
assigned to a vehicle) are preserved. The insertion of a booking to a vehicle schedule causes
it to update its route. In some cases, deploying an additional vehicle may be necessary to
serve a particular booking. The solved scenario incurs a series of operational costs, among
which the vehicle traveled kilometers (VTK) as well as their operational time stand out.

Figure 1. Architecture and workflow of the dynamic transfer point allocation system.

The second step aims to reduce the operational costs derived from the obtained DRT
solution (Figure 1, Step (2)). The algorithm analyzes whether creating a transfer point can
achieve such a reduction. A transfer point introduces the possibility of transferring passen-
gers among vehicles. An operational cost reduction would then be achieved by simplifying
vehicle schedules and routes due to introducing one or many passenger transfers. In addi-
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tion, this could allow other vehicles to absorb the demand initially assigned to a particular
vehicle, leaving the latter available sooner or even avoiding the need to deploy it. Since
the activation of the transfer point must be performed dynamically, it is crucial to consider
the current position of each of the fleet’s vehicles as well as the relationship between their
schedule and the trip that customer bookings demand. The location of the transfer point
will determine how much the operational costs can be reduced. The algorithm analyzes the
activation of all possible transfer points of the input set and keeps those locations whose
activation supposes a cost reduction while preserving all system constraints.

The output of the process is the location of the transfer point and the updates to
vehicle schedules that its introduction brings. The DRT solution is updated to include the
computed passenger transfers. Such changes are broadcast to the fleet and, in turn, to every
customer whose planned trip may have changed due to the inclusion of a transfer (Figure 1,
User side).

3.3. Modeling Constraints and Limitations

DRT requires several restrictions on the trip to be configured for each traveler. These
constraints are mainly associated with the capacity of the fleet vehicles and the time window
described by each passenger booking. Firstly, the number of passengers in a vehicle cannot
exceed the vehicle’s capacity. For that, the DRT solver must take into account the number
of passengers the vehicle will carry at any point of their schedule, knowing how many
passengers get off and get on the vehicle at each station. Secondly, each passenger must be
picked up at such a time that they are waiting in their origin location. Finally, a passenger’s
destination must be reached before the end of their time window. These constraints guide
the assignment of passengers to vehicles or, in other words, the insertion of a passenger
booking into a vehicle’s schedule.

For the implementation of a transfer, we must define similar constraints. In general, a
transfer can only be performed if:

• The drop-off of passengers at the transfer point does not violate other vehicle passen-
gers’ time constraints.

• There is at least one vehicle with enough capacity to pick up the transferring passen-
gers without violating other vehicle passengers’ time constraints.

• The transferring passenger’s time constraints are preserved.

Besides this, transfer points do not have a capacity limit, nor is there a limit on the
number of transfers occurring simultaneously in the same transfer point.

Finally, it is worth mentioning that additional service quality-related constraints may
be introduced. Examples of these may be establishing upper bounds for passenger waiting
(to be picked up) time, passenger on-board (traveling in a vehicle) time, and passenger
(waiting for a) transfer time. Limiting these times also limits the capacity of the system to
optimize the operation and the percentage of accepted bookings. However, it improves the
general passenger experience.

The presented architecture has two main technical challenges. On the one hand,
it requires updated information on the state of the transportation service, including its
layout and location of vehicles and passengers. This, in turn, requires all infrastructure
to be reliably connected. On the other hand, the algorithms that implement the different
modules need to run with fairly low computational costs to assess real-time data and output
modifications over the service layout and operations. Both these challenges are sensitive to
the scale of the system and thus shall be taken into account for its implementation.

Framing the proposal in a real transportation system, the real-time creation of physical
spaces for transfer operations is a major challenge in itself. Firstly, the eligible locations
have to ensure the safety of passengers and drivers during the vehicle transfers. Secondly,
the dynamic introduction of transfer operations may cause real-time updates of already
planned passenger trips. This feature may entail problems that we will elaborate on
in the discussion.
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4. Case Study

To further illustrate the functioning of the proposed architecture, this section describes
a trace of the two main optimization mechanisms proposed: the DRT solver and the
transfer point allocation process. Such a trace is developed using the public interurban
bus transportation data (https://dadesobertes.gva.es/va/dataset/gtfs-itineraris-horaris-
transport-public-interurba-autobus-comunitat-valenciana, accessed on 3 November 2023)
from the Comunitat Valenciana, Spain, as a base to define a rural DRT service and its stops.

4.1. Application Domain

An interurban DRT service is formulated over a slice of the main territory of the Co-
munitat Valenciana, a region of Spain. A dataset is employed to allocate the stops for the
service and define its routes. Specifically, the data describe all the itineraries carried out
by the different interurban public transport services by bus concessioned by the regional
government. The dataset defined 341 stops within the selected area; for the algorithmic trace,
and taking into account the focus on interurban mobility, a single stop per town is kept.

The following example is centered in the area shown by Figure 2, which includes the
city of Valencia and several towns located to the south of it. The chosen area contains many
medium-to-small towns, which are mainly surrounded by crop fields. Historically, the main
economic activity of the area was centered on the primary sector, specifically agriculture.
As the country modernized, relatively small factories appeared which complemented the
economic activity. Today, the surviving factories continue to employ a large part of the
population of these villages. In addition, they all have small businesses run by residents
that are the backbone of the local economy. Finally, it is worth noting that those towns that
are closer to Valencia, the capital of the region, also serve as dormitory towns for workers
from Valencia, as they offer much more affordable rents and home purchase prices than in
the capital. This fact raises the importance of fluid transportation between the towns and
the main city. When it comes to the population, rural settlements in this area show an older
population, on average, than bigger cities of the country.

(a)
(b)

Figure 2. Demand-responsive transportation service layout developed for the case study. (a) Area
of the Comunitat Valenciana chosen for the deployment of the service. A single stop per settlement
has been kept. Stops used in the example are highlighted in red. (b) Detail of the service layout.
Stops are represented as a blue circle. Connections among stops are labeled by the average car travel
time in min.

https://dadesobertes.gva.es/va/dataset/gtfs-itineraris-horaris-transport-public-interurba-autobus-comunitat-valenciana
https://dadesobertes.gva.es/va/dataset/gtfs-itineraris-horaris-transport-public-interurba-autobus-comunitat-valenciana
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The DRT service contains the elements described in the problem formulation
(see Section 3). For the sake of the example, the service runs fully dynamically with-
out any predefined service area, line, or route preassigned to any vehicle. Instead, vehicles
build their itineraries according to their assigned customer bookings. Customers send
bookings defining their origin and destination stops and a simplified time window con-
taining only their earliest pick-up time. The DRT solver allocates bookings iteratively to
the vehicle’s itinerary, ensuring the lowest possible operational cost increase. With their
booking allocated, the customer is informed of their expected pick-up and arrival times,
as well as the itinerary their assigned vehicle is following, in real time, and is expected to
follow after their pick-up.

4.2. Dynamic Transfer Point Allocation Trace

To develop a trace of the operation of the proposed architecture, a subset of the stops,
those highlighted in red in Figure 2a, is selected. This reduced scenario presents six stops
compressed within Valencia (F) and Algemesí (A), the northern and southern ends of the
service, respectively. Figure 2b shows a simplified graphic of the transportation service
layout, including the time, in min, that it takes to travel between those connected stops.

4.2.1. Initial Scenario

The initial scenario defines a travel demand as well as the location and initial itineraries
of each fleet vehicle, and can be visualized in Figure 3a. The fleet comprises vehicles v1 and
v2, allocated in stops A and B, respectively, at the beginning of their shift, time t = 0. Their
itineraries (Sv) contain just their current stop, and their routes (Rv) are empty. Passenger
demand comprises four bookings (b1, b2, b3, and b4), each characterized by their origin
and destination stops and earliest pick-up time (t = 0) in min. Table 1 depicts the initial
scenario according to the problem formulation.

(a) (b)

Figure 3. DRT service layout evolution from the initial scenario to the solution computed by the
DRT solver. Human icons represent bookings, whereas bus icons with different colors depict vehicles.
(a) Initial scenario of the DRT service. At this point, vehicle schedules are empty and the demand
has not been allocated. (b) Solved scenario with passenger booking assignments and planned route
for each vehicle. Vehicle v1’s route is depicted by red arrows, whereas v2’s route is depicted by
green arrows.
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Table 1. Initial scenario data, including customer bookings and vehicle locations.

Bookings Vehicle Schedules

b1〈A, E, 0〉 v1 S1 ← [(A, 0)]
b2〈A, F, 0〉 R1 ← []

b3〈B, E, 0〉 v2 S2 ← [(B, 0)]
b4〈B, F, 0〉 R2 ← []

For the sake of the example, a few problem constraints are redefined. All demand is
known by the system scheduler beforehand. In addition, bookings do not define the con-
straint of the latest arrival time. The time taken by passengers getting on or off the vehicle
is disregarded. The routing of vehicles is guided by traveling through the shortest path.
Finally, the system optimization function is the minimization of the service’s operational
costs, which is the metric that will guide the assignment of a booking to a particular vehicle.
These costs include the vehicle’s traveled distance and operational time. In the developed
example, however, the reduction in operational costs will also imply the optimization of
passengers’ time (waiting and traveling).

4.2.2. Step 1: DRT Solver

The DRT solver (see Figure 1, Step (1)) assigns each booking to a vehicle, updating its
schedule iteratively. The algorithm checks all feasible assignments and implements the one
that minimizes passenger time, thus favoring service quality. Because of the combinatorial
nature of the problem, for the development of this example, we have chosen to show only
the most relevant assignment considerations, neglecting to mention those that the system
would discard explicitly.

Booking b1 is initially selected and its assignment to both v1 and v2 is explored. The
assignment of a booking b to a vehicle v will be denoted as b ∈ v. Equation (1) shows
the effect on each of the vehicle’s schedules and routes of assigning booking b1 to them,
following the notation defined in Section 3.

b1 ∈ v1 S1 ← [(A, 0), (E, 35)] b1 ∈ v2 S2 ← [(B, 0), (A, 15), (E, 50)]
R1 ← [A, D, E] R2 ← [B, A, D, E]

(1)

The assignment b1 ∈ v1 would add to v1’s schedule a stop in E at time t = 35, and
modify its route to go from A to D and finally reach E (b1’s destination stop). As can be
seen, the passenger of booking b1 would get to their destination at time t = 35. v1 provides
the clear advantage of already being at the stop where the trip defined by b1 originates. On
the other hand, assignment b2 ∈ v2 would incur a 15 min waiting time for the passenger
of b1, as v2 would need to move from stop B to A to pick them up. This, in turn, would
delay their arrival time at E to t = 50. The system assigns b1 to v1, as indicated in bold in
Equation (1).

Following, b2 is considered for assignment, as Equation (2) reflects.

b2 ∈ v1 S1 ← [(A, 0), (E, 35), (F, 55)] b2 ∈ v2 S2 ← [(B, 0), (A, 15), (F, 60)]
R1 ← [A, D, E, F] R2 ← [B, A, C, F]

(2)

Following the reasoning developed for the assignment of b1, the system assigns b2 to
v1 as well, updating its schedule and route as shown above.

Regarding bookings b3 and b4, it can be observed in Figure 3a that vehicle v2 is located
at the same stop where the trip defined by each of the bookings starts. In addition, at this
point in the DRT solver process, v2 has an empty schedule. It is easy to understand that the
best option is to assign both of the bookings to v2. Table 2 shows the DRT solver’s output:
all bookings have been assigned to a vehicle, which in turn has consistent itineraries and
defined routes. Figure 3b shows a graphic representation of such a solution, including the
planned routes of each vehicle.
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Table 2. Solution of the DRT initial scenario. For each fleet vehicle, its assigned bookings, schedule,
and route are presented. Regarding passengers, the waiting, traveling, and total time of their trips
are shown in min.

Assignments Booking Wait Travel Total

b1, b2 ∈ v1 S1 ← [(A, 0), (E, 35), (F, 55)] b1 0 35 35

R1 ← [A, D, E, F] b2 0 55 55

b3, b4 ∈ v2 S2 ← [(B, 0), (E, 35), (F, 55)] b3 0 35 35

R2 ← [B, D, E, F] b4 0 55 55

At this point, we have illustrated how the DRT solver computes the passenger–vehicle
assignments taking into account a system-wide optimization function. The computed
solution ensures the shortest possible trip for each passenger, considering the service’s
limitations. However, observing the planned routes of the vehicles, a potential concern
arises: Both v1 and v2 travel in parallel towards the northern side of the service area and
finish their trip at stop E. Future demand that may originate on the southeastern side of the
system may be left unattended as all fleet vehicles are too far away.

4.2.3. Step 2: Transfer Point Allocation

Once the DRT solver has obtained a solution, such a solution is fed to the transfer
point allocation system (see Figure 1, Step (2)). The transfer point allocation considers
passenger transfers as a method to further optimize the DRT solutions. The set of eligible
transfer points is composed of the stops of the service, although it would also be possible
to include locations that would not be stops normally.

Once again, the combinatorial nature of the problem forces us to restrict the transfer
point search to a concrete example to illustrate its optimization potential. Specifically, stop
C is chosen for the activation of a transfer point and the subsequent optimization. All
feasible transfers of passengers from all vehicles occurring at stop C would be explored.
For this example, we directly present those transfers that will be implemented.

If one observes the shape of the demand, bookings can be grouped according to their
destination stop. This allows for the implementation of passenger transfers that simplify the
vehicle routes and, in turn, may bring overall improvements to service quality. Specifically,
transfers shown in Equation (3) are computed and implemented.

tr1〈b1, C, v1, v2, 20〉, tr2〈b4, C, v2, v1, 15〉 (3)

The transfer operation tr1 indicates, according to the problem formulation, that the
passenger of booking b1 will be dropped off at stop C by v1 and picked up by v2 at time
t = 20 at the earliest. Analogously, tr2 describes the transfer of b4 from v2 to v1, which can
happen at the earliest at t = 15. The main achievement of the operations described above is
the grouping of b1 and b3, whose destination stop is E, in v2, and that of b2 and b4, with
destination stop F, in v1.

The implementation of transfer operations may modify the schedule of the involved
vehicles. The DRT solution, presented in Table 2, defines the schedule and route of every
vehicle. As can be observed, none of the vehicles have planned to go through stop C, which
will now be necessary to perform the transfers. The implementation of tr1 and tr2 brings
the subsequent schedule changes, which are reflected on Equation (4), where the schedule
and route are presented for each vehicle, and Table 3. Passenger traveling time is now
divided into two periods. The transfer column indicates the time the passenger waited to
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transfer vehicles. In turn, the standby column indicates time spent by passengers inside a
stopped vehicle. Finally, Figure 4 shows the evolution of the DRT solution with transfers.

v1 S1 ← [(A, 0), (C , 20), (F, 45)] v2 S2 ← [(B, 0), (C, 15), (E, 40)]
R1 ← [A, C, F] R2 ← [B, C, E]

(4)

Table 3. Solution of the DRT initial scenario considering stop C as a transfer point. Time is expressed
in min. Trips are now split into two travel periods. In addition, the time waiting for a transfer is also
considered under the “Transfer” column.

Booking Wait Travel (1) Standby Transfer Travel (2) Total

b1 0 20 0 0 20 40

b2 0 20 0 - 25 45

b3 0 15 5 - 20 40

b4 0 15 0 5 25 45

(a) (b)
Figure 4. Evolution of the DRT service from the initial scenario to the final solution, now considering
stop C as a transfer point, represented by the orange color. Vehicle v1’s route is depicted by red
arrows, whereas v2’s route is depicted by green arrows. (a) Initial passenger–vehicle assignments
are preserved. Vehicles now move first towards the transfer point as it is their first stop. (b) Vehicles
exchange passengers b1 and b4 and continue their journey, which now differs in the destination stop.

If we compare the solution obtained by the DRT solver (Table 2) with that obtained
after the transfer point allocation process (Table 3), the vehicles now go from their origins to
stop C, perform the transfer as soon as possible, and then continue on to their destination
stop (F for v1, E for v2). Such a change in schedule brings several improvements:

• The overall vehicle operational time is reduced. v1 reaches the end of its schedule at
t = 45, whereas v2 does it at t = 40. On the first solution, both vehicles finished at
t = 55. The sooner a vehicle is free, the better the service can deal with unexpected
travel requests.

• A better distribution of fleet vehicles is achieved. The routes and final stops of v1 and
v2 are now different. This allows for a better allocation of future travel requests.
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• From a service quality perspective, there is a compromise in the experience of the
different passengers. Both passengers traveling to stop F now reach it at time t = 45,
whereas the initial solution scheduled their arrival at t = 55. Such a time gain is
partially reflected in the other couple of passengers, who, instead of reaching stop E
at t = 35, now do so 5 min later, at t = 40. The overall total time of all passengers,
however, is reduced by 10 min, from 180 (35 + 55 + 35 + 55) to 170 (40 + 45 + 40 + 45).

4.2.4. Extended Example: Allocating On-Line Bookings

The dynamic activation of transfer points has the potential to bring yet another opti-
mization to the DRT service optimization. In the following, we extend the example above to
include previously unknown demand and show how counting with transfer operations can
boost service quality in a service with limited infrastructure. For the sake of this example,
we keep the previous bookings b1, b2, b3, and b4, and add one more: b5〈A, D, 15〉.

Following the last example, at time t = 15, the situation is the one depicted by
Figure 5a. v2 is located at stop C, carrying b3 and b4. v1 is 5 min away from stop C, carrying
b1 and b2. A transfer among passengers b1 and b4 is expected to happen at t = 20 in stop C.
b5 just appeared in the system.

(a) (b)

Figure 5. Graphical representation of changes in the DRT solution that allow the system to serve
booking b5. Stop C acts as a transfer point, as represented by its orange color. New transfer operations
and vehicle schedules are computed. Vehicle v1’s route is depicted by red arrows, whereas v2’s route
is depicted by green arrows. (a) DRT service snapshot at time t = 15. (b) System solved to serve b5 at
time t = 20.

The current schedules of both fleet vehicles define routes that go progressively further
away from stop A, where b5 is waiting to be picked up. The DRT solver, on its own, would
assign b5 to v2, as it is the first vehicle that will be free at time t = 40, once b1 and b3 reach
stop E. Still, there is at least a 30 min trip from stop E to A. The earliest time b5 could be
picked up is at t = 70 after a 55 min wait. Such a long wait would generally cause users to
refrain from using the service and look for an alternative displacement option. The option
to deploy a new vehicle to serve b5 would not be uncommon for DRT services. However,
the current work focuses on solutions that optimize modest services with a limited budget
for infrastructure. Consequently, the deployment of an additional vehicle is disregarded.
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The dynamic transfer point allocation process, and specifically its ability to consider
transfer operations, is able to find a different solution to serve b5 within a reasonable time.
The transfer operations defined in Equation (5) are applied.

tr1〈b1, C, v1, v2, 20〉, tr2〈b2, C, v1, v2, 20〉 (5)

These operations aim to accumulate all trips with destinations on the northern side of
the service in a single vehicle, thus leaving the other one free to serve b5 and other possible
bookings originating in the southern area. These transfers would replace the previously
presented transfer operations and thus cause a recalculation of vehicle schedules. The final
solution is presented in Equation (6), where the schedule and route are presented for each
vehicle, Table 4, and depicted in Figure 5b.

v1 S1 ← [(A, 0), (C, 20), (A, 40), (D, 60)] v2 S2 ← [(B, 0), (C, 15), (E, 40), (E, 60)]
R1 ← [A, C, A, D] R2 ← [B, C, E, F]

(6)

Table 4. Solution of the DRT initial scenario considering stop C as a transfer point and the issuance of
previously unknown booking b5 at time t = 15. Time is expressed in min.

Booking Wait Travel (1) Standby Transfer Travel (2) Total

b1 0 20 0 0 20 40

b2 0 20 0 0 40 60

b3 0 15 5 - 20 40

b4 0 15 5 - 40 60

b5 25 20 0 - 0 45

If we compare the last solution (Table 4) with the initial transfer point solution (Table 3),
in the current configuration, v1 is left available as soon as possible to serve b5, whose
expected waiting time falls from 55 to 25 min. This, however, comes at the cost of heavily
impacting the trip of those passengers whose final destination is F, whose expected total
time increased from 45 to 60 min. In this last example, the total times for passengers b1 to
b4 are even longer than in the DRT solution without transfers (Table 2).

With the introduction of previously unknown demand, we have been able to illustrate
how the proposed dynamic transfer point allocation process enables rural DRT services
with limited infrastructure to provide better service quality. In this last example, the choice
of serving one more customer, instead of potentially losing them as a client, has been made,
causing a negative impact on other passengers’ traveling experience. In reality, such a
decision would be taken according to the priorities of the service operator and whether
they consider that serving one more customer compensates for the negative impact on the
already scheduled trips. In terms of the optimization algorithm, the operator’s priorities
would be encoded in the objective function, ensuring that the trip scheduling and dynamic
activation of transfer points are performed following them.

5. Discussion

With the development of a case study in Section 4, the effect that dynamic transfer
point allocation has over the operation of a DRT service has been quantified. Following, the
current section discusses relevant issues that derive from the results of the aforementioned
case study. The impact that operational cost optimization may have on service quality is
assessed. Moreover, the discussion focuses on the potential effects on the system’s adoption
rate and proposes techniques to improve the number of potential users.
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5.1. Case Study Assessment

As has been exposed in Section 4.2, the inclusion of transfer points and transfer opera-
tions has the potential to improve the operation of rural DRT services. This improvement,
however, depends on the specific situation of the service at a determined point in time,
including the vehicle’s location, capacity, and known demand. Because of that, the dy-
namic activation and deactivation of transfer points is justified, as it allows temporary
modifications of the service layout that deal with a distinct troublesome situation.

The developed example has been designed to illustrate the usefulness of the proposed
optimization method. Nevertheless, two contrasting solutions have arisen. On the one
hand, the initial solution is optimized through passenger transfers in such a way that the
total time is improved for half of the passengers while causing a slight increase in the time
for the other half. In this case, however, the solution is objectively better from a global
perspective. On the other hand, the extended example shows how transfer operations
facilitate serving more customers, although such a benefit comes at the expense of the
previous time improvement in the trip of all other passengers, which is no longer in place.

From the service provider’s perspective, the latter situation may be acceptable and
even desirable, as it increases the monetary profit of the service as well as the client base.
However, the passenger’s perspective may instead be negative, as they do not have a global
overview of the situation and thus will be concerned mainly about their own trip and
experience. This issue cannot be ignored by the transportation provider, and thus several
questions arise. Shall we allow the optimization process to worsen a customer’s trip? And,
if so, in what situations shall we allow it? Finally, taking into account that a worsening of
service quality may be necessary for a globally optimized operation, what techniques could
we apply to increase and maintain the number of customers in our service? The following
sections address these questions and discuss their possible answers, providing an analysis
that complements our proposal.

5.2. The Effect of Operational Cost Optimization on Passenger Experience

The enhancement of cost-efficiency within a transportation system typically involves
the streamlining of resource allocation by the transportation provider. The optimization
strategy proposed in this study centers on the dynamic establishment of transfer points.
The motivation for this optimization stems from the suboptimal investment of resources in
the domain of adaptable transportation services, particularly in rural settlements, where
transportation demand is notably scarce. However, it is worth noting that the introduction
of one or multiple vehicle transfers during a passenger’s journey may be perceived as less
than favorable in terms of the passenger experience. Thus, the successful implementation
of our proposed strategy necessitates the attainment of a harmonious balance between
enhancing operational efficiency and preserving passenger satisfaction.

The delineated system encompasses a set of configurable parameters that allow for
the customization of various degrees of optimization concerning passenger experience. In
the following, we assess the values of these parameters and their corresponding impact on
service quality.

5.2.1. Flexibility in the Update of a Passenger’s Schedule

Upon the allocation of a passenger booking to a vehicle, the passenger is apprised
of their personalized itinerary, which includes precise information regarding the location
and estimated time of pick-up, the planned route to be traversed by the vehicle, including
designated stops during the passenger’s journey, and lastly, the location and projected time
of arrival at the drop-off point. Additionally, it is pertinent to note that the passenger’s
journey, as defined by their booking, will already be in progress if the passenger is currently
aboard a vehicle. The dynamic activation of a transfer point has the potential to introduce
variability into a vehicle’s schedule, consequently affecting the passenger’s schedule and,
as a result, their entire trip.
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Consider the example developed in Section 4.2. After the first step, the DRT solver
obtains a feasible solution to the transportation, described in Table 2. This, in turn, would
trigger the notification of the passengers, including all the aforementioned data. The
passengers associated with bookings b1 and b3 would receive an estimated time of arrival to
their destination at time t = 35, whereas those pertinent to bookings b2 and b4 contemplate
an arrival time of t = 55. At this point, all passengers are fully aware of their planned trip.

The transfer point allocation is then run, and a new solution, presented in Table 3,
brings changes in all passenger’s schedules. Passengers from bookings b1 and b4 now
experience a transfer. In addition, the expected arrival time of every passenger has been
modified, positively in some cases, and slightly negatively in others. All of these changes
would be communicated to the customers as soon as the new itineraries were fixed. Finally,
including the last extended example, in which the solution, as shown by Table 4, is modified
again to serve a new remotely located booking b5, the passengers would receive a third
update in their schedule, this time bringing a significant time increment to two of them.

With such a dynamic example, we have also managed to illustrate how the optimiza-
tion of the service can be perceived by its users. Passengers could have received three
different itineraries from the application, with the latter being communicated once the
journey of all passengers had already started. This raises two concerns. First, the excess
of dynamicity in the passenger schedules implies a lack of consistency, which may favor
the loss of customer confidence in the service, as it is perceived as less reliable. Second,
passengers may understand changes in their schedule as a way in which the system dis-
regards service quality in order to boost benefits. This is especially relevant for schedule
modifications that significantly worsen a passenger’s trip. Considering these issues, it is
worth exploring the flexibility of the proposed optimization methods to determine when
passenger schedule modifications are reasonable.

Under the system’s flexibility, we encounter the following scenarios:

• In a fully flexible configuration, the system permits adjustments to the schedules of
passengers whose journeys are already underway. These passengers receive timely
notification regarding the modification of their originally planned route, including
transfer information. Passengers must be informed of these alterations with adequate
advance notice prior to reaching the designated transfer point.

• In a semi-flexible context, it is permitted to adjust the schedules of passengers whose
trips have been assigned but have not yet commenced. In this context, passengers
have already received an initial itinerary for their journey, although they have not yet
boarded their designated vehicle. In the event of schedule modifications, passengers
will be duly informed, which may entail changes such as a reassignment to a different
vehicle and the addition of transfer points to their route.

• In the static variant, transfer points are exclusively incorporated to optimize service
for bookings that are already issued but have not yet been assigned. Passengers falling
within this category will be provided with a single schedule that encompasses all
vehicle transfers, if any, as part of their journey itinerary, and will not be modified.

A more elevated degree of flexibility increases the likelihood of optimizing the ser-
vice operation through passenger transfers. However, flexibility also foments a more
pronounced impact on service quality, both for the better and for the worse. Passengers
may experience a sense of insecurity, and as a consequence, their trust in the transportation
system may diminish if the extent of schedule alterations becomes overly aggressive.

5.2.2. Maximum Number of Vehicle Transfers

The developed case study featured a single transfer point activation. In situations
where multiple transfer points are activated, it becomes conceivable that a passenger’s
itinerary may encompass more than one vehicle transfer. The transportation provider
retains the flexibility to regulate the maximum permissible count of vehicle transfers
scheduled for a specific passenger. An elevated maximum transfer threshold increases the
potential for the system to achieve substantial reductions in operational costs. Nevertheless,
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it is crucial to acknowledge that a higher threshold also corresponds to a less favorable
passenger experience, as it introduces the likelihood of a more convoluted journey with
multiple transfers. Thus, the optimization of this parameter requires a balance between
operational cost reduction and the preservation of an optimal passenger experience.

5.3. Adoption Rate in Flexible Transportation Systems

A prevalent problem in rural areas is the lack of acceptance of digitization of everyday
tasks, which is more pronounced than in its urban counterparts [21,22]. In this line, flexible
transportation systems, particularly in rural areas, face the challenge of their adoption
rate. Utilizing a DRT service can be arguably more intricate for its users when compared
to traditional transportation systems featuring fixed routes and schedules. The degree of
flexibility inherent in such services imposes greater demands on users, requiring explicit
bookings, selection of pick-up times, and the specification of precise locations, among other
factors. Consequently, the greater the demand placed on users, the more challenging it
becomes for individuals accustomed to traditional transportation to adapt to the novel
mobility service.

In the context of rural settlements, where the population tends to skew older on
average compared to urban areas, the necessity for smartphone applications to interact
with the transportation system may constitute a formidable barrier to adoption [23]. The
lesson derived from these observations emphasizes the importance of achieving a balance
in the design of flexible transportation systems. Such systems must be tailored to cater to
the distinct needs of their potential user base. Consequently, one should exercise prudence
when incorporating levels of flexibility that lack substantial justification [24].

Alternative approaches to augmenting the adoption rate and potentially further op-
timizing a transportation system encompass the utilization of persuasion and gamifica-
tion techniques.

Persuasion techniques, when integrated into a system, aim to stimulate specific be-
haviors among its user base. These techniques are primarily leveraged to encourage
favorable behaviors, analogous to their application in motivating physical activity [25].
When adapted to a transportation application, these techniques aspire to motivate users
to acquire knowledge and exercise more responsible resource utilization within the fleet.
However, the ethical considerations of influencing individuals’ behaviors must always be
conscientiously contemplated when implementing persuasion strategies [26].

On the other hand, the gamification approach introduces a reward system within the
application, thereby incentivizing users who exhibit improved utilization of the system.
This mechanism serves as a catalyst for enhancing the performance of all users collectively.
Gamification has found relevance in addressing transportation challenges [27,28]. A com-
mon application involves influencing users to distribute transportation demand uniformly,
with the overarching goal of averting system congestion. Achieving this objective can
manifest through a variety of strategies, contingent on the complexity of the situation. For
instance, straightforward tactics like conveying positive messages or offering modest incen-
tives, such as complimentary rides, may suffice for certain users. Conversely, in scenarios
necessitating broad user engagement, more intricate strategies, including dynamic pricing
policies, may be employed to reduce trip costs during low-demand periods [29].

Numerous techniques hold promise for enhancing the adoption rate of a flexible trans-
portation system. Nevertheless, it is imperative to exercise caution when implementing
strategies involving dynamic alterations to system usage, particularly pricing adjustments.
Thorough research and meticulous application are essential in order to prevent users from
perceiving these changes as exploitative or deceptive, which could lead to the development
of adverse sentiments towards the application. Building and maintaining user trust should
remain a paramount consideration in the deployment of such dynamic approaches.
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6. Conclusions

This paper has undertaken an evaluation of the optimization possibilities within
rural DRT systems through the implementation of dynamic transfer point allocation. The
proposed method comprises a novel approach that abandons the use of fixed locations in
favor of dynamic locations calculated according to the demand for specific time periods.
The incorporation of transfer points introduces an opportunity to reduce the expense to
operational resources by simplifying vehicle schedules via the introduction of passenger
transfers. The paper presents a comprehensive system architecture and describes the
procedural workflow for dynamic transfer point allocation. A formal problem formulation
is developed, delineating all pertinent elements of the proposed infrastructure.

A case study is developed to provide a trace of the operation of the proposed architec-
ture. With the creation of an initial rural DRT scenario and its subsequent optimization,
the benefits of service optimization through transfer operations are visualized. Moreover,
the impact that such an optimization method may have on aspects of the transportation
service, such as service quality, is also assessed.

Departing from the results of the case study, a discussion is formulated, underscoring
the significance of striving for an equilibrium between optimization flexibility and service
quality within flexible transportation systems. Such systems must remain attuned to the
needs of their prospective user base, with the ultimate objective of augmenting the rate of
adoption by effectively catering to their requirements.

The implementation of the proposed method through AI techniques brings several
benefits. On a technical level, a complex combinatorial task such as the transfer point
allocation could be solved in real time with a feasible computational cost. Regarding
DRT-specific benefits, the technique has the ability to cut costs and improve economic
viability. The examples reflect, in addition, a potential to better divide fleet vehicles among
the service layout, facilitating the acceptance of isolated travel requests. This, in turn,
translates into an increment in the number of users of the service. Finally, concerning social
benefits, we achieve more affordable prices for flexible rural transportation and promote
the use of innovative techniques in provincial areas.

Future Work

The present study offers an initial attempt of the development of an artificial in-
telligence algorithm designed to facilitate the optimization of rural DRT systems. By
formulating the problem formally and outlining the architectural framework, this research
has successfully delineated the prerequisites for an upcoming solution. Regarding the
conclusions presented about the case study, we must underscore that these are drawn
from predefined examples and thus their scope may be limited. Nevertheless, our results
illustrate the improvement potential of the dynamic transfer point allocation process.

On the technical side, subsequent efforts will be centered on the actual implementation
of distinct modules within the proposed architecture, with particular emphasis on the
DRT solver and its associated transfer point allocation algorithm. The implementation
step will give us the chance to try different allocation, scheduling, and routing algorithms
with the aim of finding those that best fit the architecture’s requirements. Furthermore,
ongoing work also involves the procurement of relevant input data necessary for testing
our system, a task that presents nontrivial challenges, particularly in the context of rural
transportation scenarios.

Regarding research work, once the system is implemented, we plan to conduct ex-
tensive experimentation through simulation. This implies reproducing a real-world rural
area over which to deploy a DRT service operated with our architecture. The initial experi-
mentation will focus on assessing operational changes with and without transfer points.
Then, we will set up specific scenarios to test the limits of the operational cost optimizations
discussed in Section 5.2, such as the system’s flexibility and the maximum number of
vehicle transfers. Finally, we would like to include strategic agents that represent customers
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with different tolerances towards traveling time and transfer operations, thus improving
our customer satisfaction assessment in the results.

Finally, we would also like to comment on potential areas where our contribution
could be applied. In this paper, we have orchestrated a rural public transportation service
based on demand-responsive mobility. Nevertheless, our architecture could also manage
distinct instances of rural transportation, such as school transport, medical and emergency
transport, and even interurban delivery services, such as those provided in cities by en-
terprises like Uber Eats (https://www.ubereats.com/, accessed on 3 November 2023) or
Glovo. (https://glovoapp.com/, accessed on 3 November 2023) Besides the transportation
domain, there are other fields where the proposed system could be adapted to fit, as exem-
plified by the literature cited in Section 2.2. Areas dealing with the flow of communication
over a network could benefit from the allocation of nodes where information exchange may
occur. The algorithms we will develop to implement our architecture could be adapted to
different domains to provide optimized solutions.

Author Contributions: Conceptualization, P.M., J.J. and F.D.l.P.; Investigation, P.M.; Methodology,
V.J.; Project administration, F.D.l.P.; Supervision, V.J.; Validation, J.J. and V.J.; Visualization, P.M.;
Writing—original draft, P.M.; Writing—review and editing, J.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was partially supported with grant PID2021-123673OB-C31 funded by MCIN/
AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. Pasqual Martí is supported by
grant ACIF/2021/259 funded by the “Conselleria de Innovación, Universidades, Ciencia y Sociedad
Digital de la Generalitat Valenciana”. Jaume Jordán is supported by grant IJC2020-045683-I funded
by MCIN/AEI/10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”.

Data Availability Statement: Publicly available datasets were employed in this study. This data
can be found here: https://dadesobertes.gva.es/va/dataset/gtfs-itineraris-horaris-transport-public-
interurba-autobus-comunitat-valenciana.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schasché, S.E.; Sposato, R.G.; Hampl, N. The dilemma of demand-responsive transport services in rural areas: Conflicting

expectations and weak user acceptance. Transp. Policy 2022, 126, 43–54. [CrossRef]
2. Li, X. Data-Driven Optimization Models for Shared Mobility-on-Demand Systems. Ph.D. Thesis, Concordia University, Montreal,

QC, Canada, 2022.
3. Moseley, M. Accessibility: The Rural Challenge; Routledge Revivals, Taylor & Francis: Abingdon, UK, 2023.
4. Martí, P.; Jordán, J.; de la Prieta, F.; Julian, V. Dynamic Transfer Point Allocation for Rural Demand-Responsive Mobility. In Trends

in Sustainable Smart Cities and Territories; Castillo Ossa, L.F., Isaza, G., Cardona, Ó., Castrillón, O.D., Corchado Rodriguez, J.M.,
De la Prieta Pintado, F., Eds.; Springer: Cham, Switzerland, 2023; pp. 453–464.

5. Martí, P.; Jordán, J.; Julian, V. Demand-Responsive Mobility for Rural Areas: A Review. In Proceedings of the Highlights in
Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection: International
Workshops of PAAMS 2022, L’Aquila, Italy, 13–15 July 2022; Springer: Berlin/Heidelberg, Germany, 2022, pp. 129–140.

6. Aghayari Hir, M.; Zaheri, M.; Rahimzadeh, N. Prediction of Rural Travel Demand by Spatial Regression and Artificial Neural
Network Methods (Tabriz County). J. Transp. Res. 2022, 20, 367–386. [CrossRef]

7. Porru, S.; Misso, F.E.; Pani, F.E.; Repetto, C. Smart mobility and public transport: Opportunities and challenges in rural and urban
areas. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 88–97. [CrossRef]

8. Homayouni, S.M.; Fontes, D.B.; Gonçalves, J.F. A multistart biased random key genetic algorithm for the flexible job shop
scheduling problem with transportation. Int. Trans. Oper. Res. 2023, 30, 688–716. [CrossRef]

9. Das, M.; Roy, A.; Maity, S.; Kar, S.; Sengupta, S. Solving fuzzy dynamic ship routing and scheduling problem through new genetic
algorithm. Decis. Mak. Appl. Manag. Eng. 2022, 5, 329–361. [CrossRef]

10. Mzili, I.; Mzili, T.; Riffi, M.E. Efficient routing optimization with discrete penguins search algorithm for MTSP. Decis. Mak. Appl.
Manag. Eng. 2023, 6, 730–743. [CrossRef]

11. Khodashenas, M.; Najafi, S.E.; Kazemipoor, H.; Sobhani, M. Providing an integrated multi-depot vehicle routing problem model
with simultaneous pickup and delivery and package layout under uncertainty with fuzzy-robust box optimization method. Decis.
Mak. Appl. Manag. Eng. 2023, 6, 372–403. [CrossRef]

12. O’Kelly, M.E.; Campbell, J.F.; de Camargo, R.S.; de Miranda, G., Jr. Multiple allocation hub location model with fixed arc costs.
Geogr. Anal. 2015, 47, 73–96. [CrossRef]

https://www.ubereats.com/
https://glovoapp.com/
https://dadesobertes.gva.es/va/dataset/gtfs-itineraris-horaris-transport-public-interurba-autobus-comunitat-valenciana
https://dadesobertes.gva.es/va/dataset/gtfs-itineraris-horaris-transport-public-interurba-autobus-comunitat-valenciana
http://doi.org/10.1016/j.tranpol.2022.06.015
http://dx.doi.org/10.22034/tri.2022.312204.2970
http://dx.doi.org/10.1016/j.jtte.2019.10.002
http://dx.doi.org/10.1111/itor.12878
http://dx.doi.org/10.31181/dmame181221030d
http://dx.doi.org/10.31181/dmame04092023m
http://dx.doi.org/10.31181/dmame622023640
http://dx.doi.org/10.1111/gean.12051


Electronics 2023, 12, 4684 21 of 21

13. Rathore, H.; Nandi, S.; Pandey, P.; Singh, S.P. Diversification-based learning simulated annealing algorithm for hub location
problems. Benchmarking Int. J. 2019, 26, 1995–2016. [CrossRef]

14. Wang, M.; Cheng, Q.; Huang, J.; Cheng, G. Research on optimal hub location of agricultural product transportation network
based on hierarchical hub-and-spoke network model. Phys. Stat. Mech. Apps. 2021, 566, 125412. [CrossRef]

15. Zhang, H.; Zhuge, C.; Yu, X. Identifying hub stations and important lines of bus networks: A case study in Xiamen, China. Phys.
A Stat. Mech. Appl. 2018, 502, 394–402. [CrossRef]

16. Kaveh, F.; Tavakkoli-Moghaddam, R.; Triki, C.; Rahimi, Y.; Jamili, A. A new bi-objective model of the urban public transportation
hub network design under uncertainty. Ann. Oper. Res. 2021, 296, 131–162. [CrossRef]

17. Berman, O.; Drezner, Z.; Wesolowsky, G.O. The transfer point location problem. Eur. J. Oper. Res. 2007, 179, 978–989. [CrossRef]
18. Li, X.; Quadrifoglio, L. Feeder transit services: Choosing between fixed and demand responsive policy. Transp. Res. Part C Emerg.

Technol. 2010, 18, 770–780. [CrossRef]
19. Lee, A.; Savelsbergh, M. An extended demand responsive connector. EURO J. Transp. Logist. 2017, 6, 25–50. [CrossRef]
20. Zigrand, L.; Wolfler Calvo, R.; Traversi, E.; Alizadeh, P. Optimization-driven Demand Prediction Framework for Suburban

Dynamic Demand-Responsive Transport Systems. In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI-23, Macao, China, 19–25 August 2023; Elkind, E., Ed.; International Joint Conferences on Artificial Intelligence
Organization: New York, NY, USA, 2023; Volume 8, pp. 6335–6342. [CrossRef]

21. Hasebrook, J.P.; Michalak, L.; Kohnen, D.; Metelmann, B.; Metelmann, C.; Brinkrolf, P.; Flessa, S.; Hahnenkamp, K. Digital
transition in rural emergency medicine: Impact of job satisfaction and workload on communication and technology acceptance.
PLoS ONE 2023, 18, e0280956. [CrossRef]

22. Daduna, J.R. Evolution of public transport in rural areas-new technologies and digitization. In Proceedings of the Design, User
Experience, and Usability. Case Studies in Public and Personal Interactive Systems: 9th International Conference, DUXU 2020,
Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, 19–24 July 2020; Proceedings, Part III
22; Springer: Berlin/Heidelberg, Germany, 2020, pp. 82–99.

23. König, A.; Grippenkoven, J. The actual demand behind demand-responsive transport: Assessing behavioral intention to use DRT
systems in two rural areas in Germany. Case Stud. Transp. Policy 2020, 8, 954–962. [CrossRef]

24. Sörensen, L.; Bossert, A.; Jokinen, J.P.; Schlüter, J. How much flexibility does rural public transport need? – Implications from a
fully flexible DRT system. Transp. Policy 2021, 100, 5–20. [CrossRef]

25. Schooley, B.; Akgun, D.; Duhoon, P.; Hikmet, N. Persuasive AI Voice-Assisted Technologies to Motivate and Encourage Physical
Activity. In Proceedings from IPCV’20, HIMS’20, BIOCOMP’20, and BIOENG’20; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 363–384.

26. Ferreyra, N.; Aïmeur, E.; Hage, H.; Heisel, M.; van Hoogstraten, C. Persuasion Meets AI: Ethical Considerations for the Design of
Social Engineering Countermeasures. In Proceedings of the 12th Int. Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management, SCITEPRESS, Budapest, Hungary, 2–4 November 2020.

27. Drakoulis, R.; Bellotti, F.; Bakas, I.; Berta, R.; Paranthaman, P.K.; Dange, G.R.; Lytrivis, P.; Pagle, K.; De Gloria, A.; Amditis, A.
A gamified flexible transportation service for on-demand public transport. IEEE Trans. Intell. Transp. Syst. 2018, 19, 921–933.
[CrossRef]

28. Kazhamiakin, R.; Loria, E.; Marconi, A.; Scanagatta, M. A Gamification Platform to Analyze and Influence Citizens’ Daily
Transportation Choices. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2153–2167. [CrossRef]

29. Wang, W.; Gan, H.; Wang, X.; Lu, H.; Huang, Y. Initiatives and challenges in using gamification in transportation: A systematic
mapping. Eur. Transp. Res. Rev. 2022, 14, 41. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1108/BIJ-04-2018-0092
http://dx.doi.org/10.1016/j.physa.2020.125412
http://dx.doi.org/10.1016/j.physa.2018.02.182
http://dx.doi.org/10.1007/s10479-019-03430-9
http://dx.doi.org/10.1016/j.ejor.2005.08.030
http://dx.doi.org/10.1016/j.trc.2009.05.015
http://dx.doi.org/10.1007/s13676-014-0060-6
http://dx.doi.org/10.24963/ijcai.2023/703
http://dx.doi.org/10.1371/journal.pone.0280956
http://dx.doi.org/10.1016/j.cstp.2020.04.011
http://dx.doi.org/10.1016/j.tranpol.2020.09.005
http://dx.doi.org/10.1109/TITS.2018.2791643
http://dx.doi.org/10.1109/TITS.2021.3049792
http://dx.doi.org/10.1186/s12544-022-00567-w

	Introduction
	Literature Review
	Artificial Intelligence for Transfer Point Allocation
	Hub Allocation across Different Domains
	Rural Demand-Responsive Systems

	Problem Formulation
	Optimizing DRT Systems through Dynamic Transfer Point Allocation
	Formulation
	Modeling Constraints and Limitations

	Case Study
	Application Domain
	Dynamic Transfer Point Allocation Trace
	Initial Scenario
	Step 1: DRT Solver 
	Step 2: Transfer Point Allocation
	Extended Example: Allocating On-Line Bookings


	Discussion
	Case Study Assessment
	The Effect of Operational Cost Optimization on Passenger Experience
	Flexibility in the Update of a Passenger's Schedule
	Maximum Number of Vehicle Transfers

	Adoption Rate in Flexible Transportation Systems

	Conclusions
	References

