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Abstract: In the process of environmental perception, traditional CNN is often unable to effectively
capture global context information due to its network structure, which leads to the problem of blurred
edges of objects and scenes. Aiming at this problem, a self-supervised monocular depth estimation
algorithm incorporating a Transformer is proposed. First of all, the encoder-decoder architecture is
adopted. In the course of the encoding procedure, the input image generates images with different
patch sizes but the same size. The multi-path Transformer network and single-path CNN network
are used to extract global and local features, respectively, and feature fusion is achieved through
interactive modules, which improves the network’s ability to acquire global information. Second, a
multi-scale fusion structure of hierarchical features is designed to improve the utilization of features
of different scales. Experiments for training the model were conducted using the KITTI dataset. The
outcomes reveal that the proposed algorithm outperforms the mainstream algorithm. Compared
with the latest CNN-Transformer algorithm, the proposed algorithm reduces the absolute relative
error by 3.7% and the squared relative error by 3.9%.

Keywords: monocular depth estimation; Transformer; multi-scale features; self-supervised learning

1. Introduction

With the rapid development of artificial intelligence, unmanned driving, intelligent
robots, augmented reality (AR), and other technologies have received more attention, and
the core of such technologies is environmental perception. Depth estimation is a key
part of environmental perception. Accurate and rapid estimation of the distance between
the ontology and the target is the basis for cognition and control [1]. Traditional depth
estimation methods include using lidar or multi-eye cameras to obtain scale information,
and calculating scale based on camera motion and pose information. The more classic
algorithms include recovery from motion (Structure from Motion, SFM), using monocular
the image sequence captured by the camera estimates depth [2], multiview reconstruction
(Multiview System, MVS) [3,4], triangulation (Triangulation) [5,6], etc. These methods
are based on continuous image information and known camera pose information. They
have high requirements for the collection of initial information and are difficult to estimate
the depth of an individual image. There are also many methods that rely on multi-image
features, such as: recovering from shadows (Shape from Shading) [7], obtaining scale from
focus or defocus (Depth from Focus or Depth from Defocus) [8,9], etc. Most of the features
collected by these methods are not rich enough, which seriously affects the accuracy of
depth estimation.

After the advent of deep learning, a wealth of feature information can be extracted from
images through convolutional neural networks, which overcomes the above deficiencies,
enabling monocular depth estimation to quickly complete image recognition, so it has
been greatly developed. Monocular depth estimation using deep learning is divided
into supervised learning and self-supervised learning. Supervised learning uses image
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information with calibrated depth parameters for model training, but the cost of obtaining
a multitude of pictures with real surface depth is too high, and the labels are sparse, which
is not suitable for ground estimation. Self-supervised learning algorithms do not require
labeled data for training, greatly reducing training costs. Garg et al. [10] first proposed a
self-supervised training framework, which consists of two parts: deep network and image
reconstruction. It uses image pairs for depth estimation, reconstructs a new view, and then
compares it with the original view to complete the training. Zhou et al. [11] proposed
a method of video training, designing a depth estimation network and pose estimation
network, using each frame of the video as a training set to train the network, and using the
image reconstruction minimum loss function to make the network convergence. Godard
et al. [12] proposed the minimum reprojection error formula, which improves the robustness
of the algorithm in environments where objects are occluded and reduce boundary artifacts
by using multiple scale appearance matching losses. Such depth estimation methods are
all based on CNN for research. However, due to the convolution operation principle of
CNN, its receptive field is limited, which shows shortcomings in the acquisition of global
remote information, reducing the effectiveness of self-supervised learning. To solve this
problem, most of the algorithm models developed based on CNN will build a deeper
backbone or complex architecture, which leads to a larger model size and increases the
computational workload.

In addressing the aforementioned issues, this paper suggests an approach to use the
Transformer network to improve the existing CNN network algorithm. Improved on the
basis of U-net network architecture, the backbone network was modified into a multi-path
Transformer and CNN fusion network, using the global feature to local feature interaction
module (GLI) for feature fusion, combining the feature information extracted by the two
networks. The combination enriches the effectiveness of image feature expression, thereby
solving the problem of object and scene edge blur caused by insufficient global features of
CNN in self-supervised learning. The contributions of this paper can be summarized in
two aspects.

(1) A new algorithm incorporating a new backbone network is proposed for self-supervised
monocular depth estimation. This method solves the problem of limited receptive
fields in a separate CNN network by using a parallel Transformer network and makes
a certain contribution to increasing feature richness and effectiveness.

(2) Compared with existing similar algorithms, the proposed new algorithm shows higher
accuracy on the KITTI dataset and achieves better results under the same conditions
through improvements. The effectiveness of the improvements in each part of this
article is demonstrated through ablation experiments.

2. Related Work

This section will further introduce research related to monocular depth estimation and
the application of transformers in monocular depth estimation.

2.1. Deep Learning and Monocular Depth Estimation

Depth estimation is an uncertain task. The same two-dimensional image scene may
correspond to multiple three-dimensional scenes. Deep learning methods are divided into
two types: supervised and self-supervised.

Supervised depth estimation extracts features from images through a deep network,
uses images with real depth as supervision signals, and learns the relationship between
image information and depth. Eigen et al. [13] were the first to use deep learning methods
to complete the depth estimation task from a single image. They use multi-scale networks
to extract image features with different levels of finesse. Laina et al. [14] used pre-trained
encoders with new upsampling modules and loss functions to improve the training effect.
Ramamonjisoa et al. [15] proposed to predict the residual depth map by refining the
network, which improved the accuracy of the first estimation result.
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Self-supervised depth estimation does not need to rely on real-depth images as su-
pervision signals and is trained using image pairs or videos without ground truth. Garg
et al. [10] and Zhou et al. [11] proposed training methods through image pairs and videos,
respectively. They all regarded depth estimation as an image reconstruction task and
allowed the network to converge through the loss during reconstruction. Godard et al. [16]
first proposed the left and right disparity consistent loss to improve the estimation accuracy,
and then further proposed the minimum photometric loss in [12] to reduce the impact of
occlusion and improve the robustness. In subsequent research, some people have intro-
duced more constraints for dynamic scenes, such as the optical flow method [17], semantic
segmentation [18], etc.

2.2. Application of Transformer in Monocular Depth Estimation

Research related to monocular depth estimation is mostly based on CNN, such as
using the algorithm using ResNet18 [19] as the backbone network. With the emergence of
transformer networks and breakthroughs in various fields of computer vision, some re-
search on depth estimation based on transformers has also emerged. Varma et al. [20] used
the Transformer network for self-supervised monocular depth estimation. Bae et al. [21]
proposed a network that integrates CNN and transformer, which enhanced the feature rich-
ness of CNN at a certain level. Zhang [22] et al. proposed a lightweight CNN-Transformer
network, which reduced the amount of calculation while retaining a certain accuracy by
designing a new architecture.

3. Self-Supervised Learning Network Structure

The network structure proposed in this article uses a similar architecture to Mon-
odepth2 [12], including depth and pose networks, which play the role of image depth
estimation and camera pose estimation, respectively. The depth estimation network uses
the U-net network architecture modified by the fusion Transformer network to encode and
decode, and the input is an individual RGB image; the pose estimation network leverages
the ResNet18 architecture to infer the camera’s pose by analyzing a continuous stream of
image data, and the input consists of a set of two RGB images. A new network structure is
formed by using a parallel Transformer network and multi-scale feature fusion, as depicted
in Figure 1.

3.1. DepthNet

Differing from supervised depth estimation approaches, self-supervised estimation
methods obtain their supervision signal through image reprojection from diverse view-
points. For achieving satisfactory results, it is necessary to accurately distinguish the scene
structure for depth estimation. It is not easy to distinguish between foreground objects and
background objects. The current algorithm based on traditional CNN uses convolutional
layers to aggregate full-text contextual information and improves model performance
through hierarchical union and atrous convolution. However, complex network structures
also make it difficult to improve algorithm accuracy. At the same time, owing to the con-
straints of conventional convolution, it becomes arduous to model the global appearance
similarity of objects, and there will be situations where foreground objects and background
objects cannot be clearly distinguished in shallow networks.

The Transformer network has a self-attention mechanism (Self-attention), which has
excellent performance in the recognition of global context information and has made
progress in computer vision research domains like image classification and target detection.
In the domain of monocular depth estimation, relying on the Transformer network can
break through the limitations of the traditional convolutional network and better extract
feature information. This paper uses MPVIT [23], one of the latest Transformer architectures,
to optimize the algorithm by modifying the architecture of the backbone network, and uses
parallel multi-path modules to extract local and global features.
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Figure 1. Overall structure diagram of our network. The network in this article has an encoder-
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cluding multi-scale embedding and multi-path Transformer modules, and the figure includes up-
sampling blocks and prediction head. 
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Figure 1. Overall structure diagram of our network. The network in this article has an encoder-
decoder DepthNet and a PoseNet for pose estimation. The DepthNet encoder has four stages,
including multi-scale embedding and multi-path Transformer modules, and the figure includes
upsampling blocks and prediction head.

The overall depth estimation network proposed in this article uses U-net’s encoding-
decoding structure, which can be divided into four stages, and features of different scales
are gathered in each stage. Input an image of size H ×W × 3, send the image to the
convolution system, first perform downsampling through a 3 × 3 convolution, and then
perform feature extraction and scale adjustment through two 3 × 3 convolutions using a
stride of 1, outputting a feature map of size H/2×W/2× C1. After entering the second
stage, the feature map is spliced with the pooled original input image. This splicing method
can help alleviate the loss of spatial information details from size reduction. Here, the
same processing method as Lite-Mono [22] is used. The third stage and the fourth stage
also do similar processing. The multi-scale patch embedding module and the multi-path
Transformer module are used in the second to fourth stages, as shown in Figure 1.

The multi-scale patch embedding module can change the sequence length of the
resulting image patches by adjusting the stride and padding length, and then output
features with different patch sizes but the same size. By embedding patches of different
scales, we can simultaneously utilize fine-grained and coarse-grained visual information at
the identical feature level, allowing us to more comprehensively capture the information
in the image and improve the expressiveness and accuracy of the model. As can be seen
in Figure 2 above, the initial image undergoes preprocessing to generate three patches
with sizes of 3 × 3, 5 × 5, and 7 × 7, and then features of the same size are generated
by adjusting the transformation stride and padding length. This process is carried out
through a sequence of three successive 3 × 3 convolutional layers. The channel size is
C, the padding is 1, and the stride is set according to whether the resolution needs to be
adjusted. It is 2 when needed and 1 when not. For the feature X2 ∈ RH2×W2×C2 of the
second stage, features F3×3(X2), F5×5(X2), and F7×7(X2) with size H/4×W/4× C2 can be
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generated. In this paper, four parallel convolutions are used to generate features with the
same size and different receptive field sizes, and these features are sent to the multi-path
Transformer module with four branches, as shown in Figure 3.
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block and Transformer block.

In the multi-path Transformer module, a deep residual bottleneck block and three
parallel Transformer blocks are used to accept and process the transmitted features, and then
two types of features are aggregated through the global-to-local feature interaction module
(GLI) while using the local connectivity of CNN and the global context of Transformer
are used to represent rich features. The single-path deep residual bottleneck block is
composed of three convolutional layers: 1 × 1 convolution, 3 × 3 depth convolution, and
1 × 1 convolution, using residual connection, the channel size is Ci. This module is used
to obtain local features Li ∈ RHi×Wi×Ci . To reduce the computational burden of the three
parallel Transformer blocks, the decomposition self-attention mechanism in CoaT [24] is
used here:

FactorAtt(Q, K, V) =
Q√
C
(so f tmax(K)TV), (1)

where Q, K, V ∈ RN×C is the query, key, and value obtained by linear projection, and C is
the embedding dimension. The attention mechanism used in [24] simplifies the attention
by modifying φ(·) and ψ(·). The φ(·) is set to 1/

√
C and ψ(·) is set to a softmax function,

thereby improving the computational efficiency of the attention mechanism. Multi-path
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transform is used in this article, which undoubtedly increases the amount of calculation and
requires some adjustment of parameters to reduce the amount of calculation. Analyzing the
complexity of the operation shows that adjusting the channel C can achieve better results
than other parameters. Therefore, this article sets different settings for C at different stages
to reduce the amount of calculation while ensuring network performance.

The global features Gi,j ∈ RHi×Wi×Ci are represented by the Transformer, and then
aggregate two types of features represented, using the concatenation operation:

Ai = Concat
([

Li, Gi,0, Gi,1, Gi,2, · · · , , Gi,j
])

, (2)

Xi+1 = H(Ai). (3)

where j represents the path number of the Transformer block, Ai ∈ RHi×Wi×(1+j)Ci is the
feature generated after concatenation, H(·) represents a function that learns the process
of feature interaction, which is used to generate the final features Xi+1 ∈ RHi×Wi×Ci+1 , the
channel dimension is set to Ci+1. H(·) uses a 1 × 1 convolution in the process. The final
features generated in this stage will be spliced with the three-channel input image pooled
in the next stage as the input of the next stage. By fusing features of different scales, the
feature information across various scales is preserved, enhancing the model’s capacity
ability to distinguish the depth of the foreground and background is improved.

The decoding network part does not use complex upsampling methods or add more
attention modules, but uses the same way as in [12], as illustrated in Figure 1. The method
used in this article has made some minor changes in the structure. The spatial dimension
is increased using bilinear sampling while concatenating features from three stages in the
encoder using convolutional layers. Every upsampling block is followed by a prediction
header, which includes a 1 × 1 convolution, Upsample, and Sigmod functions to output
inverse depth images at complete, half, and quarter resolutions, respectively.

3.2. PoseNet

We used the same configuration as in [12] for pose estimation. We chose ResNet18
pre-trained on ImageNet-1k as the pose encoder. Compared with ResNet50, ResNet18
has fewer layers, can generate faster and smaller models, and is easier to converge, which
meets the needs of the algorithm in this paper. Using a video sequence as input, a pair of
color images is encoded and a four-layer convolutional pose decoder is used to estimate
the six degrees of freedom relative pose between adjacent images.

3.3. Loss Function

The training method of self-supervised learning regards depth estimation as an image
reconstruction task. Similar to [12], the loss function consists of two parts: the image
reconstruction loss Lr between the target image It and the reconstructed target image Ît,
and the predicted depth image Dt Constrained edge-aware smoothness loss of Lsmooth.

(1) Image reconstruction loss. Self-supervised monocular depth estimation uses a deep
network and relative pose to complete the image reconstruction task, but depth
estimation is an uncertainty problem. When the relative pose is known, there can be
multiple simultaneous and reasonable depth results to satisfy the image reconstruction
requirements. By formulating this problem as training, the photometric reprojection
loss is defined as follows:

Lp
(

Ît, It
)
= Lp(F (Is, P, Dt, K), It), (4)

Among them, Ît is obtained by the function F composed of the input image of PoseNet
Is, estimated pose P, predicted depth, and camera intrinsic parameters K. Lp can be
calculated from the sum of pixel-level similarities SSIM and L1 losses between Ît and It:

Lp
(

Ît, It
)
= α

1− SSIM
(

Ît, It
)

2
+ (1− α)‖ Ît − It‖, (5)
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where α is empirically set to 0.85 [12]. Additionally, to handle out-of-view pixels and
occluding objects, compute the minimum photometric loss [12]:

Lp(Is, It) = min
Is∈[−1,1]

Lp
(

Ît, It
)
, (6)

Among them, the range represented by Is is the image of the two frames before and
after the target image. During the training process, if there are objects with a similar speed
to the camera, it will affect the results. By changing a pixel between two frames, you can
determine whether the pixel has a movement speed close to that of the camera. Based
on this principle, this paper uses a binary pixel-by-pixel mask µ ∈ {1, 0} to selectively
weight pixels:

µ =

[
min

Is∈[−1,1]
Lp(Is, It) > min

Is∈[−1,1]
Lp

(
Ît, It

)]
, (7)

where [] is the Iverson bracket. By weighting pixels, the impact of targets moving at similar
speeds can be reduced. When the camera is stationary, the whole lot of pixels in the period
will be judged as redundant information and removed, reducing unnecessary losses in the
algorithm process. To sum up, the image reconstruction loss can be defined as follows:

Lr
(

Ît, It
)
= µ·Lp(Is, It). (8)

(2) Edge-aware smoothing loss. To smooth the edges of the generated depth map, an
edge-aware smoothing loss [12,25] is added, which is calculated as follows:

Lsmooth = |∂xd∗t |e−|∂x It | +
∣∣∂yd∗t

∣∣e−|∂y It |. (9)

where d∗t = dt/d̂t represents the average normalized inverse depth.
Combining the two parts of the loss, we can conclude that the overall loss is defined

as follows:
L =

1
3 ∑

s∈{1, 1
2 , 1

4 }
(Lr + λLsmooth). (10)

where s is the different ratio of the depth decoder output, and λ is set to 1e−3 as in [12].

4. Algorithm Implementation Details
4.1. Hyperparameters

The algorithm in this paper is implemented in Pytorch and trained on the server device.
AdamW [26] is used as the optimizer. AdamW combines the adaptive learning degree
and weight attenuation characteristics of the Adam algorithm. By using this method, the
overfitting phenomenon can be reduced, enhancing the model’s generalization capabilities.
The weight attenuation is set to 10−2. The initial learning rate of the pose estimation
network and depth decoder is set to 10−4, the initial learning rate of the Transformer-based
depth encoder is set to 5× 10−5, and the number of layers of the Transformer block of the
multi-path Transformer module in the three stages from stage 2 to stage 4 is set to 1, 3,
and 6, respectively. The depth encoder is pre-trained on ImageNet-1k [27] according to
the method in MPVIT [23]. The pose encoder uses the same ResNet18 as in [12], which
contains 11M parameters and is also pre-trained on ImageNet-1k [27]. The server CPU
used for training is AMD EPYC 7543, the GPU is RTX A5000, the version of PyTorch used
is 1.9.0, and the system is ubuntu 18.04. As pre-training can converge faster, the model was
trained for 30 epochs, the batch size used in each epoch was set to 12, and the input image
resolution was 640 × 192. The entire network training process took about 25 h. The best
results were obtained when the model converged at 16 epochs.

4.2. Data Augmentation and Evaluation Metrics

The same data augmentation method as in [12] was used in the training process, by
performing the following operations on the image with a 50% probability: horizontal flip,
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brightness up and down by 0.2, saturation up and down by 0.2, contrast up and down
by 0.2, and color up and down Jitter 0.1. These operations are performed in a random
sequence, and the image is enhanced.

In the experiment, the following seven commonly used indicators were mainly used
to evaluate the results, namely Abs Rel, Sq Rel, RMSE, RMSE log, δ1 < 1.25, δ2 < 1.252, and
δ3 < 1.253.

5. Testing Results
5.1. Datasets

The KITTI [28] dataset is a public dataset widely used in computer vision and machine
learning research, mainly for evaluation and benchmarking of tasks related to autonomous
driving and visual perception, including 61 three-dimensional road scenes. The sensors
used for data collection include cameras, 3D LiDAR, GPU/IMU, and more. In the ex-
perimental verification of this article, we use the Eigen_split [29] method to divide the
dataset. This method uses 39,810 pictures for model training, 4424 for evaluation, and
697 for testing. Calculate the average focal length of all images in the KITTI dataset and
use it as the uniform focal length during training to process all images. In the evaluation,
the range of predicted depth values is set to [0,80] m.

5.2. Experiment Analysis

Through training the best model of this algorithm was obtained. The model was tested
using images with depth ground truth from the dataset, and the error was calculated to
evaluate the algorithm’s accuracy. The accuracy of this algorithm was compared with the
accuracy of five different algorithms, such as shown in Table 1. By comparing various
evaluation indicators with the existing five algorithms, we can see that the algorithm in
this paper has made considerable improvements in all aspects. The algorithm in this article
is compared with the two versions of the classic algorithm Monodepth2. Compared with
the version using ResNet18 as the encoding network, the algorithm using the multi-path
transformer network in this article has better performance in Abs Rel, Sq Rel, RMSE, RMSE
log, and other evaluation indicators. It has been reduced by 10.4%, 18.5%, 8.4%, and 7.3%,
and at the same time, the accuracy has increased by 2.3% when the threshold is δ1 < 1.25;
compared with the ResNet50 version with a deeper network and better performance,
this algorithm has also achieved considerable advantages. The accuracy has been greatly
improved based on the algorithm using the traditional CNN network. Compared with the
latest Lite-mono algorithm that integrates Transformer and CNN, the Lite-mono algorithm
adopts a different fusion method and uses single-path Transformer and multi-layer stacked
feature extraction to improve the network. The results show that the algorithm in this
paper is still dominant in terms of algorithm accuracy.

Table 1. Comparison of results with five different existing algorithms on the KITTI benchmark using
the Eigen split. The methods in the table all use monocular videos data in KITTI.

Method
Lower is Better Higher is Better

Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

GeoNet [17] 0.149 1.060 5.567 0.226 0.796 0.935 0.975
Monodepth2-Resnet18 [12] 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Monodepth2-Resnet50 [12] 0.110 0.831 4.642 0.187 0.883 0.962 0.982

HR-depth [30] 0.109 0.792 4.632 0.182 0.884 0.962 0.983
DynaDepth-ResNet50 [31] 0.109 0.787 4.705 0.195 0.869 0.958 0.981

Lite-mono [22] 0.107 0.765 4.561 0.183 0.886 0.963 0.983
Ours 0.103 0.736 4.454 0.179 0.897 0.965 0.983

Figure 4 shows the renderings of our algorithm and the other three algorithms, com-
paring the depth estimation effects of six individual pictures. By observing some objects
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in the picture, we can find that the Monodepth2 algorithm can clearly distinguish the
object from the background and the overall image information is complete, but the specific
details of the object are not fine enough. Although the HR-Depth algorithm estimates
the specific details of the object more accurately than Monodepth2, it lacks part of the
image information and the object is incomplete. The Lite-mono algorithm exhibits superior
overall performance compared to the previous two methods. It achieves better results
in the specific details and overall integrity of the object, but some objects do not have
a particularly clear outline. The algorithm in this article makes up for the problem of
insufficient global feature extraction of the CNN network by improving the network. It can
better consider the relationship between the object and the scene, and depict the outline
of the object more clearly without blurring the edges. At the same time, it retains local
features and makes object details accurate.
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Figure 4. Comparison chart of algorithm performance. Here are six selected test pictures, using
Monodepth2, HR-Depth, Lite-mono, and the depth map generated by our algorithm, respectively.
Some of the obvious effects are marked.

In summary, through comparison with existing mainstream algorithms in terms of
accuracy and visual effects, it is proved that the algorithm in this paper has been greatly
improved and is better than the existing algorithms.

6. Ablation Experiments

To verify the effectiveness of the Transformer-CNN network improvement and feature
interaction module proposed in this article, the following four schemes were set up for
ablation experiments using different depth encoders: (1) The encoder uses the traditional
CNN ResNet18 network, and this scheme is called A; (2) The encoder uses a single-path
Transformer network architecture, and this scheme is called B; (3) The encoder uses a
single-path Transformer network and feature interaction module. The scheme is called C;
in the above schemes, both the depth decoder and the pose estimation network adopt the
same configuration. The experimental results and configurations of each scheme are shown
in Table 2. By analyzing the data in the table, it can be found that most of the evaluation
indicators of the B scheme using a single-path Transformer network have not improved,
and are even worse than the A scheme using the traditional CNN network. The B scheme
is only better than the A scheme in square relative error. However, scheme C, which further
adds a feature interaction module, is superior to Scheme A and Scheme B in all aspects of
performance, taking full advantage of the connectivity of local features and the context of
global features. Finally, the algorithm in this paper uses a multi-path parallel network for
feature extraction, which provides rich features for algorithm calculation while retaining
the advantages of the C scheme and further improving the accuracy.
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Table 2. Results of Ablation Experiments.

Method Network Type Feature Interation
Module

Lower is Better Higher is Better

Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

A CNN 0.115 0.903 4.863 0.193 0.877 0.959 0.981
B Single Transformer 0.120 0.879 4.957 0.197 0.855 0.954 0.980
C Single Transformer yes 0.109 0.835 4.647 0.185 0.886 0.962 0.982

Ours Parallel Transformer yes 0.103 0.736 4.454 0.179 0.897 0.965 0.983

In addition to verifying the effectiveness of the algorithm in this article through scheme
comparison, an ablation experiment was also conducted on the CoaT [24] efficient self-
attention selected in this article. In order to verify the effectiveness of the self-attention
mechanism selected in this article in reducing the amount of calculation, experiments were
conducted on ImageNet-1K [27] to compare the CoaT [24] network with other networks
based on Transformer but with different self-attention mechanisms. The following Table 3
shows the comparison results of the experiment. Through experiments, it can be seen
that the efficient self-attention mechanism selected in this article effectively reduces the
computational complexity while ensuring accuracy.

Table 3. Efficient self-attention validity verification.

Method #Params Input #GFLOPs Top-1 Acc

standard self-attention [32] 13.2M 224 × 224 1.9 75.1%
shifted-window self-attention [33] 29M 224 × 224 4.5 81.3%

factorized self-attention [24] 11.2M 224 × 224 2.0 78.7%

7. Conclusions

This paper proposes a new algorithm for self-supervised monocular depth estimation.
The algorithm is improved by modifying the encoding network of the depth network. The
multi-scale convolution patch embedding module adjusts the input image to generate three
images with different patch sizes and the same size. This processing simultaneously uti-
lizes image information of different thicknesses to enhance the network’s dense estimation
capabilities. Through the multi-path Transformer network and single-path CNN network
to extract features, the global-to-local feature interaction module combines local features
and global features to model, which makes up for the lack of global features existing in
the existing CNN network, while also retaining the CNN network in Extraction advan-
tages on local features. Model training was carried out on the KITTI dataset. Compared
with the latest CNN-Transformer model, the improved method in this article reduces the
absolute relative error by 3.7% and the square relative error reduces by 3.9%, achieving
a higher accuracy. Then, the effectiveness of this improvement is verified by ablation
experiments, respectively.
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