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Abstract: Autonomous shuttles have been used as end-mile solutions for smart mobility in smart
cities. The urban driving conditions of smart cities with many other actors sharing the road and
the presence of intersections have posed challenges to the use of autonomous shuttles. Round in-
tersections are more challenging because it is more difficult to perceive the other vehicles in and
near the intersection. Thus, this paper focuses on the decision-making of autonomous vehicles for
handling round intersections. The round intersection is introduced first, followed by introductions of
the Markov Decision Process (MDP), the Partially Observable Markov Decision Process (POMDP)
and the Object-Oriented Partially Observable Markov Decision Process (OOPOMDP), which are used
for decision-making with uncertain knowledge of the motion of the other vehicles. The Partially Ob-
servable Monte-Carlo Planning (POMCP) algorithm is used as the solution method and OOPOMDP
is applied to the decision-making of autonomous vehicles in round intersections. Decision-making is
formulated first as a POMDP problem, and the penalty function is formulated and set accordingly.
This is followed by an improvement in decision-making with policy prediction. Augmented objective
state and policy-based state transition are introduced, and simulations are used to demonstrate
the effectiveness of the proposed method for collision-free handling of round intersections by the
ego vehicle.

Keywords: autonomous driving in round intersections; Partially Observable Markov Decision
Process; Object-Oriented Partially Observable Markov Decision Process; Partially Observable
Monte-Carlo Planning

1. Introduction

Active mobility and last-mile delivery are crucial aspects of urban transportation,
and autonomous vehicles are increasingly being proposed and used in pilot deployments
worldwide to help. Current shuttles used for solving the last-mile problem have difficulty
in handling intersections autonomously and the operator must check the intersection and
press a proceed type button after making sure that it is safe to enter. Understanding how
autonomous vehicles navigate complex intersections is essential for their safe and efficient
integration into the existing transportation infrastructure. This paper, therefore, focuses on
decision-making for handling a round intersection with partially observable information
about the motion of the other vehicles.

Self-driving or autonomous vehicles are already available in limited-scale operations
around the world and are expected to become more available soon [1]. When autonomous
vehicles also use onboard units, which are vehicular-to-everything communication modems,
they become connected and autonomous vehicles (CAVs) [2–5]. Due to their increasing
availability, CAVs have been the focus of both academic and industry research and, as
a result, there is a lot of research on autonomous driving function controls and their
higher-level decision-making algorithms. For example, Ref. [6] treats motion planning
for autonomous vehicles driving on highways. Real-time motion planning for urban
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autonomous vehicles is presented in [7]. A survey of autonomous vehicle common practices
and emerging technologies is the topic of [8]. A survey of autonomous vehicle localization
methods can be found in [9]. The robust control of path tracking is treated in [10]. Ref. [11]
is on path planning and control of autonomous vehicles and presents rule-based decision-
making. A survey of autonomous vehicle decision-making at straight intersections is
presented in [12].

The innovative part of this paper is its focus on round intersections as compared with
straight intersections, which have been the focus of many research efforts. The contributions
of this paper are as follows. The Partially Observable Markov Decision Process was applied
to an autonomous vehicle handling a round intersection in the presence of measurements
on the states of the other vehicles in the round intersection that are partially observable.
This approach allows the ego vehicle to handle the decision-making of which actions to take
while entering and following the round intersection autonomously. The Object-Oriented
Partially Observable Markov Decision Process was applied to the same problem for faster
decision-making. A policy-prediction-based state transition approach was combined with
the Object-Oriented Partially Observable Markov Decision Process to improve the accuracy
of future motion prediction of the other nearby vehicles in the round intersection, thereby
improving the decision-making process. A microscopic traffic simulation was used to show
that the AV can handle the round intersection successfully in a multiple-vehicle scenario.

The organization of the rest of the paper is as follows. Related work is presented in
Section 2. The Markov Decision Process (MDP), the Partially Observable Markov Decision
Process (POMDP), the Object-Oriented Partially Observable Markov Decision Process
(OOPOMDP) and the Partially Observable Monte-Carlo Planning algorithm (POMCP)
solution are introduced in Section 3. The OOPOMDP is also applied to decision-making
for autonomous vehicles in round intersections in Section 4, where the penalty function
is formulated and set. An improvement in decision-making with policy prediction is
presented in Section 4. The augmented objective state and policy-based state transition are
introduced in Section 5. Simulations are used in Section 6 to demonstrate the effectiveness
of the proposed method. This paper ends with conclusions and recommendations in the
last section.

2. Related Work

Planning and decision-making are the core functions of an autonomous vehicle for
driving safely and efficiently under different traffic scenarios. As discussed in [13], the
decision-making and planning algorithms for autonomous vehicles aim to solve prob-
lems like (a) determining the future path, (b) utilizing observations of the surrounding
environment using the perception system, (c) acting properly when interacting with other
road users, (d) instructing the low-level controller of the vehicle and (e) ensuring that
autonomous driving is safe and efficient. Therefore, planning and decision-making are
very important for autonomous driving. Depending on the traffic scenario, autonomous
driving functions are designed for highway driving, off-road driving, or urban driving.
Research on highway driving and off-road driving has been going on for a long time with
many results on planning and decision-making. Due to the complexity of the urban traffic
scenario, decision-making and planning for the urban traffic environment have always
been very challenging, with many unsolved problems remaining.

The complexity of the urban traffic scenario is manifested in the following aspects,
which are discussed next [14]. The first problem is the presence of a large variation in road
types. Roads in a highway scenario are quite similar. Vehicles should either stay in their lane
or execute lane changes if needed. Unlike a highway, an urban traffic scenario is composed
of different road types, including lanes, intersections, traffic circles and roundabouts as well
as lanes for bicyclists and crosswalks for pedestrians. Hence, decision-making and planning
need to include intersection management and driving on different types of roads including
one-way ones. The second problem is the presence of many different types of road users
who share the road. In an urban traffic scenario, the road users are not only vehicles but
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also vulnerable road users (VRUs) such as bicyclists, pedestrians, scooterists, etc. Much
more damage will be caused when VRUs are involved in traffic accidents. The safety of
driving, thus, is what the autonomous vehicle and its planning algorithm should always
prioritize. Then, there are intersections that may or may not be signalized. Decision-making
is easier when the intersection is signalized and there are also traffic lights [15]. The rules
of interaction in a signalized intersection with stop signs are also well-established, but the
interpretation or lack of knowledge of these rules by drivers may make it difficult for an
autonomous vehicle to handle the intersection. Handling a round intersection is always a
more challenging task for an autonomous vehicle as decision-making requires knowledge
of the other vehicles in the intersection and prediction of their intent. This paper focuses on
the decision-making of autonomous vehicles in round intersections and is motivated by the
difficulty of autonomously handling the two round intersections by the AV shuttles of the
recent Linden LEAP deployment in Columbus, Ohio, U.S.A., as part of its Smart Columbus
project [16].

An intersection is a junction where roads meet and cross. One of the major challenges
of autonomous vehicle decision-making in urban traffic is handling intersections, especially
round intersections that are not signalized. This paper, therefore, focuses on autonomous
vehicle decision-making and planning in round intersections. A round intersection is a
special case of unsignalized intersections. Intersections, based on the existence of traffic
signals, are usually categorized into two types: signalized intersections and unsignalized
intersections. The signalized intersection is a centralized control system where the traffic
flow is controlled by traffic signals, either traffic lights or traffic signs. Thus, vehicles will
behave according to the traffic signals and do not require extra decision-making or behavior
planning. In contrast, at an unsignalized intersection, decision-making and planning are
decided by the driver or the planner of an autonomous vehicle for determining their
behavior when approaching the intersection as well as for interacting with other nearby
road users or the traffic within the intersection zone.

According to [17], regular intersections are replaced with round intersections to im-
prove traffic efficiency and safety [18], but there are still traffic problems due to merging
and diverging operations, which are relatively easier for a human operator compared with
an autonomous vehicle due to the difficulty of the decision-making process. Motivated by
this, researchers like [19] have tried to mimic human decision-making by using imitation
learning, for example. Decision trees were used in [20] to model human decision-making in
handling round intersections. However, handling round intersections is not very easy for
human drivers either, according to [21]. This is due to the difficulty in detecting and track-
ing the other vehicles in the round intersection due to the round geometry and occlusions
of view [22,23]. The Vehicle-to-Vehicle (V2V) communication to detect and track all vehicles
in a round intersection, as proposed in [24], will obviously help with this measurement
problem, but this requires all vehicles to be equipped with V2V modems, which is not the
case currently. Even if all vehicles had V2V communication capability, partial observability
of the other vehicles would still result from accuracy problems in localization sensors used
and communication problems like latency and packet loss [25]. According to [26], drivers
are still not accustomed to round intersections and have problems in the form of unpre-
dictable decisions. Deep reinforcement learning was used in [27] to solve this problem, but
the training of a deep reinforcement learning control system is very time-consuming and
also depends a lot on the intersection geometry used.

The effect of the driving behavior of an AV on round intersection travel performance
is investigated in [28]. The driving behavior is discretized into three categories: aggressive,
normal and conservative. Low-level driving behavior in the form of low-level actuator
controls is studied in many other papers. For example, the authors of [29] designed a model
predictive controller speed profile for an ego vehicle to avoid collision with other vehicles
in a round intersection assuming full knowledge of the motion of the other nearby vehicles.
They used high-fidelity CarSim simulation for the ego vehicle. Ref. [30] also designed a
model predictive controller for the round path tracking problem in a round intersection
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and similarly used CarSim and lower fidelity Simulink models in simulation evaluation
for path tracking performance. The incorporation of higher fidelity longitudinal, lateral
and vertical suspension dynamics [31] will be useful for the evaluation and validation of
the lower-level actuator controls of the ego AV. However, this high-fidelity modeling is not
required for higher-level decision-making, which is the focus of the current paper. Here, it
is assumed that the low-order actuator controllers for trajectory tracking have already been
designed and are part of the lower level of control.

A microscopic traffic model considers individual vehicles with car following, traffic
rule obeying and lane changing models within a mathematical model of the road network
under analysis. There are many microscopic traffic simulation tools like Vissim, SimTraffic,
AIMSUN, CUBE Dynasim, SUMO and others, according to [32], where the commercially
available tool Vissim was used for round intersection analysis. A microscopic traffic
simulator was used to evaluate the traffic flow capacity of a round intersection in [33].
SUMO was used in [34] for a gap acceptance analysis for round intersections. SUMO was
also used in [35] for centralized intersection management at an intersection, curvilinear
decision-making for a two-lane round intersection in [36] and cooperative perception
analysis in a round intersection in [37]. In accordance with these references, SUMO is used
for microscopic traffic simulation in the two-vehicle and multiple-vehicle simulations of
this paper. It is also widely used by many researchers and is freely available.

The geometric layout of the round intersection considered in this paper is shown in
Figure 1 and resembles the two Linden LEAP AV shuttle route intersections in Ref. [16].
The round intersection in Figure 1 can be viewed as a combination of three types of roads:
a one-lane straight road before the round intersection, an entry/exit part of the round
intersection and a round part of the intersection where a vehicle can only drive in the
counterclockwise direction. Vehicles enter the round intersection from the straight road
and exit in the area of exit/entry. Vehicles will follow the straight and curved lanes in the
straight roads and the round intersection, respectively. For a single vehicle, the change
in angular velocity in different parts of the road makes it difficult for the vehicle motion
model to track vehicle behavior. When there are multiple vehicles in the traffic scenario, the
interaction between vehicles requires a good decision-making and planning algorithm for
the autonomous vehicle. In this paper, a decision-making algorithm based on the Partially
Observable Markov Decision-Making Process (POMDP) for planning the acceleration of
the autonomous vehicle is proposed. A policy-prediction method is also used for better
tracking of the trajectories of other vehicles, which leads to better decision-making.
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3. Decision-Making and Planning for Handling Round Intersections
3.1. Markov Decision Processes

The motion planning and decision-making of autonomous vehicles can be viewed as a
sequential decision-making problem. The Markov Decision Process (MDP) and the Partially
Observable Markov Decision Process (POMDP) represent a very wide range of methods
for solving the sequential decision-making problem. In the Markov Decision Process, an
agent takes actions that affect the whole system, which includes the environment and the
agent itself. The agent looks for actions that lead to future maximal rewards collected from
the whole system, as illustrated in Figure 2.
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Formally, MDP is defined by the five-tuple 〈S, A, T, R, γ〉, where S represents the
collection of states s, including the states of the agent as well as uncontrollable factors in
the environment. A represents the action space, which is a set of executable actions that
the agent can take. T is the transition model. R is the reward function, where γ represents
the discount factor. The transition model T(s′|s, a) denotes the probability that the system
updates to state s′ given that the system takes action a at state s. The reward function
R(s, a) provides the immediate reward when the system takes action a at state s. Action
a is derived from the policy function π(s, a) = P(a|s) , or the probability of a given s, to
achieve the overall optimization goal of the cumulative expected reward of

E[
∞

∑
t=0

γtR(st, at)]. (1)

The discount factor γ reduces the effect of the reward with time. The difference between
POMDP and MDP is that the system state s is not fully observable to the agent. Instead,
the agent can only access observations that are generated probabilistically, based on the
action and the possible true states. The PODMP can be represented as a seven-tuple
extended from MDP as 〈S, A, T, R, O, Z, γ〉, where S, A, T, R and γ have the same meanings
as in an MDP. Of the two additional elements, O represents the observation space, which
contains observations o that the agent perceives from the system and the environment
and Z is the observation model with Z(o|s′, a, s) denoting the probability or probability
density of receiving observation o in state s′ given that the previous state and action were
s, a, respectively.

The distinction between POMDP and MDP is that the agent does not have full knowl-
edge of the environment and the system. Hence, the state information must be inferred
from the entire history of previous actions and observations as well as the initial belief
information b0. The policy is now a mapping from the history to an action. The history
at time t is denoted as ht = {b0, a0, o1, a1, o2, . . . , at−1, ot}. In contrast, the policy mapping
function now depends on the history rather than the states themselves, π(ht, a) = P(a|ht) .
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Due to the lack of knowledge of state s, the belief state, which is the probability distribution
over states given the history, is introduced as

b(s) = Pr(st|ht = h) (2)

which is important for the POMDP for updating the belief states. After reaching a new
state s′, the agent observes a new observation o based on the observation model. The belief
update rule for POMDP is

b′(s′) = ηZ(o|s′, a)∑
s∈S

T(s′
∣∣s, a)b(s) (3)

The overall optimization is refined as

a∗ = argmaxat E[
∞

∑
t=0

γtR(st, at)|b0] (4)

In the case of the autonomous driving decision-making problem, the ego-vehicle does not
have full observation over other vehicles or road user states. Hence, POMDP provides a
better method for solving the sequential decision-making problem for autonomous driving
under uncertainties and partial observability.

Traditional POMDP works well for problems with a state space that is of a small
domain and low dimension. However, POMDP becomes computationally intractable for
planning over a large domain and results in the “curse of dimensionality” issue for its
solution [38]. Since the state space is not fully observable for the agent, the agent needs
to develop a belief representation over the state space, which grows exponentially with
the number of state variables. As for the decision-making problem of autonomous vehicle
driving, the number of other vehicles in the environment will normally be large, and the
decision horizon can be long to finish a driving task in specific traffic scenarios. Both of
these factors in a traffic scenario will lead to a large domain for the POMDP problem.

To improve the performance and deal with the intractability of POMDP over a large
domain, an Object-Oriented POMDP was proposed in [39] for solving a multi-object
search task. It is also useful when applied to solving autonomous driving decision-
making problems due to the large domains in the problem formulation of a traffic sce-
nario with multiple vehicles in it. Object-Oriented POMDP (OOPOMDP) provides an
extension for POMDPs by factorizing both state and observation spaces in terms of ob-
ject. It uses object state abstractions to enable the agent to reason about objects and
relations between objects. The OOPOMDP problem can be represented as an 11-tuple
〈C, Att(c), Dom(a), Obj, S, A, T, R, Z, O, γ〉. In this notation, S, A, T, R, O, Z and γ have the
same meanings as those in POMDP problems. However, in the problem of OOPOMDP, a
new set Obj is introduced. Obj = {obj1, . . . , objn} is a set that state space S and observation
space O are factored into. Each Obji is an instance of a particular class, c ∈ C. Those classes
have their class-specific attributes that are defined in the set Att(c). Dom(a) defines the
possible values of each attribute in the attribute set. The dual factorization of S and O allows
the observation functions to exploit shared structures to define observations grounded in
the state with varying degrees of specificity: over a class of objects, a single object, or an
object’s attribute.

One of the important steps in solving a POMDP that causes the problem of the “curse
of dimensionality” is the belief update procedure, as given by Equation (3). The belief state
over the possible state space has to be updated according to the transition and observation
models. The state space grows exponentially along the update of the belief space regarding
the number of objects. Assume that there are M possible states for the N objects in the
current decision region. Then, the states to be covered with the POMDP are:
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|S| = ∏N
i=1 |Sobji | = |M|

N (5)

Therefore, the dimension of the belief state b(s) also grows exponentially with the
state space.

The OOPOMDP method improves the step for belief updates over multiple objects
and reduces the dimension of states by exploring one possible independence assumption.
When assuming that objects in the environment are independent of each other, the belief
state over the state space can be viewed as a union of belief states over the state of each
object as

b(s) = b(
N
∪

i=1
si) = b(s1)b(s2) . . . b(sN)

= ∏N
i=1 b(si)

(6)

Thus, the exponentially growing belief state now scales linearly in the number of objects
N in the environment. The dimension of the unfactored belief, which is a belief that is
not processed with the OOPOMDP, is |M|N . While the dimension of the factored belief
state is N|M|. When providing object-specific observation oi with respect to each of the
independent objects in the environment, the belief update can also be object-specific for
object i as

b′i(si) = ηp(oi
∣∣si)bi(si) (7)

where i denotes the ith object and η is the normalization factor for the belief state within the
range of [0, 1].

To solve the OOPOMDP problem, a modified version of the Partially Observable
Monte-Carlo Planning (POMCP) algorithm [40] is used. The POMCP algorithm is a well-
known online POMDP planning algorithm that shows significant success over large domain
POMDP problems. POMCP applies the Monte-Carlo Tree search to find the optimal policy
and best action by estimating the Q-value over a certain action and the next belief state [41].

3.2. Application to Round Intersections

The goal of implementing the decision-making algorithm at a round intersection is
to realize safe, comfortable and efficient driving of an autonomous vehicle that interacts
with multiple other vehicles. To achieve this goal, not only is a decision-making algorithm
necessary but good path planning is also required. However, path planning is out of the
scope of this paper, and we will not discuss the path planning method here. The assumption
made here is that the vehicle drives on a designated path through a round intersection, as
illustrated in Figure 3, for two different vehicles. The blue line represents the path for the
ego autonomous vehicle and the red line shows the path for another vehicle, which could
be a human-driven vehicle or an autonomous vehicle. These two paths have an intersection
point. Thus, to make sure that a collision does not happen at the intersection point between
these two paths and that the ego vehicle can pass through the round intersection within a
shorter time compared with executing a stop-wait-and-then-pass policy, a decision-making
algorithm for a round intersection is necessary.
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Figure 3. Diagram of two vehicles passing through the round intersection. Red and blue arrows
show intersecting travel directions of two different vehicles.

The vehicle model is an important factor for vehicle control in autonomous driving.
Even though there is no perfect model to describe how the vehicle moves, there are several
vehicle models commonly used since they show good approximations and performance
for the vehicle control problem. An example is the single-track vehicle model [42]. Au-
tonomous vehicle control can be modeled in a hierarchical architecture: high-level control
for decision-making and low-level control for path following as well as the control for
brake and throttle. In this paper, as we are mainly concentrating on the high-level decision-
making part of vehicle control, a model that describes vehicle kinematic motion will be
sufficient. Hence, we use the vehicle kinematic motion model in a discrete-time domain
at a round intersection. The vehicle model for the ego vehicle with the subscript of r is
given by

St+1 = Tr(St, at) (8)

where St represents the state vector of the vehicle and at is the input to drive the model.
Model (8) is expanded in detail as

x(t + 1) = x(t) + v(t) cos θ(t)∆t (9)

y(t + 1) = y(t) + v(t) sin θ(t)∆t (10)

v(t + 1) = v(t) + a(t)∆t (11)

θ(t + 1) = θ(t) + w(t)∆t (12)
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In Equations (9)–(12), x(t), y(t) describe the 2D planar position and θ(t) is the heading
angle of the vehicle model with respect to a fixed coordinate system. v(t) is the linear
velocity of the vehicle. The input at that drives the vehicle is 〈a(t), w(t)〉, representing the
linear acceleration and the angular velocity or the yaw rate of the vehicle. The acceleration
determines how fast the vehicle can change its speed and direction. ∆t is the time step for
the discrete model. In this paper, the above model is used for updating the states of the
agent. Since the agent has no information on other vehicles, we assume that other vehicles
will follow a similar model but with no speed or direction change given by

St+1 = Tv(St) (13)

which can be expanded as

x(t + 1) = x(t) + v(t) cos θ(t)∆t (14)

y(t + 1) = y(t) + v(t) sin θ(t)∆t (15)

v(t + 1) = v(t) (16)

θ(t + 1) = θ(t) (17)

The position information, the heading angle and the velocity of other vehicles will be
collected each time a perception snapshot is made.

In this paper, the input of the ego vehicle is selected from a finite set of actions,
{a1, a2, . . . , am} × {w1, w2, . . . , wk} for linear acceleration and angular velocity. At every
decision step, the ego vehicle will take a linear acceleration to determine its velocity and an
angular velocity to determine its direction of driving. The change in the direction of the yaw
rate introduces the discontinuity of tracking the vehicle motion using the model in Equation
(8) and will influence the decision-making for the forward Monte-Carlo simulation part,
which is discussed in detail later.

In this paper, without loss of generality, all road users are considered as vehicles
driving on the road. Based on the vehicle models provided, the state space of all the objects
contains the states of all the vehicles involved in the decision-making problem. For the
decision-making cycle at time k, the state space is given by

Sk =
{

se
k, s1

k , . . . , sm
k

}
(18)

The subscripts are the time stamps of the current decision-making cycle. The ego vehicle’s
state is represented with superscript e, and superscripts 1, . . . , m are for the m other vehicles
that are not controllable with the decision-making algorithm. se = [x, y, θ, v, w]T . x, y, θ rep-
resent the longitudinal position, lateral position and yaw angle of the vehicle, respectively.
These three values provide vehicle pose information. v, w are the linear velocity and yaw
rate for describing the motion of the ego vehicle. For the other vehicles

si = [x, y, θ, v]T , i = 1, . . . , m (19)

where x, y, θ are the vehicle pose information and v is the linear velocity of the observed
vehicle i. The difference in the state vector between the ego vehicle and other vehicles
reveals partial observability in vehicle decision-making problems. Using the vehicle’s
onboard sensors such as IMU, the ego vehicle can sense its yaw rate during driving.
However, due to the limitation of sensors, the ego-vehicle will not be able to access other
vehicles’ yaw rate values, hence the need to predict other vehicles’ future trajectories for
planning and decision-making. The transition models are the vehicle models provided
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before. We assume that the state transitions are deterministic with a probability of transition
given by

T : P(s′|s, a) = 1 (20)

The observation states of the agent vehicle and the other vehicles are the same, with their
state vector having an observation probability of 1. The uncertainty in perception and
sensing is not discussed here and is out of the scope of this paper with

Z : P(o|s, a) = 1 (21)

Since the OOPOMDP method is used for the decision-making problem within a multi-
vehicle round intersection traffic scenario, we also formalize the state space and observation
space in the OOPOMDP fashion by noting the following:

• C = {cr, cv} is the class of objects in the decision-making problem. In this problem, we
consider two classes of objects, which are the ego vehicle class cr for the ego vehicle
and the other vehicle class cv for other vehicles in the environment.

• Att(C) are the attributes of objects in different classes. The attributes of the ego
vehicle class include the position information (X, Y, θ) and motion information (v, w).
The attributes of the other vehicle class include position information (X, Y, θ) and
velocity v.

• Dom(a) is the domain of attributes. The domain of attributes in this paper is mainly
on the poses of vehicles. For both the ego vehicle class and the other vehicle class, the
positional domain is within the area of the round intersection, and the heading angle
is within the range of [0, 2π).

• A is action set. The action is a combination of two finite set of actions,
A = {a1, a2, . . . , am} × {w1, w2, . . . , wk} for linear acceleration and angular velocity.
Each action is selected from the set and results in a pair (ai, wj), i = 1 . . . m, j = 1 . . . k.

The decision-making algorithm for a round intersection is based on the Partially
Observable Markov Decision-Making Process, which can also be viewed as an optimization
problem that optimizes the expected summary reward in the future horizon. Hence, a
reward function or penalty function is required for awarding or penalizing the current
action. In this paper, a penalty-style reward function is implemented. Wrong actions
are penalized, which makes them a negative reward. The goal of the decision-making
algorithm is to minimize the overall negative reward (penalization) of the agent traveling
along the designated path through the round intersection, as given by

a∗ = argmax
a∈A

E[
∞

∑
t=0

γtR(st, at)|b0] (22)

The goal of this decision-making algorithm is to make sure that the agent can drive through
the round intersection safely, efficiently and comfortably. The requirements for these three
perspectives lead to the penalization of the risk of collision, the speed, the acceleration and
the sound use of the road. The overall reward function for each step is given by

R(st, at) = c1Rcollision(st, at) + c2Rgap(st, at) + c3Rvelocity(st, at) + c4Rtarget(st, at) + c5Racc(st, at) (23)

The reward in Equation (23) is made up of five different components. For the collision
reward, the ego vehicle should not collide with other road users, as avoiding collisions
and reducing traffic accidents is the top priority in designing any kind of decision-making
algorithm. This reward is related to the nearest vehicle. Every time an action makes the
ego vehicle get closer than some threshold safe distance to the nearest other vehicle, a large
penalty given by

Rcollision(st, at) =

{
−1000 if d(ve, v) <= dsa f e

0 otherwise
(24)
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is applied. In the above equation, d is the distance between the two vehicles given by

d(ve, v) =
√
|xe − x|2+|ye − y|2 (25)

which is the distance between the center of mass of the agent vehicle (ego vehicle) and that
of the nearest vehicle of detection. dsa f e is determined by the dimensions of the vehicles and
the speed limit of the road. As illustrated in Figure 4 below, to determine the safety bound
of vehicles, a circular range around each vehicle is considered such that the boundary will
not be influenced by the heading direction of vehicles. Therefore, the safety threshold
distance is a summary of the threshold distance as well as the two radii of the circular
boundaries generated from the vehicles’ dimensions and is given by

dsa f e = dthreshold + Re,boundary + Rboundary (26)

dthreshold =
v2

lim
2amax

(27)

Re,boundary =

√
We2 + (Le/2)2, Rboundary =

√
W2 + (L/2)2 (28)
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In Equations (26)–(28), vlim is the speed limit on a given road segment, amax is the
maximum allowed deceleration of a vehicle for which the passengers in the vehicle will
not feel uncomfortable and dthreshold shows the emergency distance when the ego vehicle
(the blue vehicle in the back) needs to make an emergency brake to fully stop in order to
avoid a collision with the front vehicle (the orange vehicle). W represents the width of the
vehicles. L is the length of the vehicles. Equation (27) uses a worst-case stopping distance
analysis and, hence, uses the largest allowable speed vlim. If a less conservative result is
desired, the current speed of the ego vehicle can be used instead.

The ego vehicle is penalized for its speed being lower than the speed limit of the
current road segment because the vehicle is always expected to drive at the limit speed of
the current road segment for efficiency. It is also penalized if it exceeds the speed limit. The
penalty for exceeding the speed limit is larger than being lower than the limit speed. The
penalty for discomfort is, then, introduced as

Rvelocity =

{
Cexceed

|ve−vdes |
vdes

if ve > vdes

Clower
|ve−vdes |

vdes
if ve < vdes

(29)

where Cexceed and Clower are negative constant coefficients for the situation where the
ego velocity ve is larger than or smaller than the desired velocity vdes, respectively. The
desired velocity is determined according to the largest tolerance to lateral acceleration for
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passengers in the vehicle if the vehicle is turning and follows the road speed limitation if
the vehicle is traveling on a straight road as

vdes =

{ √
ay,max/κ if turning
vlimit otherwise

(30)

where κ in Equation (30) is the radius of curvature while turning. The velocity reward
drives the ego vehicle toward the desired velocity if there is no risk of collision with the
other vehicles. If there is a chance of collision, the velocity reward is dominated by the
penalty caused by the collision risk due to the difference in scales between these two
rewards. Regarding the comfort of the passengers in the vehicle, the maximum acceleration
is limited as

a =
√

ax2 + ay2 <= amax. (31)

Therefore, once the overall acceleration is larger than amax, a penalty for discomfort is
introduced in the reward function for causing discomfort to the passengers in the vehicle.
The longitudinal acceleration part ax is the currently selected action from the action set.
The lateral acceleration ay is derived from the lateral motion of the vehicle as

ay = v2/r = v2κ (32)

Since the vehicle is following a designated path, the target area is also pre-determined on
the path. Once the vehicle is within the target point of the path, it will be rewarded. The
negative reward (cost), given by

Racc =

{
−100 if a ≥ amax

0 otherwise
(33)

is used to penalize acceleration above the threshold amax. Braking deceleration limiting was
used here as acceleration was readily available. It should be noted that jerk can also be
used in the reward function as an alternative.

Apart from the commonly used reward settings, as can be seen in other works, a gap
reward is also proposed for driving efficiency on the road in the decision-making algorithm
in this paper. Intersections, especially round ones, are the most crowded traffic scenarios
in urban traffic with vehicles merging from different road segments. In addition to the
requirement of safety, efficient use of the road space is also necessary to reduce the chance
of a traffic jam. The gap reward aims to drive the agent vehicles to follow the proceeding
vehicle at a certain distance. A commonly accepted 3 s rule for vehicle following is used to
generate the desired gap between the agent vehicle and the preceding vehicle as

v3s = max{ve − 3 ∗ bmax, 0} (34)

ddesired =
v2

e − v2
3s

2amax
(35)

Rgap = cgap
∣∣d(ve, v)− ddesired

∣∣ (36)

In Equation (34), v3s is the target velocity when acting an emergency full brake at the
maximum brake acceleration bmax and ddesired is the preferred gap between the ego vehi-
cle and the nearest preceding vehicle. A negative reward Rgap is assigned according to
Equation (36) if the distance is different from the desired gap between vehicles. It should
be noted that there is a tradeoff between safety (Rcollision) and the efficiency of travel (Rgap),
which are conflicting goals.
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4. Improving Decision-Making with Policy Prediction

Decision-making and planning for autonomous vehicles in urban traffic scenarios has
always been a challenging problem due to the complexity of urban traffic. Another chal-
lenge is the tracking of vehicle driving motion in the urban area, which largely influences
the performance of the decision-making algorithm. There are several research works that
have been conducted to improve the vehicle planning algorithm’s performance. Ref. [42]
proposed the method of adjusting the vehicle model parameters (Intelligent Driver Model
or IDM model parameters) to emulate different styles of driving and tried to improve
the decision-making algorithm for highway autonomous driving performance. Ref. [43]
proposed a game-theoretic planning algorithm for all vehicles in the traffic scenario in
round intersections. Ref. [44] proposed a method that uses a hidden mode stochastic
hybrid system to model different human driving behaviors to assist the performance of
decision-making in a driver assistance system. Yet, there are few works on improving
the autonomous vehicle decision-making problem for round intersections with multiple
vehicles involved. Hence, in this section, a policy-prediction method-based improvement
for autonomous vehicle decision-making is proposed as one of the main contributions of
this paper.

The planning and decision-making problem can be regarded as a receding horizon
optimization problem starting from the current time and extending to a future time based
on the horizon of the optimization problem. The ego vehicle obtains an observation of all
the other surrounding vehicles at time t, noted as ot, and tries to find an optimal action
such that the total reward is maximized as

a∗ = argmax
a∈A

E[
t+k

∑
t=t

γtR(st, at)]. (37)

We do not have full knowledge of all the future states along the planning horizon. It is
essential to have a good prediction over the future state trajectories, and the state transition
model needs to have good precision for tracking the future potential trajectories.

For the decision-making and planning of autonomous vehicles, the vehicle trajectory
tracking over a future horizon can be performed with the state transition model as described
in Equations (13)–(17). For highways, it is rather simple since the vehicles tend to not have
rough behaviors like multiple lane-changing within a short time, for example. The model
in Equation (13) can provide good trajectory tracking for the decision-making problem
on a highway. The case is different for planning in the urban traffic environment for
intersections, especially round intersections. The vehicle needs to change the direction of
driving in a short period of time due to the geometric features of intersections. The current
observations of other vehicles do not provide enough information on how they will move
in the future time horizon for planning.

As a demonstrative example, the path of a vehicle passing a round intersection is
shown in Figure 5. The shadowed areas in the figure are the areas in which a vehicle is
entering or exiting the round intersection. The vehicle first travels through a shadowed
area to enter the round intersection and makes a turn in a clockwise direction, as shown by
the bottom red arrow. After passing the shadowed area to enter the round intersection, the
vehicle follows the lane area and takes a constant yaw angle turning in the counterclockwise
direction, as shown by the green arrow. Reaching the target connection point to exit, the
vehicle now makes a clockwise turn to exit the round intersection and drive on the straight
road again, as shown by the red arrow on the top. Throughout the whole procedure of
passing the round intersection, the vehicle shows a discontinuous motion in the driving
direction, and the yaw rate keeps changing along the path, making it hard for the vehicle
motion model (10) to track given a single initial condition.
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Figure 5. Diagram of vehicle passing in round intersection (vehicles enter/exit the round intersection
through the shaded areas, and the arrows show the direction of travel). The red arrows show entry
and exit, and the green arrow shows following the round lane.

In a decision-making cycle, the planning starts from some initial state sampled from
the belief state space at current time, denoted as t0, and carries out a forward simulation
to generate potential trajectories of the states for optimizing the expected cumulative
reward along the optimization horizon t0 ∼ t0 + k, with k being the decision-making
horizon. Directly implementing the vehicle motion models in Equation (10), even with
the knowledge of the yaw rate at t0, the true trajectory deviates a lot from the simulated
trajectory that tracks the potential vehicle trajectory on the optimization horizon. The model
alone is not enough to describe the vehicle state transitions under the round intersection
traffic scenarios, as shown in Figure 6. In Figure 6, the true trajectories are not successfully
tracked by directly implementing the state transition equations from the initial state. The
forward simulation path is calculated for 100 steps, and the arrows show the direction of
the vehicle moving or the direction of the simulation. This will cause a lot of issues when
making decisions for the ego vehicle to pass the round intersection safely and efficiently.
This issue will also affect the solution of the POMDP problem based on the Monte-Carlo
Tree search since the Monte-Carlo simulation for the state particles is the core procedure in
the tree search algorithm.

To overcome the issue caused by the discontinuity in vehicle motion, a policy-
prediction-based decision-making method is proposed here, such that the state transi-
tion of the vehicle can be better tracked and simulated during the decision-making cycle.
The policy-prediction method is based on the change point policy-prediction method. This
paper mainly focuses on the traffic scenario of round intersections, and an abstract policy
set is applied here for the decision-making algorithm. This method utilizes the recorded his-
tory of the decision-making algorithm based on the OOPOMDP so that it avoids additional
memory costs.
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5. Augmented Objective State and Policy-Based State Transition

The original setting of the observation state is the same as the state of the other vehicles,
that is

si
t = oi

t = [xi, yi, θi, vi]
T (38)

where the observation state oi
t is the real observation made by the agent from the envi-

ronment. It does not contain any of the policy information, so the states sampled from
the updated belief states directly accomplish state transition using the model (10) during
the decision cycle. This leads to the issue of the simulated path deviating from the true
path and causing inaccuracy in decision-making. Here, an attribute is added to the other
vehicle class cv for the most recent policy πi that augments the state space and observation
space into

si
t,a = oi

t,a = [xi, yi, θi, vi, πi]
T (39)

where πi is the most likely policy that the observed vehicle is executing at the time that
current observation is made for vehicle i. We denote the policy prediction method as

F : h→ πi
t, i ∈ {1, 2, . . . , n} (40)
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where h is the current history of the POMDP problem, and, as shown in a previous section,
it is a series of actions and observations made by the agent and given by

ht = {b0, a0, o1, a1, o2, . . . , at−1, ot}. (41)

According to the feature of the OOPOMDP, the observations of other vehicles can also be
indexed by objects in the history. So, we can use it for policy-prediction methods for each
of the vehicles involved in the traffic scenario. πi

t ∈ Π is a policy for vehicle i selected
from the pre-determined policy set. For every decision cycle, we first obtain the history of
observations on vehicle i and implement the policy-prediction method to find the policy
over the last segment of the vehicle and then augment the observations state and state
of vehicle i with the potential policy so that the policy can be used for state transitions
during the Monte-Carlo Tree search. The state transition equation of other vehicles is now
modeled as

St+1 = Tv(St, πt) (42)

with
x(t + 1) = x(t) + v(t) cos θ(t)∆t (43)

y(t + 1) = y(t) + v(t) sin θ(t)∆t (44)

v(t + 1) = v(t) (45)

θ(t + 1) = θ(t) + w(πi, θ̂πi )dt (46)

Vehicle model (13) now becomes a constant velocity and turn rate model for vehicle
trajectory tracking. The yaw rate is generated based on the current policy πi and parameter
θ̂πi , which will help with vehicle trajectory tracking in the decision-making cycle and
improve the performance of decision-making based on the OOPOMCP algorithm.

Since the decision-making algorithm is mainly used for vehicles traversing a round
intersection, we take advantage of its geometry to simplify the generation procedure
of the vehicle yaw rate based on the policy. According to the geometric features of a
round intersection, we know that a round intersection has mainly three types of areas:
straight road segments, enter/exit areas and round areas. The vehicle yaw rate will also be
determined by road curvatures in these three different types of areas based on

w = v/r = v · κ (47)

where r is the turning radius of the vehicle trajectory and κ is the road curvature.
To illustrate the difference in utilizing this method, a forward simulation trajectory is

generated with the policy-based state transition model, as shown Figure 7. From Figure 7,
we can see that the policy-based simulated path is very similar to the true path of a vehicle
passing a round intersection, where only the initial state is given. In the simulated path
generation, we assume that the policy of entering the round intersection is given such that
the vehicle yaw rate is generated based on the policy, so the vehicle is turning in a clockwise
direction to enter the round intersection instead of keeping the original heading angles and
yaw rate from the straight lane. In this case, the decision made by the agent vehicle will be
closer to the real situation and improve the performance of the decision-making algorithm.
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In addition to using the policy-based state transition in the decision-making problem
of vehicles in a round intersection, the control of the autonomous vehicle also considers
vehicle jerk. Since the reward function can measure how good it is for the current selection
of an action from the action set, it is able to measure the rewards caused by a velocity
that exceeds the speed limit or exceeds the maximum lateral acceleration that causes
discomfort. However, it is not capable of measuring the change in acceleration (jerk) since
the reward function does not have access to previous actions. Therefore, the previous linear
acceleration is stored for comparison with current acceleration determined with the tree
search. We approximate the jerk of the vehicle to be given by

Jt =|∆a|=|at − at−1| (48)

Based on this jerk indication Jt, an acceleration re-selection is made to ascertain that the
acceleration change does not exceed a maximum allowed jerk so that the vehicle speed
change is smooth and passengers feel comfortable. This is based on

at =


at if Jt <= Jmax

at−1 + Jmax if at − at−1 >= Jmax
at−1 − Jmax if at − at−1 <= −Jmax

(49)

which is used to make sure that the jerk of the autonomous vehicle is not too large.

6. Results and Discussion

The simulation of decision-making for autonomous vehicles passing a round inter-
section is carried out, and exemplary results are summarized here to test and validate the
decision-making algorithm with a policy-based state transition. The traffic scenario in the
simulation is a typical four-way round intersection, as shown in Figure 8. Vehicles enter
the scenario from the straight lane segment and move toward their destination area. To
simplify the test environment, we assume the round intersection is a circle so that the road
curvature within the round intersection is a constant: κ = 1/r, where r is the radius of
curvature of the lanes in the round intersection. During the simulation, vehicles drive on
the right side of the road on the straight lane segment and in the counterclockwise direction
while they are within the round intersection.
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For the OOPOMCP algorithm to solve the Object-Oriented POMDP problem, the
parameters used in the tree search are:

1. Planning time for each step: 1.0 s;
2. Maximum search depth in the tree: 100;
3. Exploration constant value: 2.0;
4. Discount factor of the cumulative expected reward: 0.99.

In the action set, the discrete linear acceleration set given by

Acc = {−3.0,−2.0,−1.0, 0, 0.5, 1.5, 2.5}m/s2 (50)

is used. The yaw rate of the vehicle can be determined according to the road curvature
using the linear velocity at different road segments for the round intersection. As for a
single-lane round intersection with a straight road segment connecting to it, the yaw rate
appears to have three features:

• In the straight lane segments, the vehicle’s yaw rate is maintained at zero as it keeps
driving straight.

• In the round intersection part, the vehicle drives along the road at the yaw rate of
w = v

R , where R is the radius of the round intersection and v is the vehicle’s linear
velocity. This is a positive value when setting the counterclockwise direction as the
positive direction.

• When the vehicle is entering/exiting the round intersection, the yaw rate w′ is some
negative value when the counterclockwise direction is taken as the positive direction.
In the simulation, since the entering/exiting process only takes a very short time
period, the yaw angle change is approximated with a yaw rate determined by the
process of uncontrolled simulation vehicles entering the round intersection.

In the simulation, the round intersection has a radius curvature of 20 m; hence, the
road curvature in the roundabout intersection is 1/20. Additionally, based on the test
data, the curvature of the entering/exiting area in the simulation is approximated to be
0.15, which is used in the transition model. Apart from those parameters in the action
set, parameters for the reward function in the decision-making problem are listed below.
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Currently, all the factors in the total reward are equally weighted; hence, the coefficients
used are

c1 = c2 = c3 = c4 = c5 = 1. (51)

The collision reward depends on the vehicle dimensions. In this test, the vehicles have the
same dimension, which are L = 5.0 m, W = 1.8 m. These are the default settings of the
passenger vehicles in the SUMO simulation.

The overall maximum acceleration required in Equation (33) is set to be 4.0 m/s2, and
the maximum lateral acceleration caused by vehicle turning is set to be 2.0 m/s2. The cost
due to exceeding the desired velocity in Equation (29) is Cexceed = −100 for penalizing the
unsafe maneuvering of exceeding the maximum allowed velocity, and the cost for being
lower than the desired velocity is Clower = −10. The maximum brake acceleration is the
lowest acceleration from the action set, which is −3.0 m/s2 and cgap = −10.

The simulation results compare the performance of the decision-making algorithm
with decision-making using the OOPOMDP with and without a policy-based state tran-
sition against the benchmarking system of the SUMO simulation system built-in vehicle
model, which is an Intelligent Driver Model (IDM) that executes lane following. The results
compare the total travel time, total reward and if there is an emergency brake acted by other
vehicles in the system. First, a two-vehicle scenario simulation is performed, and the results
are presented below. The diagram of the two-vehicle scenario is presented in Figure 9.
The autonomous vehicle, colored green, traverses the round intersection starting from the
bottom and tries to reach the destination points at the top in the figure. The simulation
results for this two-vehicle scenario are summarized in Table 1.

Electronics 2023, 12, x FOR PEER REVIEW 20 of 24 
 

 

 

Figure 9. Two-vehicle scenario of passing the intersection. 

From the results above in Table 1, we can find that the OOPOMDP with the policy-

based state transition method proposed in this paper achieves a higher reward (less neg-

ative) compared with the one that directly implements the state transition model pro-

posed in Equation (13). With the policy-based state transition, the ego vehicle can better 

predict the future trajectory of the surrounding vehicles and control the speed and direc-

tion to reach its destination in a shorter time. Also, since it avoids the risk of colliding with 

other vehicles, no emergency brakes or aggressive maneuvers need to be made by other 

vehicles while they are following the lane with their IDM models. Also, the shorter time 

achieved when compared with the system driver proves the efficiency of implementing 

such a decision-making algorithm for autonomous vehicles in round intersections. 

Another simulation is carried out for a multi-vehicle scenario. Eight vehicles in total 

are involved in the simulation with different departure times. Hence, they interact within 

the region of the round intersection, as shown in Figure 10. The green vehicle shows the 

ego vehicle that deploys the decision-making algorithm, and the test results are summa-

rized in Table 2. 

Table 2. Simulation test result of the multiple-vehicle simulation. 

Desciption Total Reward 
Total Travel 

Time (s) 
Emergency Brake 

OOPOMDP with 

policy-based state 

transition 

−450 20.9 
No emergency brake 

performed 

OOPOMDP-based 

decision-making 
−14,516.3 22 Potential Collision 

System driver Not applicable 33.7 Not applicable 

start

end

direction

Figure 9. Two-vehicle scenario of passing the intersection.

Table 1. Simulation result of the 2-vehicle scenario.

Desciption Total Reward Total Travel Time (s) Emergency Brake

OOPOMDP with
policy-based state

transition
−527.9 21 No emergency brake

performed

OOPOMDP-based
decision-making −593.674 23

Emergency brake
performed by another

vehicle

System driver Not applicable 23 Not applicable
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From the results above in Table 1, we can find that the OOPOMDP with the policy-
based state transition method proposed in this paper achieves a higher reward (less nega-
tive) compared with the one that directly implements the state transition model proposed
in Equation (13). With the policy-based state transition, the ego vehicle can better predict
the future trajectory of the surrounding vehicles and control the speed and direction to
reach its destination in a shorter time. Also, since it avoids the risk of colliding with
other vehicles, no emergency brakes or aggressive maneuvers need to be made by other
vehicles while they are following the lane with their IDM models. Also, the shorter time
achieved when compared with the system driver proves the efficiency of implementing
such a decision-making algorithm for autonomous vehicles in round intersections.

Another simulation is carried out for a multi-vehicle scenario. Eight vehicles in total
are involved in the simulation with different departure times. Hence, they interact within
the region of the round intersection, as shown in Figure 10. The green vehicle shows the ego
vehicle that deploys the decision-making algorithm, and the test results are summarized in
Table 2.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 24 
 

 

 

Figure 10. Multiple-vehicle scenario. 

In this simulation, whose results are summarized in Table 2, decision-making with 

the policy-based state transition is able to achieve the goal of traversing the round inter-

section safely and efficiently without any potential collision, and it takes advantage of 

road space to drive fast. Yet, we see that the OOPOMDP-based decision-making has a 

large penalty (negative total reward) because a potential collision that generates a very 

large penalty happens due to the inaccuracy in predicting other vehicles’ trajectories, as 

shown in Figure 11. The long traversal time of the system driver is due to the right-of-

way. The ego vehicle has to wait for other vehicles to pass in the round intersection. Thus, 

the waiting time is very long compared with the result of implementing the POMDP de-

cision-making algorithms in this paper. 

 

Figure 11. Potential collision. 

The experimental results for the two cases considered were presented in this section 

with illustrations and in the form of Tables 1 and 2, which summarize the results. This 

paper focused on the decision-making problem of being able to handle a round 

Figure 10. Multiple-vehicle scenario.

Table 2. Simulation test result of the multiple-vehicle simulation.

Desciption Total Reward Total Travel Time (s) Emergency Brake

OOPOMDP with
policy-based state

transition
−450 20.9 No emergency brake

performed

OOPOMDP-based
decision-making −14,516.3 22 Potential Collision

System driver Not applicable 33.7 Not applicable

In this simulation, whose results are summarized in Table 2, decision-making with the
policy-based state transition is able to achieve the goal of traversing the round intersection
safely and efficiently without any potential collision, and it takes advantage of road space
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to drive fast. Yet, we see that the OOPOMDP-based decision-making has a large penalty
(negative total reward) because a potential collision that generates a very large penalty
happens due to the inaccuracy in predicting other vehicles’ trajectories, as shown in
Figure 11. The long traversal time of the system driver is due to the right-of-way. The ego
vehicle has to wait for other vehicles to pass in the round intersection. Thus, the waiting
time is very long compared with the result of implementing the POMDP decision-making
algorithms in this paper.
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The experimental results for the two cases considered were presented in this section
with illustrations and in the form of Tables 1 and 2, which summarize the results. This
paper focused on the decision-making problem of being able to handle a round intersection
without any collisions, and the results were presented accordingly. The path of the AV was
pre-determined for this reason.

7. Conclusions and Recommendations

In this paper, methods for decision-making and planning of autonomous vehicles in
handling a round intersection were introduced and discussed along with simulation results
for the validation of the algorithms. The POMDP was first introduced as a powerful tool for
solving the sequential decision-making problem with uncertainties and states that are not
fully observable. The OOPOMDP algorithm was later introduced as a method for factoring
object states and observations individually and making the belief update more efficient
and low-cost. Utilizing the feature of the OOPOMDP, a policy-based state transition was
used for the decision-making algorithm. Since the OOPOMDP stores the history of all
the involved agents and environment objects, the agent gets to determine the most recent
policy of other vehicles based on the policy-prediction method that was introduced. This
OOPOMDP decision-making with policy prediction largely improves the performance of
decision-making for the traffic scenario of round intersections. The reward function was
formulated for safe and efficient travel while keeping passenger comfort in mind.

The approach in this paper can be applied to other relevant connected and autonomous
driving tasks. For example, the platooning or convoying of vehicles in the form of adaptive
and cooperative adaptive cruise control [45,46] on highways is a topic with much research
attention. More recent work focuses on similar cooperative driving in urban roads including
cooperative handling of an intersection by a convoy of cooperating vehicles [47]. While
there are results for straight intersections, corresponding results for round intersections
are missing. The approach in this paper can be useful for the cooperative handling of
round intersections by a convoy of connected and autonomous vehicles. Active safety
control systems like yaw stability controllers [48] are also important as the vehicles in the
round intersections follow a circular path and yaw stability problems may occur due to
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weather conditions or emergency maneuvers. An extension of the approach in this paper
can incorporate a more detailed model of the ego vehicle and can be integrated with yaw
stability control to accommodate such problems.

It should be noted that the current paper only treats one round intersection as the
focus is on the decision-making of one AV as opposed to the effect of the proposed decision-
making algorithm on how multiple AVs with the decision-making algorithm would perform
in a large traffic network. Simulations on a large road network considering different
penetration rates of AVs using the proposed decision-making algorithm can be part of a
future study. Similarly, work on how the results can be used for practical policy implications
in various geographic jurisdictions worldwide was not considered here and can be part of
future work.

The use of real-time data and a real-world implementation would be very useful as
simulation is typically based on several unrealistic assumptions, and the traffic encountered
in the field exhibit stochastic, dynamic and intricate characteristics. It is not possible for
us legally to operate autonomously on public roads, so it was not possible for us to try
this method in a real round intersection. Playback of real data in the simulations would
also not be very realistic, as the data for other traffic would not be reactive to our ego AV.
As a result, we used SUMO simulations in this paper. Future work can implement this
decision-making algorithm in real round intersections in controlled environments.
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