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Abstract: Deep neural networks (DNNs) have drawn much attention due to their success in various
vision tasks. Current DNNs are used on data with a relatively small number of classes (e.g., 1000
or less) and employ a fully connected layer for classification, which allocates one neuron for each
class and thus, per-example, the classification scales as O(K) with the number of classes K. This
approach is computationally intensive for many real-life applications where the number of classes
is very large (e.g., tens of thousands of classes). To address this problem, our paper introduces a
hierarchical approach for classification with a large number of classes that scales as O(

√
K) and could

be extended to O(log K) with a deeper hierarchy. The method, called Hierarchical PPCA, uses a
self-supervised pretrained feature extractor to obtain meaningful features and trains Probabilistic
PCA models on the extracted features for each class separately, making it easy to add classes without
retraining the whole model. The Mahalanobis distance is used to obtain the classification result. To
speed-up classification, the proposed Hierarchical PPCA framework clusters the image class models,
represented as Gaussians, into a smaller number of super-classes using a modified k-means clustering
algorithm. The classification speed increase is obtained by Hierarchical PPCA assigning a sample
to a small number of the most likely super-classes and restricting the image classification to the
image classes corresponding to these super-classes. The fact that the model is trained on each class
separately makes it applicable to training on very large datasets such as the whole ImageNet with
more than 10,000 classes. Experiments on three standard datasets (ImageNet-100, ImageNet-1k,and
ImageNet-10k) indicate that the hierarchical classifier can achieve a superior accuracy with up to a
16-fold speed increase compared to a standard fully connected classifier.

Keywords: large-scale learning; hierarchical classification; incremental class learning

1. Introduction

Deep learning models emerged to surpass human performance on multiple vision
tasks [1,2]. Artificial neural networks employ layers of biologically inspired neurons that
are learned by different variants of gradient descent [3,4]. Despite their success, deep
learning models are regarded as a black box because the process in which the individual
neurons generate outputs is not interpretable [5,6]. Moreover, deep learning classifiers
do not construct a hierarchy of concepts explicitly and use a fully connected layer for
classification, which predicts a score for each of the existing classes, thus scaling as O(K)
with the number K of classes. While this approach is reasonable for current datasets with
up to K = 1000 classes, it becomes cumbersome and computationally expensive when the
number of classes increases to tens of thousands of classes or more.

On the other hand, humans can establish hierarchical semantic relations between
categories, which are learned by much fewer samples than deep learning models. In this
respect, [7] stated that the human cognitive architecture is composed of substructures for
hierarchical processing. Using this hierarchical representation, humans are capable of easily
recognizing millions of classes of objects and can add new classes with just a few examples
and no retraining.

Models like symbolic systems attempted to simulate the high-level reasoning processes
of humans (classification logic and temporal logic). For example, ref. [8] has proposed
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that rule-based hierarchical classification is biologically inherited by humans or other non-
human mammals like baboons. Furthermore, ref. [9] proposed a framework known as
neural symbolic system artificial neural networks (ANNs). It provides the framework for
parallel computation and robust learning while logic units provide interpretability. How-
ever, most symbolic systems often require problem-specific manual tuning features [10],
and are not able to learn features from raw input data [11].

In this context, the research question that this paper tries to address is the following:
Can image classification models be organized hierarchically to speed-up per example

classification from O(K) to O(
√

K) or faster, where K is the number of classes?
To address this question, we introduce a hierarchical framework for object classi-

fication called Hierarchical PPCA, which is inspired by our understanding of human
hierarchical cognition. In this work, a two-level taxonomy is used to model the semantic
hierarchy of image classes, but more levels could also be used if desired. Image classes are
conceptualized as Gaussian distributions with Probabilistic Principal Component Analysis
(PPCA) models. Instead of standard neurons, the classifier is constructed using PPCA
neurons. We assume that image classes with similar semantic information will cluster
together, each semantic cluster being characterized by its centroid (a Gaussian), which we
refer to as a super-class. For this purpose, we introduce a modified k-means clustering
algorithm to explore underlying semantic relations between image classes and build the
class hierarchy. In the classification stage, an image of a cat will first be assigned to a
super-class like ’animal’ and then classified among the image classes associated with the
’animal’ super-class. This hierarchical scheme facilitates sparse neuron firing and requires
considerably less computation resources than the traditional flat structure. If the dataset
contains K classes, the hierarchical model can classify images in O(

√
K) time instead of

O(K) as in standard classification. Experiments have shown that Hierarchical PPCA can
applied to large-scale datasets with superior accuracy and efficiency.

The main contributions of the proposed Hierarchical PPCA method are:

• It introduces a hierarchical classification model for learning from datasets with a large
number of classes, without hierarchical annotation. The image classes are modeled as
Gaussian distributions based on Probabilistic PCA (PPCA). The model reduces the
per-observation classification time for K classes from O(K) to O(

√
K), and potentially

to O(log K) when using more hierarchy levels.
• It presents an efficient training procedure based on a generalization of k-means cluster-

ing that clusters image classes instead of features. This design can handle unbalanced
data where the number of observations in each class differs widely.

• It conducts experiments on large-scale datasets that show that indeed the hierarchical
approach can speed-up classification without any loss in accuracy.

The paper is organized as follows. Section 2 presents a review of the literature on
hierarchical clustering and hierarchical models for vision. Section 3 presents an overview of
our Probabilistic PCA, which is the foundation on which the proposed Hierarchical PPCA
is built. Section 4 presents the proposed Hierarchical PPCA method that clusters the PPCA
Gaussians into a smaller number of super-classes and uses the super-classes to speed-up
classification for a given example. Section 5 presents experiments on three datasets with
100, 1000 and 10,450 classes to evaluate the increase in speed and accuracy of the proposed
method. Finally, Section 6 finishes with conclusions and a discussion on future work.

2. Related Work

The related work can be divided into hierarchical clustering work and hierarchical
models in computer vision.

2.1. Hierarchical Clustering

Hierarchical clustering (HCA) is an unsupervised method of cluster analysis that seeks
to build a hierarchy of clusters [12]. Much early work on hierarchical clustering was in the
field of biological taxonomy.
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Agglomerative clustering [13] is a dominant HCA method that works in a bottom-up
manner. The main idea behind agglomerative clustering is to find the closest pair of clusters
and merge them together. This process is repeated until all the data points are merged into
a single cluster. The distance between two clusters is usually measured using a distance
metric, such as the Euclidean distance or cosine similarity. The most common method
for merging two clusters is the single linkage method, which merges the two clusters that
are closest to each other. One of the main advantages of agglomerative clustering is its
simplicity and ease of implementation. It is also useful for identifying hierarchical structures
within the data, as it produces a dendrogram that shows how the clusters are nested within
each other. This can be useful for visualizing the relationships between different groups
of data. However, agglomerative clustering can be computationally expensive and may
not scale well to large datasets. Agglomerative clustering for n data points has a time
complexity of O(n3) and requires O(n2) memory, which makes it unpractical for even
medium size datasets.

Another variant of HCA is divisive clustering [5], which works in a top-down manner.
The algorithm starts at the top with all observations in one cluster. The cluster is split using
a flat clustering algorithm. This procedure is applied recursively until each observation is in
its own singleton cluster. Top-down clustering is conceptually more complex than bottom-
up clustering. Divisive clustering with an exhaustive search is O(2n), but it is common to
use faster heuristics to choose the splits, such as k-means, which is O(n). However, divisive
clustering is more efficient if it does not generate a complete hierarchy all the way down to
individual observations. Hierarchical clustering has the distinct advantage that any valid
measure of distance can be used. However, due to its limitations in time complexity, it
might not be applicable to large-scale datasets.

The proposed clustering method is a variant of the k-means algorithm, adapted to clus-
ter Gaussians instead of observations. In that respect it differs from the standard k-means in
that it uses a different distance measure between observations (the Bhattacharyya distance
instead of the Euclidean distance), a different distance measure between observations and
the cluster models (the KL-divergence instead of the Mahalanobis distance), and an explicit
analytic formula for the cluster centroid (that minimizes the average KL divergence to the
cluster elements).

2.2. Hierarchical Models for Vision Tasks

Some efforts aim to explore the hierarchical semantic nature for vision tasks [14].
A manually defined hierarchy of concepts is used in [15] for class recognition. It

combines image classifiers from different hierarchical levels into a single classifier to
improve classification accuracy. However, since the hierarchies are defined by hand, they
might not be optimal for computation considerations and could become impractical when
dealing with tens of thousands of classes.

Word semantics of image labels are used in [16] to integrate prior information about
inter-class relationships into visual concept learning. They built a semantic hierarchy of
discriminative classifiers for object detection. The hierarchy used is inherited from the
word hierarchy, which might not be computationally optimal.

A hierarchical framework capable of learning visual abstraction from a small number
of images is proposed in [17]. The hierarchy is learned from the confusion matrix of a
flat classifier on the learned classes. However, this hierarchy is not used to speed up
classification, but is evaluated for the quality of its nodes (called concepts) using human
annotators.

Ref. [18] propose a method that benefits from CNNs and hierarchical prior knowledge
when the training set is small. They have shown that the prior label tree can be used to
transfer knowledge between classes and boost performance when insufficient training
examples are available.

Ref. [19] propose a model that learns the visual similarities between various clothing
categories and predicts a tree of categories. They propose a novel object detection method
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that can handle newer categories without the need for obtaining new labeled data and
retraining the network.

This work relies heavily on Principal Component Analysis (PCA), which is a popular
method used in many applications. For example, [20] uses PCA for feature processing
to improve the diagnosis accuracy of non-severe depression (NSD), while [21] uses Spec-
tral–Spatial and SuperPCA (S3-PCA) to classify pixels of hyper-spectral images.

The Mahalanobis distance and k-means were also used in [22] to improve the clustering
accuracy for Laplacian matrix eigenvectors.

The same feature extractor as the one used in this paper (called CLIP) was employed
for classification in [23] using a simple k-nearest neighbor classifier. The CLIP feature
extractor will be described in Section 5.2.

This work proposes a new framework applicable to the classification of large-scale
datasets with thousands or even millions of classes. By utilizing PPCA to construct the
classification units, the Hierarchical PPCA method is capable of controlling and localizing
the information encoded for each image class. A special k-means clustering algorithm is
introduced to build a hierarchy between image classes and a small number of super-classes
to speed up classification. Experiments show that Hierarchical PPCA can obtain superior
accuracy with less computational expense.

3. Preliminary: Incremental PPCA

The proposed Hierarchical PPCA method builds on our previous work, the Incremen-
tal PPCA [24]. Its main components are summarized in this section for completeness.

3.1. Feature Extraction

The feature extractor f : Ω→ Rd aims to generate informative features from the input
images, where Ω is the space of input images. In practice, Incremental PPCA adopts a CNN
pretrained on a large dataset as a feature extractor. The reason for this choice is that with
proper training, the feature extractor is able to generate features that are invariant enough
to different transformations such as rotation, translation, and scaling, yet contain enough
information about objects without training on a specific dataset. The implementation of the
feature extractor is described in more detail in Section 5.2.

3.2. PPCA Models

The class models are Probabilistic Principal Component Analysis (PPCA) models [25],
which are a special type of Gaussian distribution. The Gaussian for class k has mean µk
and covariance matrix Σk. In this case, the negative log-likelihood without the common
factor (2π)d/2 is:

sk(x)=−2 log p(x|y= k)= log |Σk|+ (x− µk)
TΣ−1

k (x− µk), (1)

which we call the class k score, where a smaller value is better.
In practice, we use a simpler score (the Mahalanobis distance):

rk(x) = (x− µk)
TΣ−1

k (x− µk) ≥ 0, (2)

which differs from sk(x) in Equation (1) by the log determinant term log |Σk|. We observed
that slightly better results are obtained this way.

3.3. Training PPCA Models

If the feature vectors of all training observations of class k are gathered as Xk, the mean
µk of the PPCA model for class k is:

µk =
1
|Xk| ∑

x∈Xk

x (3)
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and the full covariance matrix is

Ck =
1

|Xk| − 1 ∑
x∈Xk

(x− µk)(x− µk)
T . (4)

Then, the PPCA covariance matrix is obtained from the sample covariance matrix Ck,
via SVD

VSVT = Ck, (5)

as
Σk = LDLT + λId, (6)

where λ > 0 is a small number (e.g., λ = 0.01 in our experiments) and L consists of the
first q < d columns of V and D is the q× q diagonal matrix containing the first q rows and
columns of S. The parameter q represents the dimension of the linear subspace that models
the variability of the class k observations.

3.4. Efficient PPCA Score Computation

When d is large (e.g., d = 1000), computing the score for each observation involves
multiplication with a large d× d matrix, which can be expensive.

Fortunately, denoting the vector containing the first q elements of the diagonal matrix
D from Equation (6) by d ∈ Rq, the score (2) can be computed faster using the following.

Theorem 1 (Wang and Barbu [24]). The score (2) can also be written as:

r(x; µ, L, d) = ‖x− µ‖2/λ− ‖u(x)‖2/λ, (7)

where u(x) = diag(
√

d√
d+λ1q

)LT(x− µ).

Here, diag(v) constructs a square matrix with diagonal elements v, and
√

v for a
vector v is computed element-wise. Observe that computing r(x) using Equation (7) could
be 10–100 times faster than (2) since it only involves multiplication with the q× d skinny
matrix LT , where q is usually 10–100 times smaller than d.

Given class models (µk, Lk, dk), the Incremental PPCA classifier predicts the class label
ŷ for an image I ∈ Ω through the feature vector x = f(I) as:

ŷ = argmin
k

r(x; µk, Lk, dk) (8)

We will also refer to the Incremental PPCA classifier (8) as the flat classifier, in contrast
with the hierarchical classifier that will be introduced next.

4. Proposed Method

Inspired by our understanding of the human hierarchical representation of objects,
this work proposes a hierarchical classification framework called Hierarchical PPCA that
exploits the semantic information of image classes. Figure 1 illustrates the hierarchical
classification process, where an observation x = f(I) is first classified and assigned to a
super-class (µ(s), Σ(s)) and then classified and assigned to an image class from the image
classes belonging to that super-class.
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Figure 1. Diagram of the hierarchical classification with Gaussian super-classes and Probabilistic
PCA classes.

4.1. Hierarchical Classifier

In [26], it was stated that the human cognitive architecture is built up of a hierarchy
of multiple system levels. Humans, even babies, use the hierarchical cognition system
to conduct categorization without training with huge numbers of images. Inspired by
this finding about human hierarchical cognition, the classifier is modeled as a two-level
taxonomy. It aims to organize the information with two levels of abstraction.

In the Hierarchical PPCA model, each image class is conceptualized as a Gaussian
distribution by Probabilistic Principal Component Analysis (PPCA) [25], as described
in Section 3.2.

The first level of the classifier consists of PPCA neurons representing super-classes. The
second level of the classifier consists of PPCA neurons encoding information about image
classes. The essential assumption is that image classes with similar semantic information
cluster together. A cluster is characterized by its centroid, a PPCA Gaussian that we call a
super-class. A super-class maintains the least distance to the image classes belonging to the
same cluster. If there are K image classes to be classified (e.g., K = 1000 for ImageNet), they
are clustered into S disjoint sets K1, ..., KS such that:

∪S
s=1Ks = {1, ..., K}

In the framework of Hierarchical PPCA, the first level models (the super-classes) are
represented as (µ(k), Σ(k)), with k ∈ {1, ..., S}, where S is the number of super-classes. For a
super-class s ∈ {1, ..., S}, the corresponding image classes are represented as (µk, Σk) with
k ∈ Ks.

4.2. Hierarchical Classification

Given an observation x ∈ Rd (obtained from an image I ∈ Ω using the feature
extractor as x = f(I)), the first level classifier aims to find the most likely super-class s
for the observation, a process called super-classification. After the sample x is assigned
to a super-class s, the second level of the classifier will find the most likely image class
among image classes k ∈ Ks associated with super-class s. This process is called image
classification. Since both level models are Gaussians, we will use the Mahalanobis distance,

r(x; µ, Σ) = (x− µ)TΣ−1(x− µ) ≥ 0, (9)

to measure how well an observation x ∈ Rd fits the Gaussian model (µ, Σ), where a
smaller score is better. In practice, for classification involving high-dimensional features
and PPCA models, we use Equation (7) from Theorem 1 as a computation efficient score
computation method.
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However, any super-classification failure would result in the failure of the whole
classifier. To minimize the impact of such failures, instead of considering a single most
likely super-class, the hierarchical classifier will consider a number T of the most likely
super-classes, as described in Algorithm 1. In experiments, T was taken in the range of
T ∈ {1, 2, 3, 4, 5}.

Algorithm 1 Hierarchical classification

Input: Observation x ∈ Rd, super-class models (µ(s), L(s), d(s)), s ∈ {1, ..., S}, image class
models (µk, Lk, dk), k ∈ {1, ..., K}, clusters Ks such that ∪S

s=1Ks = {1, ..., K}
Output: Predicted class label k̂ ∈ {1, ..., K}.

1: Compute the super-class scores vs = r(x; µ(s), L(s), d(s)), s ∈ {1, ..., S}
2: Find the indices J ⊂ {1, ..., S}, |J| = T of the T lowest scores vj, j ∈ J
3: Compute the index set U = ∪j∈JKj
4: Obtain the predicted class label

k̂ = argmin
k∈U

r(x; µk, Lk, dk) (10)

4.3. Computation Complexity

The computation demand of a model can be measured by the average number of
neurons used in the classification. For an incoming sample feature, a flat classifier requires
the computation of the scores for all K image classes to generate the classification output.
In contrast, Hierarchical PPCA requires the score computation for all S super-classes
and the score computation of the image classes corresponding to the top T super-classes.
Let A denote the average number of image classes associated with one super-class. The
computation cost for one classification in Hierarchical PPCA is therefore S + TA neurons
(score computations).

We use two measures to evaluate the computational cost of Hierarchical PPCA com-
pared with flat classification. The density is defined as

density =
S + TA

K
. (11)

The inverse of the density measures the increase in speed of Hierarchical PPCA
compared to flat classification:

speed-up = K/(S + TA). (12)

Assuming the K image classes are uniformly distributed for the S clusters, then
A ∼ K/S and the density is

density ∼ S + KT/S
K

=
S
K
+

T
S

. (13)

From an efficiency perspective, the density reaches a minimum when S =
√

KT,
where the increase in speed reaches a maximum of O(

√
K/T). The experimental results in

Section 5.6 match our theoretical derivation.

4.4. Training the Hierarchical Classifier

One important assumption is that image classes with similar semantic information
form clusters in the feature space. With this assumption, we adopt a variant of the k-means
algorithm to explore the semantic structure of image classes and train the hierarchical
classifier. The difference to the standard k-means is that instead of clustering observations,
the proposed algorithm clusters image classes encoded as Gaussian distributions. The
advantage of this approach is that it only needs to cluster a small number of elements (e.g.,
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1000 Gaussian distributions for ImageNet) instead of millions of observations. Moreover,
this kind of clustering is robust to data imbalances in the classes. The training algorithm is
summarized in Algorithm 2.

Algorithm 2 Hierarchical PPCA training

Input: Training observations (xi, yi) ∈ Rd ×Z, number S of super-classes, number q of PCs
for the image class models, number r of PCs for the super-class models.
Output: Super-class models (µ(s), L(s), d(s)), s ∈ {1, ..., S}, image class models
(µk, Lk, dk), k ∈ {1, ..., K}.

1: Train the image class Gaussian models (µk, Σk) using Equations (3) and (4).
2: Initialize S super-class models using k- means++ (Section 4.4.1).
3: while not converged do
4: Assign the image classes (µk, Σk), k ∈ {1, ..., K} to the super-classes using Equa-

tion (15)
5: Update the super-class models (µ(s), Σ(s)), s ∈ {1, ..., S} based on the image classes

in the same clusters (Section 4.4.3).
6: end while
7: Train the image class PPCA models (µk, Lk, dk), k ∈ {1, ..., K} (Section 3.3).
8: Update the super-class PPCA models (µ(s), L(s), d(s)), s ∈ {1, ..., S}

The training procedure is a generalization of k-means clustering. The clustering
subjects are image classes encoded as Gaussian distributions (µk, Σk) instead of vectors.
The covariance matrices used for clustering the image classes are the full image covariances
Σk = Ck from Equation (4) instead of the PPCA covariances (6).

We innovate with the following modification for the new clustering subjects:

• The distance measure between the image classes, which is used for the k-means++ ini-
tialization [27], is replaced by the Bhattacharyya distance (instead of the Mahalanobis
distance) between Gaussians (Section 4.4.1).

• The distance measure between an image class and a Gaussian super-class model is the
KL divergence, described in Section 4.4.2.

• The Gaussian super-class models are parameterized to minimize the sum of the KL-
divergences of the image class models, as described in Section 4.4.3.

These steps will be presented in the following sections.
The second level of the Hierarchical PPCA model contains PPCA models representing

information for the image classes. The PPCA neurons are trained by SVD decomposition
separately for each class, as described in Section 3.3. The same approach is used to obtain
super-class PPCA models from the super-class covariance matrices.

4.4.1. Initialization by k-Means++

The performance of k-means relies significantly on its initialization. In [28], it was
shown that the case with the worst running time of the k-means algorithm is super-
polynomial in the input size. We adopt the k-means++ [27] initialization method to acceler-
ate the convergence speed and improve clustering performance. The process of k-means++
is detailed in Algorithm 3.

The elements that are clustered are the image classes represented by Gaussian distribu-
tions. We adopt the Bhattacharyya distance to measure the pairwise distance between two
distributions. For Gaussian distributions (µi, Σi) and (µj, Σj), the Bhattacharyya distance is

Dij =
1
8
(µi − µj)

TΣ−1(µi − µj) +
1
2

ln
|Σ|√
|Σi||Σj|

, (14)

where Σ =
Σi+Σj

2 .
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Algorithm 3 k-means++ centroid initialization
Input: Image classes represented as (µk, Σk) k ∈ {1, ..., K}, number S of clusters
Output. Initial super-class models (centroids) Cs = (µ(s), Σ(s)), s ∈ {1, ..., S}

1: Randomly pick the first centroid C1
2: for i = 2 to S do
3: Compute the distance between all image classes and the newly selected centroid Ci−1

using Equation (14)
4: Generate the discrete distribution on image classes proportional to the distance from

each image class to its closest centroid from {C1, ..., Ci−1}
5: Sample the image class (µj, Σj) from the discrete distribution generated
6: Obtain initial centroid Ci = (µj, Σj)

7: end for

4.4.2. Assignment of Image Classes to Clusters

In the training process, the image classes are assigned to the nearest cluster. A distance
measure is needed to measure the distance from image classes to the clusters, both of
which are characterized by Gaussian distributions. We adopt the Kullback–Leibler (KL)
divergence [29], denoted by DKL(P ‖ Q), to measure the distance between image classes
and super-classes.

Since all classes are encoded as Gaussian distributions, the KL divergence between a
super-class Q = (µ, Σ) and an image class P = (µi, Σi) is [30]

DKL(P ‖ Q) =
1
2
{log

|Σ|
|Σi|
− d + Tr[Σ−1Σi]}+ (µi − µ)TΣ−1(µi − µ)/2 (15)

4.4.3. Super-Class Model Update

By our assumption of image classes, the super-class model is the centroid of the
corresponding cluster, i.e., the Gaussian distribution that has the smallest sum of the
distances to the image classes within the same cluster.

The image classes within a cluster C are normal distributions N (µi, Σi), i ∈ C. The
corresponding super-class model is a normal distribution N (µ, Σ) so that the sum of the
distances from the image classes to the super-class

D(µ, Σ) = ∑
i∈C

DKL(N (µi, Σi) ‖ N (µ, Σ)) (16)

is minimized, where DKL(P ‖ Q) is defined in Equation (15).
The following theorem gives a closed-form solution of the minimization.

Theorem 2. The Gaussian distribution N (µ, Σ) that minimizes D(µ, Σ) from Equation (16)
has mean

µ =
1
|C| ∑

i∈C
µi, (17)

and covariance
Σ =

1
|C| ∑

i∈C
[(µi − µ)(µi − µ)T + Σi]. (18)

Proof. From [30], the KL divergence between normal distributions P = N (µi, Σi) and
Q = N (µ, Σ) is

DKL(P||Q) =
1
2
[log

|Σ|
|Σi|
− d + (µi − µ)TΣ−1(µi − µ) + Tr{Σ−1Σi}], (19)
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so the sum is

D(µ, Σ) =
1
2 ∑

i∈C
{log

|Σ|
|Σi|
− d + (µi − µ)TΣ−1(µi − µ) + Tr(Σ−1Σi)}. (20)

Setting the partial derivative of D(µ, Σ) with respect to µ,

∂

∂µ
D(µ, Σ) = ∑

i∈C
Σ−1(µi − µ), (21)

to zero, we obtain µ = 1
|C| ∑i∈C µi.

(x− µ)TΣ−1(x− µ) can be written as Tr[(x− µ)TΣ−1(x− µ)]; thus, the third term of
Equation (20) can be written as

∑
i∈C

Tr[(µi − µ)TΣ−1(µi − µ)] = ∑
i∈C

Tr[(µi − µ)(µi − µ)TΣ−1] (22)

Thus, the distance (20) can be written as

D(µ, Σ) =
1
2 ∑

i∈C

(
log
|Σ|
|Σi|

+ Tr[(µi − µ)(µi − µ)TΣ−1] + Tr{Σ−1Σi}
)

=
1
2 ∑

i∈C
log
|Σ|
|Σi|

+
1
2

Tr{∑
i∈C

[(µi − µ)(µi − µ)T + Σi]Σ
−1}

(23)

Therefore, the partial derivative of D(µ, Σ) with respect to Σ is

2
∂

∂Σ
D(µ, Σ) = |C|Σ−1 − Σ−1 ∑

i∈C
[(µi − µ)(µi − µ)T + Σi]Σ

−1 (24)

Setting ∂
∂Σ D(µ, Σ) = 0 and multiplying the left and the right by Σ, we obtain

Σ =
1
|C| ∑

i∈C
[(µi − µ)(µi − µ)T + Σi]. (25)

The super-class PPCA models (µ(s), L(s), d(s)) can be computed by writing VSVT =

Σ(s) by SVD, and obtaining L(s) as the first q columns of V and d(s) as the first q diagonal
elements of S.

5. Experiments

Experiments were conducted to compare the accuracy and computation efficiency of
Hierarchical PPCA with the flat PPCA classifier, i.e., the one-level classifier containing the
same PPCA image models but where the classification y = argmink r(x; µk, Lk, dk) finds
the minimum score for an observation x = f(I), I ∈ Ω among all classes k ∈ {1, ..., K}.
The experiments were designed to explore how some of the main parameters such as the
number S of super-classes, the number of principal components, and the parameter T from
Algorithm 1 influence accuracy and computation efficiency.

5.1. Datasets

Experiments were conducted on three standard datasets: ImageNet-100, ImageNet-1k
(ILSVRC 2016) [31], and ImageNet-10k. ImageNet-100 is a subset of ImageNet-1k with
only 100 classes, randomly sampled from the original 1000 classes. ImageNet-10k is the
subset of the whole ImageNet [31] that contains all 10,450 classes with at least 450 training
observations. They are standard image datasets that are adopted to prove the robustness
and facilitate comparisons. All results are reported as averages of five independent runs
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for better reproducibility. Each of these datasets has a separate test set with 50 observations
per class; thus, the ImageNet-1k has 50,000 test observations, and so on.

5.2. Feature Extractor

The feature extractor f : Ω → Rd used in this work is the ResNet50x4 from CLIP
(Contrastive Language-Image Pre-Training) [32]. CLIP models are pairs of image embed-
ding and language embedding models, trained on 400 million pairs of images and their
corresponding captions. They are trained on a wide variety of images with a wide variety
of natural language supervision that is abundantly available on the internet. By design, the
network can be instructed in natural language to perform a great variety of classification
benchmarks, without directly optimizing for the benchmark’s performance. As such, it
was not trained or fine-tuned on the three evaluation datasets. CLIP models with different
numbers of parameters were also used in [23] for classification using a simple k-nearest
neighbor classifier.

The choice of the feature extractor is important for the validity of the assumption
made for Hierarchical PPCA, which is that semantically similar classes cluster together.

5.3. Evaluation Measures

Efficiency Measure. There are two efficiency measures: density and speed increase.
The density evaluates how much less computation is required for classification using
Hierarchical PPCA compared to flat classification. The theoretical definition and analysis
were presented in Section 4.3. In practice, density is defined as

density =
S + A

K
(26)

where A is the average number of image classes used, S is the number of super-classes,
and K is the total number of classes. The speed increase is the inverse of density and
measures the computational efficiency of Hierarchical PPCA. The theoretical analysis from
Section 4.3 indicates that the density reaches a minimum and the speed increase is at a
maximum when S =

√
KT.

Super-class accuracy. The super-classes are constructed without human annotation, using
k-means clustering, by exploring the semantic relations between the image classes. Clas-
sifying an observation to the wrong super-class would result in a failure in the overall
classification of this observation. The super-class accuracy measures the top-T classification
accuracy of the level 1 (super-class) classifier.

5.4. Raw Data Clustering

In Hierarchical PPCA, the super-classes are learned by clustering the image classes,
which are parameterized as Gaussian distributions. Another hierarchical method that
will be evaluated is raw data clustering, which is similar to Hierarchical PPCA, but the
super-class models are obtained from clustering a subsample of observations from the
image classes instead of clustering the Gaussian models of image classes.

In this experiment, 20 images are randomly sampled from each image class, obtaining
a sample of 20K images, where K is the number of image classes. The images are clustered
in S clusters using the standard k-means clustering algorithm. Then, each image class is
assigned to the cluster containing the maximum number of its images. The super-class
models are updated for each cluster as described in Section 4.4.3.

5.5. Main Results

For completeness, we will also evaluate a standard linear projection head, which
is a fully connected layer trained to predict the class label from the same feature vector
x = f(i) ∈ Rd as the Hierarchical PPCA classifiers for an image I. These linear projection
classifiers were trained using the Adam optimizer [33] and the cross-entropy loss, starting
with a learning rate of 0.03. The models on ImageNet-100 and ImageNet-1k were trained
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for 300 epochs and the learning rate was reduced by 5 every 50 epochs, while the model on
ImageNet-10k was trained for 100 epochs and the learning rate was reduced by 5 every
15 epochs.

The main comparison of the Hierarchical PPCA, Hierarchical PPCA with raw data
clustering, flat PPCA and the linear projection head in terms of test accuracy and compu-
tational efficiency is shown in Table 1. The results are averages of five independent runs
with the standard deviation shown in parentheses. The flat PPCA classifier is deterministic
(being obtained by SVD from the observations of each class independently), so only the
ImageNet-100 accuracy has non-zero variance, due to the random subsampling of the
100 classes out of 1000.

From Table 1, we see that for ImageNet-1k and ImageNet-10k datasets, when T = 5,
the Hierarchical PPCA surpasses the linear projection classifier both in terms of accuracy
and computational efficiency. Compared to flat PPCA, the Hierarchical PPCA results are
slightly inferior.

Table 2 shows detailed results on Hierarchical PPCA with raw data and with Gaussians
with T ∈ {1, 2, 3, 4, 5}. It indicates that clustering Gaussians is usually better than clustering
raw data. On ImageNet-1k, the performance of clustering from raw data is slightly inferior
to Hierarchical PPCA for T ∈ {1, 2, 3}. On ImageNet-10k, clustering raw data is consistently
inferior to clustering Gaussians.

Table 1. Evaluation in terms of test accuracy and speed increase vs. flat classification and linear
projection head of the proposed Hierarchical PPCA Algorithm 1 with T = 1 and T = 5 and q = r = 50.
Shown also are the raw data clustering test accuracy and speed increase results. Results are averages
over five independent runs and the standard deviations are shown in parentheses.

ImageNet-100 ImageNet-1k ImageNet-10k

Accuracy Speed
Increase Accuracy Speed

Increase Accuracy Speed
Increase

Linear Proj. Head 0.923 (0.009) 1.0 0.720 (0.000) 1.0 0.370 (0.000) 1.0

Flat PPCA Clf. 0.920 (0.013) 1.0 0.736 1.0 0.384 1.0

HPPCA T = 1 0.902 (0.019) 3.9 (0.4) 0.672 (0.005) 13.8 (0.3) 0.319 (0.003) 41.6 (3.8)

HPPCA T = 5 0.920 (0.013) 1.4 (0.1) 0.734 (0.000) 4.7 (0.2) 0.376 (0.000) 14.1 (0.9)

Raw data clust. T = 1 0.902 (0.017) 4.5 (0.4) 0.664 (0.005) 14.7 (0.2) 0.308 (0.001) 47.6 (0.4)

Raw data clust. T = 5 0.920 (0.013) 1.5 (0.1) 0.734 (0.000) 5.1 (0.1) 0.372 (0.000) 16.1 (0.2)

Table 2. Comparison between the accuracy of Hierarchical PPCA when clustering Gaussians vs.
clustering raw data.

ImageNet-100 ImageNet-1k ImageNet-10k

T Flat Raw Data Gaussians Flat Raw Data Gaussians Flat Raw Data Gaussians

1 0.920
(0.013)

0.902
(0.017)

0.902
(0.019) 0.736 0.664

(0.005)
0.672

(0.005) 0.384 0.308
(0.001)

0.319
(0.003)

2 - 0.918
(0.013)

0.918
(0.013) - 0.715

(0.003)
0.718

(0.003) - 0.348
(0.001)

0.356
(0.001)

3 - 0.920
(0.013)

0.919
(0.013) - 0.727

(0.001)
0.728

(0.001) - 0.361
(0.001)

0.368
(0.001)

4 - 0.920
(0.013)

0.920
(0.013) - 0.732

(0.000)
0.732

(0.000) - 0.368
(0.000)

0.373
(0.000)

5 - 0.920
(0.013)

0.920
(0.013) - 0.734

(0.000)
0.734

(0.000) - 0.372
(0.000)

0.376
(0.000)

5.6. Hyperparameter Analysis

A hyperparameter analysis investigates the importance of the number S of super-
classes, the parameter T of Algorithm 1, and the number of PCA directions of the PPCA
models in the speed and accuracy of the Hierarchical PPCA method.
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5.6.1. Number S of Super-Classes

The super-classes represent the general concepts in the Hierarchical PPCA approach,
which are used to speed up classification. The number of super-classes S is an important
factor for computation efficiency and overall accuracy.

Table 3 shows an evaluation of the test accuracy and speed increases for different
numbers of super-classes for the three datasets.

Table 3. Evaluation of speed increases and accuracy for different numbers S of super-classes, when
the number of PCA components is q = r = 50.

S Density Speed Increase Accuracy Super Accuracy

ImageNet-100, T = 4

Flat 1.0 1.0 0.920 (0.013) -

5 0.905 (0.039) 1.1 (0.0) 0.920 (0.013) 1.000 (0.000)

10 0.607 (0.070) 1.7 (0.2) 0.920 (0.013) 0.999 (0.000)

20 0.492 (0.025) 2.0 (0.1) 0.920 (0.013) 0.996 (0.002)

ImageNet-1k, T = 5

Flat 1.0 1.0 0.736 -

10 0.567 (0.019) 1.8 (0.1) 0.736 (0.000) 0.998 (0.000)

20 0.313 (0.019) 3.2 (0.2) 0.735 (0.000) 0.989 (0.002)

33 0.212 (0.007) 4.7 (0.2) 0.734 (0.000) 0.979 (0.003)

40 0.192 (0.010) 5.2 (0.3) 0.734 (0.000) 0.976 (0.002)

50 0.178 (0.007) 5.6 (0.2) 0.733 (0.000) 0.973 (0.002)

66 0.166 (0.003) 6.0 (0.1) 0.733 (0.001) 0.968 (0.002)

100 0.165 (0.003) 6.1 (0.1) 0.734 (0.000) 0.963 (0.001)

ImageNet-10k, T = 5

Flat 1 1 0.384 -

50 0.117 (0.003) 8.6 (0.2) 0.379 (0.000) 0.952 (0.002)

100 0.071 (0.005) 14.1 (0.9) 0.376 (0.000) 0.927 (0.003)

200 0.050 (0.001) 20.0 (0.3) 0.375 (0.000) 0.898 (0.002)

300 0.050 (0.000) 19.9 (0.1) 0.375 (0.000) 0.883 (0.001)

ImageNet-100 contains 100 image classes. The experiment adopts three values for
S, namely, S ∈ {5, 10, 20}. The density does not decrease monotonically with increasing
S. The speed increase reaches a maximum of 2.0 when S = 20. The super-class test
accuracy for the three values of S is larger than the flat accuracy, indicating unsupervised
generated super-classes are interpretable for classification. The super accuracy decreases
monotonically with an increase in S. The result indicates that the overall accuracy has a
negative correlation with the speed increase coefficient.

For ImageNet-1k, we adopted seven values for S, S ∈ {10, 20, 33, 40, 50, 66, 100}, since
K = 1000. From the perspective of efficiency, the speed increase coefficient reaches a
maximum when S = 100, which is higher than

√
K, the theoretical optimum derived

in Section 4.3. The efficiency approximately conforms to the theoretical derivation. The
accuracy and super accuracy reach their maximum when S = 10 and are negatively
correlated with S. The result follows a similar pattern to the result of ImageNet-100.

For ImageNet-10k, considering that K = 10,450, we consider the following S values:
S ∈ {50, 100, 200, 300}. From the perspective of efficiency, the speed increase coefficient
reaches the optimum of 20 when S = 200, which is approximately

√
K. The Hierarchical

PPCA reaches the best accuracy of 0.379 when S = 50 with a speed increase of 8.6.
In summary, the S experiments indicate that the efficiency of the Hierarchical PPCA

for T = 5 reaches an optimum when S =
√

K. Overall, the accuracy and super accuracy
have a negative correlation with S. The overall accuracy of Hierarchical PPCA is slightly
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inferior to flat classification. The super accuracy results indicate that super-classes are
interpretable for classification.

5.6.2. Improving the Super Accuracy

Hierarchical PPCA assigns the samples to the T most likely super-classes. Super-
classification failure significantly damages the overall classification accuracy. The overall
error is composed of errors from image classification and errors from super-class clas-
sification. The Hierarchical PPCA can increase its super-class accuracy by considering
samples from multiple most likely clusters. Experiments aim to explore whether increasing
T benefits the overall accuracy and the impact on the classification speed.

Table 4 shows the effectiveness of this strategy. The overall accuracy increases mono-
tonically with T. For ImageNet-100, Hierarchical PPCA reaches the flat classification
accuracy when T = 4. Meanwhile, the super-class accuracy increases significantly, from
0.95 to 0.999. Compared to flat classification, Hierarchical PPCA can reach a similar accu-
racy while only using 61% of the PPCA neurons. Table 4 also indicates that the density
increases linearly with T.

Table 4. Evaluation of speed increases and accuracy for different values of the parameter T from
Algorithm 1, when the number of PC components is q = r = 50.

T Density Speed Increase Accuracy Super Accuracy

ImageNet-100, S = 10

Flat 1.0 1.0 0.920 (0.013) -

1 0.257 (0.029) 3.9 (0.4) 0.902 (0.019) 0.953 (0.011)

2 0.391 (0.057) 2.6 (0.4) 0.918 (0.013) 0.989 (0.002)

3 0.502 (0.062) 2.0 (0.3) 0.919 (0.013) 0.996 (0.001)

4 0.607 (0.070) 1.7 (0.2) 0.920 (0.013) 0.999 (0.000)

5 0.713 (0.074) 1.4 (0.1) 0.920 (0.013) 0.999 (0.000)

ImageNet-1k, S = 33

Flat 1.0 1.0 0.736 -

1 0.073 (0.002) 13.8 (0.3) 0.672 (0.005) 0.822 (0.008)

2 0.108 (0.004) 9.2 (0.3) 0.718 (0.003) 0.922 (0.004)

3 0.144 (0.006) 7.0 (0.3) 0.728 (0.001) 0.954 (0.003)

4 0.178 (0.006) 5.6 (0.2) 0.732 (0.000) 0.970 (0.002)

5 0.212 (0.007) 4.7 (0.2) 0.734 (0.000) 0.979 (0.003)

ImageNet-10k, S = 100

Flat 1.0 1.0 0.384 -

1 0.024 (0.002) 41.6 (3.8) 0.319 (0.003) 0.694 (0.010)

2 0.037 (0.003) 27.5 (2.0) 0.356 (0.001) 0.827 (0.007)

3 0.048 (0.003) 20.8 (1.4) 0.368 (0.001) 0.880 (0.005)

4 0.060 (0.004) 16.8 (1.1) 0.373 (0.000) 0.909 (0.004)

5 0.071 (0.005) 14.1 (0.9) 0.376 (0.000) 0.927 (0.003)

The results on ImageNet-1k with S = 33 follow a similar pattern. The accuracy and
super accuracy follow a positive correlation with T. The overall accuracy increased from
0.672 to 0.718 as T increased to 2. The Hierarchical PPCA achieves a performance close to
that of flat classification when T reaches 5 while the density is 0.212. Hierarchical PPCA
can achieve a similar performance with less than 25% of neurons.

The experiment on ImageNet-10k was conducted with S = 100. The overall accuracy
increased from 0.319 to 0.376 as T increased to 5. The density increases linearly with T.

In summary, the strategy of increasing T elevates the super-class accuracy and overall
accuracy by sacrificing some computational efficiency. The experimental results indicate
that for medium datasets like ImageNet-100 and ImageNet-1k, Hierarchical PPCA can



Electronics 2023, 12, 4646 15 of 19

achieve equivalent results with no more than 20% of the neurons used. The computational
cost increases approximately linearly with increasing T.

Figure 2 reveals the relationship between the accuracy and speed increase for different
numbers S of super-classes, where each curve represents the accuracy vs. speedup for
one value of S and for T ∈ {1, 2, 3, 4, 5}. The relationship between the accuracy and speed
increase coefficient follows a negative logarithmic trend. Compared to flat classification,
hierarchical classification can obtain a comparable accuracy with between a 2-fold and 20-
fold speed increase, depending on the dataset. Compared to the standard linear projection
classifier, Hierarchical PPCA has a superior accuracy for large datasets, with an 8–20-fild
speed increase.

ImageNet-100 ImageNet-1k ImageNet-10k

Figure 2. Classification accuracy vs. speed increase for different hierarchical classifiers. Each curve
has five points corresponding to T ∈ {1, 2, 3, 4, 5}.

5.6.3. Number of Principal Components

The number of principal components (PCs) is an essential hyperparameter. Theoreti-
cally, q represents the dimension of the (linear) manifold to the observations of each class.
Furthermore, the case considered is q = 0, in which the PPCA neurons will degenerate into
radial basis function (RBF) neurons [34]:

r(x; µk, Σk) = ‖x− µk‖
2, (27)

where classification is based on the nearest Euclidean distance to the mean µk instead of
the Mahalanobis distance (2). The experiment aims to explore how the number of principal
components influences accuracy.

Actually, there are two PC parameters: the number q of PCs in the image class PPCA
models and the number r of PCs in the super-class PPCA models.
Experiment 1, r = q. In the first experiment, we set r = q (same number of PCs for classes
and super-classes) and varied q. Table 5 and Figure 3 present the accuracy for different
numbers q of PCs used in both the image class and the super-class models (r = q). The
overall accuracy of Hierarchical PPCA and flat classification does not increase with q
monotonically. There is an optimum number of principal components where the overall
accuracy reaches a maximum. This optimum point indicates the classifier’s capacity of
utilizing variation to improve the classification. The optimum point for flat classification
is q = 50 and for Hierarchical PPCA, the optimum point is q = r = 50. Figure 3 indicates
that Hierarchical PPCA with T = 5 starts to surpass the linear projection head on accuracy
when q reaches 20. With more variation, Hierarchical PPCA performs better than the linear
projection head. When q = 0, the PPCA neurons degrade to RBF neurons. Table 5 shows
that PPCA neurons are superior to RBF neurons for both flat and hierarchical classifiers.
Experiment 2, changing r when q = 50. Super-classes represent more general concepts in
Hierarchical PPCA. They are generated by the minimization of the sum of the distance
to the image classes. In Experiment 1 above, we explored the relationship between the
number of principal components for all PPCA neurons (q = r) and the overall accuracy.



Electronics 2023, 12, 4646 16 of 19

However, the super-classes may have different semantic properties than image classes. This
experiment is designed to explore how the amount of variation encoded for super-classes
influences the overall accuracy. We restrict the number of PCs q for the image classes to
q = 50, which is the optimum point for flat classifiers, while changing the number r of PCs
for the super-classes.

Table 5. Accuracy vs. number q of principal components.

q

Method S T 0 10 20 50 100 200

ImageNet-100

flat classification - - 0.882 (0.018) 0.915 (0.012) 0.920 (0.011) 0.920 (0.013) 0.919 (0.012) 0.918 (0.012)

HPPCA, r = q 10 1 0.780 (0.037) 0.883 (0.023) 0.896 (0.019) 0.902 (0.019) 0.903 (0.016) 0.902 (0.016)

HPPCA, r = q 10 5 0.881 (0.018) 0.915 (0.012) 0.920 (0.011) 0.920 (0.013) 0.919 (0.012) 0.918 (0.012)

ImageNet-1k

flat classification - - 0.648 0.719 0.732 0.736 0.735 0.735

HPPCA, r = q 33 1 0.492 (0.007) 0.621 (0.005) 0.653 (0.005) 0.672 (0.005) 0.674 (0.004) 0.674 (0.005)

HPPCA, r = q 33 5 0.635 (0.002) 0.713 (0.001) 0.728 (0.000) 0.734 (0.000) 0.734 (0.000) 0.734 (0.000)

ImageNet-10k

flat classification - - 0.288 0.364 0.378 0.384 0.382 0.380

HPPCA, r = q 100 1 0.207 (0.004) 0.284 (0.003) 0.305 (0.003) 0.319 (0.003) 0.320 (0.002) 0.317 (0.002)

HPPCA, q = r 100 5 0.275 (0.001) 0.352 (0.000) 0.368 (0.000) 0.376 (0.000) 0.376 (0.000) 0.373 (0.000)

ImageNet-100 ImageNet-1k ImageNet-10k

Figure 3. Classification accuracy vs. number of principal components q = r (both image classes and
super-classes) for different values of T.

Table 6 indicates that the overall accuracy does not change significantly with the
number r of PCs for the super-classes as long as r ≥ 20. In comparison with the other
experiment and with flat classification, we can conclude that changing the variation en-
coded for super-classes does not influence the classification much. Super-classes have a
different semantic property from image classes and the super classification is not sensitive
to changing the number of principal components like image classes.

To reveal the semantic characteristics of PPCA neurons, we explore the overall accuracy
when a small amount of variation is encoded for super-classes, i.e., r ≤ 3, keeping q = 50
and T = 5.

Table 7 reveals that the performance of the PPCA neurons is better than RBF neu-
rons for super classification. For all three datasets, but especially large-scale datasets like
ImageNet-1k and ImageNet-10k, more encoded information facilitates the super classifica-
tion, thus improving the overall accuracy.
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Table 6. Accuracy vs. number r of principal components for super classification.

r

Method S T 0 10 20 50 100 200

ImageNet-100

flat clf. q = r - - 0.882
(0.018)

0.915
(0.012)

0.920
(0.011)

0.920
(0.013)

0.919
(0.012)

0.918
(0.012)

HPPCA, q = 50 10 5 0.919
(0.013)

0.920
(0.012)

0.920
(0.012)

0.920
(0.013)

0.920
(0.012)

0.920
(0.012)

HPPCA, q = r 10 5 0.881
(0.018)

0.915
(0.012)

0.920
(0.011)

0.920
(0.013)

0.919
(0.012)

0.918
(0.012)

ImageNet-1k

flat clf. q = r - - 0.648 0.719 0.732 0.736 0.735 0.735

HPPCA, q = 50 33 5 0.715
(0.004)

0.730
(0.001)

0.732
(0.000)

0.734
(0.000)

0.734
(0.000)

0.734
(0.000)

HPPCA, q = r 33 5 0.635
(0.002)

0.713
(0.001)

0.728
(0.000)

0.734
(0.000)

0.734
(0.000)

0.734
(0.000)

ImageNet-10k

flat classification - - 0.288 0.364 0.378 0.384 0.382 0.380

HPPCA, q = 50 100 5 0.357
(0.001)

0.370
(0.000)

0.374
(0.000)

0.376
(0.000)

0.377
(0.000)

0.377
(0.000)

HPPCA, q = r 100 5 0.275
(0.001)

0.352
(0.000)

0.368
(0.000)

0.376
(0.000)

0.376
(0.000)

0.373
(0.000)

Table 7. Hierarchical PPCA accuracy vs. number r of principal components for super classification,
when T = 5, q = 50.

r

Dataset 0PC 1PC 2PC 3PC

ImageNet-100 Overall Accuracy 0.919 (0.013) 0.919 (0.013) 0.920 (0.013) 0.920 (0.012)
ImageNet-100 Speed-up 1.4 (0.1) 1.4 (0.1) 1.4 (0.1) 1.4 (0.1)

ImageNet-1k Overall Accuracy 0.715 (0.004) 0.719 (0.003) 0.722 (0.002) 0.724 (0.002)
ImageNet-1k Speed-up 4.6 (0.2) 4.6 (0.2) 4.6 (0.2) 4.6 (0.2)

ImageNet-10k Overall Accuracy 0.357 (0.001) 0.362 (0.001) 0.364 (0.001) 0.365 (0.001)
ImageNet-10k Speed-up 14.2 (1.0) 14.1 (0.9) 14.1 (0.9) 14.2 (0.9)

6. Conclusions and Future Work

This paper introduced a method for fast image classification called Hierarchical PPCA,
aimed at classifying data with a large number of classes. The framework adopts probabilis-
tic PCA as a class model for the classifier and clusters the image classes using a modified
k-means approach into a small number of super-classes. During classification, the hierarchi-
cal model first classifies the data into a small number of super-classes, then only activates
the corresponding image class models after super-classification. For large-scale datasets
without hierarchical annotation, Hierarchical PPCA can achieve superior accuracy with
a fraction of the computational cost. The proposed Hierarchical PPCA therefore gives a
positive answer to the research question from Section 1, since the hierarchical organization
speeds up classification for K classes from O(K) to O(

√
K), while still outperforming a

standard linear projection classifier.
Compared with RBF neurons, the PPCA neurons are capable of modeling the com-

plexity of semantic variation to gain a superior classification accuracy. Hierarchical PPCA
has a stronger capacity to utilize variation to aid in classification and computation effi-
ciency. We have noticed that, with fewer training samples, Hierarchical PPCA can achieve
a considerable performance for large-scale datasets.

Finally, we want to point out some of the limitations of the proposed Hierarchical
PPCA method. First, since it depends on a self-trained feature extractor, it can only be as
good as the feature extractor allows. A better feature extractor would allow for obtaining
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even better classification results. Second, it might fail to separate very similar classes such
as “male” vs. “female”, where a special classifier would need to be trained to separate
them.

In the future, we plan to further expand the Hierarchical PPCA model to handle more
than 100,000 classes with a large range of sizes, from between two and ten observations per
class to thousands of observations per class.
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