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Abstract: In this study, we introduce FLIBD, a novel strategy for managing Internet of Things (IoT)
Big Data, intricately designed to ensure privacy preservation across extensive system networks. By
utilising Federated Learning (FL), Apache Spark, and Federated AI Technology Enabler (FATE), we
skilfully investigated the complicated area of IoT data management while simultaneously reinforcing
privacy across broad network configurations. Our FLIBD architecture was thoughtfully designed to
safeguard data and model privacy through a synergistic integration of distributed model training
and secure model consolidation. Notably, we delved into an in-depth examination of adversarial ac-
tivities within federated learning contexts. The Federated Adversarial Attack for Multi-Task Learning
(FAAMT) was thoroughly assessed, unmasking its proficiency in showcasing and exploiting vulnera-
bilities across various federated learning approaches. Moreover, we offer an incisive evaluation of
numerous federated learning defence mechanisms, including Romoa and RFA, in the scope of the
FAAMT. Utilising well-defined evaluation metrics and analytical processes, our study demonstrated
a resilient framework suitable for managing IoT Big Data across widespread deployments, while
concurrently presenting a solid contribution to the progression and discussion surrounding defensive
methodologies within the federated learning and IoT areas.

Keywords: federated learning; privacy preserving; data poisoning; Big Data systems; Apache Spark;
FATE; IoT data management

1. Introduction

Federated Learning (FL) is poised to play an essential role in extending the Internet of
Things (IoT) and Big Data ecosystems by enabling entities to harness the computational
power of private devices, thus safeguarding user data privacy [1]. Despite its benefits, FL
is vulnerable to multiple types of assaults, including label-flipping and covert attacks [2–4].
The label-flipping attack specifically targets the central model by manipulating its decisions
for a specific class, which can result in biased or incorrect results. To protect federated
learning from data poisoning, researchers have devised techniques like differential privacy,
which conceals user data details, and secure multi-party computation, which confidentially
processes data across different sources. These methods strengthen FL’s defences, preserving
both data privacy and integrity [5–8]. To counter these threats, the research community
has developed a plethora of privacy-preserving mechanisms and advanced techniques for
improved model training, optimisation, and deployment while preserving the accuracy of
the central model.

In the context of the Internet of Things and Big Data systems, Federated Learning (FL)
has emerged as a vital paradigm for addressing the challenges associated with distributed
data processing, privacy preservation, and resource utilisation. FL enables decentralised
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machine learning on edge devices, facilitating efficient data processing without compromis-
ing privacy [9,10]. Federated Learning (FL) stands out as a pivotal approach to addressing
the complex issues arising from the integration of the Internet of Things (IoT) with Big Data
analytics. In the vast and dynamic landscape of the IoT, where Intelligent Transportation
Systems (ITSs) stand as a cornerstone, FL is being adopted to navigate the complexities of
privacy and data management. ITSs, which are a quintessential source of Big Data, benefit
from FL’s decentralised nature, enabling enhanced data privacy without compromising the
utility of the information extracted from countless daily transactions [11]. In parallel, FL is
advancing the field of healthcare, particularly in the management of Sexually Transmitted
Infections (STIs), by providing a framework that respects patient confidentiality while
harnessing large datasets for better disease control [12].

The potential of FL extends beyond healthcare into the automotive industry, partic-
ularly in the vehicular IoT. The system’s ability to harness a multitude of end-user data
for local model training makes it a promising alternative to traditional GPS navigation in
urban environments. This is because it allows for the collection and processing of data
points across diverse vehicular trajectories, thus enabling more-precise and context-aware
navigation systems [13]. The privacy-centric design of FL ensures that sensitive user data
remain on local devices, thereby reducing the risk of breaches and unauthorised access, a
compelling advantage for massive user data applications [14].

Despite its significant advantages, FL is not without its vulnerabilities, with data
poisoning attacks representing a salient threat to its security paradigm. These attacks
compromise the integrity of learning models by injecting malicious data into the train-
ing process. Recent studies have shown that FL systems are susceptible to such threats,
prompting an increase in research focused on fortifying these systems against potential
breaches [15]. The research presented in [16,17] examined the security vulnerabilities of
federated learning within IoT ecosystems and suggested measures to strengthen its security.
Ultimately, as FL continues to be integrated across various sectors, ensuring the security
of its systems against such attacks is imperative, warranting further investigation and
development of sophisticated defence mechanisms, as illustrated by the extensive research
in the studies [18–24,26].

In an FL scenario, the label-flipping attack is a significant concern because it can
manipulate the central decisions of the model for a specific class, without reducing its
overall accuracy. This manipulation can result in biased or incorrect results, which can
have far-reaching consequences for businesses and individuals. To address this issue, the
research community has developed various countermeasures to mitigate the risk of data
poisoning attacks. The results of the experiments described in this paper provide valuable
insights into the efficacy of these privacy-preserving mechanisms and their potential to
mitigate the risk of data poisoning attacks in FL systems. The findings are particularly
relevant for businesses that rely on FL for training machine learning models as they can
help ensure the security and integrity of the models while promoting reliable results.

The contribution of this work is to initiate a comprehensive exploration of the secu-
rity aspects of federated learning within the scope of IoT Big Data management using
the perspective of the Federated Adversarial Attack for Multi-Task Learning (FAAMT)
algorithm. Within our proposed model framework, we traversed the complex routes of
managing large-scale data, ensuring that the inherent privacy features of federated learning
are not jeopardised by potential adversarial attacks. Our research clearly outlines the
potential vulnerabilities and susceptibilities of federated multi-task learning systems to
data poisoning attacks, shedding light on essential insights to strengthen the robustness
and security of the FLIBD approach. By integrating the robust, privacy-preserving Big
Data management approach with a thorough analysis and mitigation of adversarial attacks
via FAAMT and relevant defence mechanisms, this study creates a well-defined, stable
foundation that ensures both the efficient management of IoT Big Data and the protection
of collaborative, federated learning experiences in multi-task learning environments. Thus,
our work presents a balanced combination of efficient data management and enhanced
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security, driving the implementation of federated learning in real-world IoT and Big Data
applications towards a secure, privacy-preserving future.

The remainder of this work is structured as follows. In Section 2, related work in the
field of federated learning and data poisoning is surveyed and covered in detail along
with state-of-the-art methods and data encryption applications. Section 3 outlines the
methodology at both the theory and application levels, while Section 4 delves into the
various types of attacks on federated learning. Section 5 highlights the experimental results
and their findings. Finally, Section 7 concludes this work, and Section 7.1 provides a roadmap
for future research directions.

2. Related Work

Federated Learning (FL) and data poisoning attacks are two crucial areas of research
that have garnered significant attention in recent years. This section outlines the current
progress and activities in these areas. FL is an innovative architecture designed to protect
user privacy in machine learning environments in various areas [25–27]. It is commonly
misunderstood, but this section provides examples to better understand its workings. For
instance, when different companies aim to collaborate on a machine learning model training
process, FL ensures that each company’s local data remain internal by using encryption
technology to transfer parameters between clients and the central server, thereby leading
to the creation of a Global Model while preserving privacy.

Horizontal Federated Learning (HFL) is a subset of federated learning that splits
datasets horizontally and removes data for training with the same user features, but differ-
ent users [28,29]. This increases the number of user samples, but HFL may be vulnerable
when the user attributes of two datasets overlap significantly, but the users themselves
do not. To reduce private information exposure during the processing and transmission
of components, HFL can employ homomorphic encryption systems [30–32], differential
privacy mechanisms [33–35], and safe aggregation frameworks [36–38]. Other methods
include blockchain-based FL [39,40] and multi-task FL [41,42].

Vertical Federated Learning (VFL) is used when the user attributes of two datasets
partially overlap, but the users themselves overlap significantly [43–45]. This involves
splitting the datasets vertically along a user/feature axis and removing data when users
are identical, but user attributes vary. Approaches for VFL include SecureBoost, which
suggests that all members input user attributes to train jointly, and a privacy-protecting
logistic regression model based on VFL with parallelising objects for analysis and increased
accuracy results [46–48].

Data poisoning attacks are an important topic of study in adversarial machine learning,
which try to undermine machine learning algorithms [49,50]. These attacks have been
studied on various machine learning models, including support vector machines [51],
autoregressive models [52], collaborative filtering based on matrix factorisation [53], and
neural networks for graph data [54–56]. In the context of multitask learning, Reference [57]
offered a poisoning attack technique that differs from the situation in federated machine
learning, where machine learning models are constructed based on datasets spread across
various nodes/devices.

Federated machine learning is a rapidly growing field and offers opportunities for
collaborative machine learning, but it also raises serious security and privacy concerns. To
tackle these challenges, various defence strategies have been explored, including differential
privacy, secure and robust aggregation, and outlier detection. Differential privacy has
grown into an increasingly standard method for maintaining privacy in federated learning,
but it can negatively impact the model’s accuracy by introducing random noise to the
data. Using secure and robust aggregation methods, such as Median-based aggregation,
Trimmed Mean, Krum, and Bulyan, federated learning systems remain secure and robust.
Outlier detection methods, such as rejection of adverse effects and Trim, identify and reject
adversarial system interference proactively.
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2.1. Data Security Encryption in Federated Learning: Relevant Literature and Approaches

Federated learning employs a distributed machine learning approach that facilitates
training directly on devices, obviating the need to share sensitive data with a central server.
Despite its advantages, concerns about data privacy and security persist in federated
learning [58–61]. Various techniques, including homomorphic encryption, have been
advanced to address these challenges. Homomorphic encryption is particularly noteworthy
as it enables operations on encrypted data without necessitating their decryption, thereby
maintaining data confidentiality.

In the study by [58], the researchers combined homomorphic encryption with cryp-
tographic tools, such as masking and local model protection, to counter potential model
inversion or reconstruction attacks, common threats in the domain of private financial
or business data. Their findings affirmed that their proposed approach meets the data
privacy standards. Another research work [59] conceptualised a blockchain-backed fed-
erated learning model for the Industrial Internet of Things (IIoT). This study introduced
data protection schemes like distributed K-means clustering utilising differential privacy
and homomorphic encryption and distributed AdaBoost with homomorphic encryption,
emphasising multi-faceted data protection during the data and model sharing phases.

A different approach was presented in [60], where a system-level client selection
method called Dubhe was introduced. This method allows clients to actively engage in
training while ensuring their data privacy, using homomorphic encryption. The experi-
ments revealed that Dubhe’s performance, in terms of classification accuracy, is on par with
the optimal greedy method, with minimal encryption and communication costs. Another
mention is the study in [61], which offered an overview of challenges in federated learning
and evaluated existing solutions, notably featuring homomorphic encryption.

Expanding on recent work in federated learning security, the study conducted by Fan
et al. introduced a novel data-sharing scheme to enhance both security and efficiency [62].
Within this framework, three principal entities—the Cloud Service Provider (CSP), Data
Provider (DP), and Data Requester (DR)—collaborate. Essentially, the DP uploads private
data and potentially a re-encryption key to the CSP, allowing data re-encryption to specific
user groups. Subsequently, the DR can request and decrypt this re-encrypted data using
its private key. The scheme outlines eight critical algorithms, presenting an approach that
holds significant promise for improving data-sharing protocols in FL ecosystems.

Following the exploration into federated learning security, another notable study
detailed a sophisticated encryption algorithm tailored for plaintext images [63]. This
process commences by segmenting the image into R, G, and B channels, with subsequent
encryption operations applied uniformly across these channels. Key steps in this approach
include the separation of channels, leveraging the 2D-LCLM complex chaotic system to
generate pseudo-random sequences, and employing the Zhou Yi Eight Trigrams encryption
rule to finalise the encryption. This method underscores the evolution of encryption
techniques suitable for multimedia data in modern research landscapes.

In the context of images, as previously noted, another study delved into the scope of
blockchain security by highlighting a traceability model for the DAG blockchain system [64].
As images demand robust encryption methods, blockchains seek dependable verification
systems. This model applies a witness mechanism, encompassing everything from unit
addition to the blockchain to information retrieval for users. In this context, a “unit” serves
as the primary data container, encapsulating vital information such as hash values and the
public key of the uploader. A defining feature of this model is its steadfast commitment to
data integrity. Once a unit is validated, modifying its content becomes challenging since all
interconnected units would require alterations, ensuring that unauthorised changes are
nearly impossible.

A study examined adaptable encryption and decryption frameworks for CKKS ho-
momorphic encryption, enabling computation on encrypted data without decryption [65].
The CKKS scheme, reliant on the RLWE problem and approximate arithmetic, encodes
real numbers into polynomials for encryption with a public key. After remote computa-
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tion on encrypted data, the client decrypts the received results with its secret key. The
paper highlights the importance of secure key generation and evaluation key creation for
homomorphic operations. The proposed architectures aim to enhance the efficiency of
CKKS encryption without delving into extensive data security details [65]. In conjunction
with adaptable encryption for CKKS, the study expects future research to integrate homo-
morphic encryption with machine learning, potentially exploring HE-integrated federated
learning for enhanced data privacy.

Ultimately, reviews of the literature on data security in federated learning emphasise
strategies such as homomorphic encryption and blockchain to protect data in machine learn-
ing. Various methods are proposed to safeguard sensitive information, from cryptographic
techniques to innovative data-sharing schemes, bolstering security while maintaining
efficiency. The aim is to forge robust federated learning systems that guarantee data pri-
vacy, with emerging research exploring the integration of these security methods with
homomorphic encryption for enhanced machine learning applications.

2.2. Privacy Threats in Federated Learning

Privacy challenges that are inherent within Federated Learning (FL) architectures,
particularly pertaining to the extensive interaction across various participating entities,
pose significant research concerns [66]. One such crucial threat is the Deep Gradients
Leakage attack, which is strategically leveraged by an adversary who acts as an aggregator.
Within this attack schema, the adversary capitalises on exploiting the gradients of the
model with the underlying intent to extrapolate or infer the private data of the individual
participants [67]. This form of attack underscores an intricate manipulation of data and,
quite conspicuously, has a direct impact on the inherent privacy of data that are circulated
within the FL architecture. Furthermore, the assimilation of Generative Adversarial Net-
work (GAN) attacks within the adversarial framework often sees the attacker using GANs
to meticulously generate data, which mirrors the private data of participants [67]. The data
generation here is formulated such that it concurrently is metaphorically camouflaged,
disguising it as legitimate data and, thus, introducing potential jeopardy to the integrity
and confidentiality of the original data.

In conjunction with the previous attacks, the looming threat of poisoning attacks and
inference attacks magnifies the privacy dilemma in FL. The former envisages a scenario
wherein an adversarial participant malevolently injects data into the training process with
the aim to subtly, yet systematically, manipulate the Global Model, consequently prop-
agating erroneous inferences [68]. This perturbation of the learning process is not just
detrimental to the model accuracy, but also corrodes the authenticity of predictions, poten-
tially cascading to flawed decision-making processes. On the other hand, inference attacks
extrapolate this issue, where an adversary infers the private data of other participants
through a strategic exploration of the Global Model [68]. Moreover, range inference attacks
refine this adversarial strategy by attempting to ascertain the range of the private data
of participants, providing a discreet, yet robust mechanism to violate privacy norms [69].
Thus, these types of attacks lead to a wide and deep invasion of privacy, calling for new
and effective strategies to mitigate them.

Addressing privacy threats in Federated Learning (FL) invokes a multilayered ap-
proach where technologies like blockchain and Trusted Execution Environments (TEEs)
have been significant, yet not entirely impervious to certain attack vectors. The incorpo-
ration of blockchain technology serves as a decentralised ledger, which aids in securing
transparent record-keeping and transactions, thereby mitigating single-point failures and
ensuring a level of accountability within the FL paradigm [67]. Concurrently, TEEs ensure
secure computational zones, safeguarding data and models during the computation and
offering a protective shield against a spectrum of threats.

However, it is essential to acknowledge that current FL protocols exhibit certain
deficiencies in rendering an all-encompassing security framework, thus spotlighting a
crucial necessity for more-detailed and in-depth research in this arena [70]. The pressing
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requirement pivots around designing a security architecture that seamlessly blends ro-
bustness and comprehensiveness while also manifesting adaptability to the ever-evolving
threat landscape. This ensures sustained, privacy-preserving FL operations among the
intricate and dynamic cyber–physical interactions in large-scale IoT systems [71]. This
establishes a prolific domain for continuing and prospective research, with a dedicated
focus on embedding a sophisticated and well-articulated balance of security and privacy
within the FL paradigm. Ensuring that innovative solutions are not merely confined to
theoretical frameworks, but extend to practical viability in real-world deployments also
stands as a pivotal aspect. Such a pursuit not only enriches the academic discourse around
privacy-preserving mechanisms in FL, but also contributes substantively to the operational
robustness of FL in large-scale systems where data privacy and security are paramount.

2.3. Privacy and Security in Federated Learning Systems: State-of-the-Art Defensive Mechanisms

Federated Learning (FL) emerges as a pivotal methodology, enabling Machine Learn-
ing (ML) application directly on devices while safeguarding sensitive and private infor-
mation from unwarranted disclosure and tracking. Despite its innovative approach, FL’s
security framework invites further scrutiny, especially within sectors managing exception-
ally sensitive data, such as the healthcare industry [72–74]. Vulnerabilities in FL, including
susceptibility to model poisoning, data heterogeneity, and model inversion attacks, possess
the potential to undermine the efficacy of the Global Model [72–76].

Various defensive tactics have been introduced to counter these threats, such as the
implementation of robust aggregation algorithms, deploying Multi-Party-Computation
(MPC)-based secure aggregation, and the utilisation of trained autoencoder-based anomaly-
detection models [73–75]. Notably, several state-of-the-art defences against model poison-
ing attacks, including FedCC, Krum, and Trimmed Mean, have been articulated in the
existing literature [75,77].

Nevertheless, these strategies often provide solutions that are parallel and non-
intersecting with respect to individual attacks or concerns. Moreover, the meticulous
orchestration of collusion among malicious participants can subtly reduce the bias trig-
gered in the poisoned local model—minimising disparities from the poison-free model.
This subtlety becomes critical in facilitating stealthy backdoor attacks and eluding a myriad
of top-tier defence strategies currently available in FL [76]. Thus, a void exists, signalling an
exigent need for additional research aimed at devising potent and encompassing defensive
mechanisms to bolster the security infrastructure of FL systems.

Romoa stands out in the arena of Federated Learning (FL) as it applies a logarithm-
based normalisation strategy, steering clear of the pitfalls associated with scaled gradients
that originate from nefarious entities. This strategic model aggregation method acts as a
bulwark against model poisoning attacks, a pertinent concern in the FL framework, where
several decentralised nodes collaborate in model training. The stabilisation and integrity of
the model during its training phase are crucial to ensure the derived insights and applica-
tions remain valid and reliable. Hence, Romoa not only addresses the immediate concerns
related to malicious activities in FL, but also underscores the necessity of innovatively
confronting challenges to uphold the robustness of decentralised learning models.

Concurrently, Robust Federated Aggregation (RFA) demonstrates a divergent, yet
equally significant methodology, emphasising the utilisation of a weighted average of
gradients to fortify FL systems against Byzantine attacks. The pertinence of resisting
such attacks is elevated in sensitive domains, such as healthcare, where the accuracy and
reliability of models can directly impact decision-making and outcomes. RFA, through its
adept handling of gradients and ensuring the integrity of the aggregation process, helps
to sustain the credibility of FL in environments where malicious actors might seek to
destabilise the model. Thus, RFA emerges not merely as a defensive mechanism, but as a
vital cog ensuring the seamless operation of FL systems, especially where the veracity of
aggregated models is critical.
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While Romoa and RFA significantly advance the security mechanisms within FL
systems, the journey towards a thoroughly secure, decentralised learning environment
remains ongoing and necessitates continual research and development. This becomes
particularly poignant in the realms of the IoT and Big Data, where large volumes of data
are processed and analysed across various nodes. The challenge extends beyond merely
defending against known threats to preemptively identifying and mitigating potential
future vulnerabilities within the FL paradigm. The continual evolvement of defence
mechanisms, in tandem with the evolution of threats, underscores the dynamic and complex
nature of securing FL systems. Therefore, it is imperative for the research community to
remain engaged in a persistent exploration of innovative strategies and mechanisms to
safeguard FL against a spectrum of threats, ensuring its viability and trustworthiness in
diverse applications across varied domains.

Navigating through the landscape of defensive mechanisms in federated learning,
a variety of strategies have been spotlighted, each exemplifying unique approaches and
methodologies towards mitigating adversarial endeavours. The summary presented in
Table 1 encapsulates a selection of these mechanisms, illustrating the diversity and speci-
ficity with which each strategy is forged and employed. Notably, while strategies like
FedCC and Krum emphasise robust aggregation algorithms and server-side defences, re-
spectively, others like FL-WBC introduce client-based strategies to shield the federated
learning model from adversarial attacks. This table not only serves as a confluence of varied
defensive strategies, but also underscores the multifaceted nature of the challenges that fed-
erated learning systems encounter in maintaining model integrity and privacy preservation.
Thus, the mechanisms detailed in Table 1 establish a foundation for a more-detailed and
-subtle examination of the architectural and functional aspects of these defences, thereby
facilitating subsequent research and progression in the spectrum of secure and robust feder-
ated learning. This overview of different mechanisms seeks to build a basic understanding,
which will help direct future research and development paths in the field.

Table 1. Summary of defensive mechanisms in federated learning systems.

Mechanism Description Reference

FedCC Employs a robust aggregation algorithm,
mitigating both targeted and untargeted model
poisoning or backdoor attacks, even in non-IID
data scenarios.

[75]

Krum Acts as a server-side defence via an aggregation
mechanism, but may be susceptible to Covert
Model Poisoning (CMP).

[77]

Trimmed Mean Server-side aggregation similar to Krum, yet also
potentially prone to CMP, aiming to resist model
poisoning attacks.

[77]

MPC-Based
Aggregation

Mitigates model inversion attacks by employing
a trained autoencoder-based anomaly-detection
model during aggregation.

[74]

FL-WBC A client-based strategy that minimises attack
impacts on the Global Model by perturbing the
parameter space during local training.

[78]

Romoa Utilises a logarithm-based normalisation to
manage scaled gradients from malicious vehicles,
resisting model poisoning attacks.

[79]

RFA Utilises a weighted average of gradients to resist
Byzantine attacks, aiming to establish a robust
aggregation method.

[80]
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2.3.1. Limitations of Current Defensive Mechanisms in Federated Learning

The development and implementation of defensive mechanisms in Federated Learning
(FL) have been imperative for ensuring secure and robust model training in decentralised
learning environments. Nonetheless, prevailing methods manifest substantial limitations,
hampering their optimal functionality and efficacy in practical scenarios.

Computational and Communication Overhead

A significant limitation is the computational burden imposed on Edge Devices (EDs),
which often possess restricted computational resources. This limitation arises from the
heavy computation overhead, which is further exacerbated when these devices are tasked
with conducting complex learning or defensive processes. Concurrently, the communication
overhead is another crucial aspect, predominantly related to the uploading of converged
local models’ parameters to a centralised server, where aggregation is performed. This
not only demands substantial communication resources, but also exposes the system to
potential communication-related vulnerabilities [81].

Knowledge Preservation and Incremental Learning

Moreover, a crucial challenge is associated with the guarantee of preserved knowledge,
especially in the context of incremental learning over new local datasets. The current
defensive mechanisms may jeopardise the acquired knowledge due to the absence of a solid
framework that ensures the stability and plasticity of the learned models during subsequent
learning phases. This issue is particularly prominent when FL systems encounter novel
data, and adaptive learning becomes crucial to preserving and updating the Global Model
appropriately [82].

Security and Privacy Concerns

Security concerns, including susceptibility to various attacks (such as model poisoning,
privacy inference, and Byzantine attacks), underscore another essential limitation. While
privacy preservation is a cornerstone of FL, ensuring robust defence against intricate attack
strategies, particularly those exploiting the decentralised nature of FL, remains a pressing
concern. The vulnerabilities related to privacy inference attacks, which aim to infer sensitive
information from the shared model updates, and Byzantine attacks, where malicious actors
disseminate falsified updates, are notably challenging to mitigate comprehensively [82].
This notwithstanding, novel approaches, namely Romoa and RFA, have been proposed to
address some of these challenges by introducing advanced aggregation methods designed
to resist various attacks while ensuring robust model training [81].

2.4. Problem Statement

Navigating the management of voluminous data derived from the Internet of Things
(IoT) environment, coupled with ensuring privacy within expansive systems through Fed-
erated Learning (FL), highlights a complex and multi-dimensional challenge. Specifically,
our discourse pivots on the following predominant axes of difficulties:

• Massive and rapid IoT data: IoT environments are characterised by the generation of
immense volumes of data (Di) at an astounding velocity, making effective and efficient
data management imperative to prevent systemic bottlenecks and to ensure sustained
operational performance.

• Preserving privacy with FL: Ensuring the data (Di and Dt) remain localised and
uncompromised during Global Model training in FL demands robust methodologies
to prevent leakage or unintended disclosure of sensitive information through model
updates (W).

• Label-flipping attacks: These attacks, wherein labels of data instances are maliciously
altered (D̃i and D̃s), present a pronounced threat to model integrity and efficacy in
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FL. Here, the design and implementation of defensive mechanisms that can detect,
mitigate, or recover from such attacks is of paramount importance.

H(D̃i, D̃s; W)→ min
W

L(Di, Dt, W) (1)

whereH is the high-level function that seeks to minimise the loss function L given the
perturbed data and weight matrix, ensuring the learned model W is resilient against
the attack.

• Ensuring scalability: Addressing the scale, by ensuring the developed FL model not
only counters privacy and security threats, but also scales efficiently to manage and
process expansive and diverse IoT Big Data.

• Technological integration and novelty: While FATE offers a promising federated
learning framework and Apache Spark offers fast in-memory data processing, explor-
ing and integrating these technologies in an innovative manner that cohesively ad-
dresses IoT Big Data management challenges within an FL paradigm becomes crucial.

H(Di, Dt; W, Ω)→ min
W,Ω

L(Di, Dt, W, Ω) (2)

whereH is aimed at minimising the loss function L concerning the data, the weight
matrix W, and the model relationship matrix Ω, ensuring a harmonised functionality
between the integrated technologies and, also, enabling scalable and efficient data
processing and model training across federated nodes.

The core objective of FLIBD is to diligently construct a framework that mitigates
the identified challenges. This venture not only seeks to resolve current issues, but also
aspires to craft a model that leads, moulds, and enhances forthcoming technological and
methodological progress within the sphere of privacy-preserving data management in
expansive IoT deployments, leveraging federated learning.

2.5. Proposed Architecture

FLIBD formulates an insightful architecture, intending to skilfully manage volumi-
nous IoT-originated data whilst concurrently ensuring meticulous privacy preservation
across large-scale systems, achieved by integratively employing Federated Learning (FL),
Apache Spark, and FATE. The fundamental layers and their concomitant functionalities are
delineated below and represented in Figure 1:

1. IoT data harvesting and initial processing layer:

• Dynamic data acquisition: implements a strategic approach to dynamically har-
vest, categorise, and preliminarily process extensive IoT data, utilising Apache
Spark’s proficient in-memory computation to adeptly handle both streaming and
batch data.

2. In situ model training and data privacy layer:

• Intrinsic local model training: employs FATE to facilitate localised model training,
reinforcing data privacy by ensuring data are processed in situ.

• Data and model security mechanism: integrate cryptographic and obfuscation
techniques to safeguard data and model during communication, thus fortifying
privacy and integrity.

3. Federated learning and secure model consolidation layer:

• Privacy-aware federated learning: engages FATE to promote decentralised learn-
ing, which encourages local model training and securely amalgamates model
updates without necessitating direct data exchange.

• Model aggregation and resilience: establishes a secure aggregation node that
amalgamates model updates and validates them against potential adversarial
actions and possible model poisoning.
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4. Global Model enhancement and feedback integration layer:

• Deploy, Enhance, and Evaluate: apply the Global Model to enhance local models,
instigating a comprehensive evaluation and feedback mechanism that informs
subsequent training cycles.

5. Adaptive scalability and dynamic management layer:

• Dynamic scalability management: utilises Apache Spark to ensure adaptive scal-
ability, which accommodates the continuous data and computational demands
intrinsic to vast IoT setups.

• Proactive system management: implements AI-driven predictive management
and maintenance mechanisms, aiming to anticipate potential system needs and
iteratively optimise for both performance and reliability.

In essence, the FLIBD architecture aspires to function as a robust foundation for
upcoming advancements in privacy-preserving data management within the continuously
evolving IoT environment. It makes an effort to navigate present challenges with viable
solutions, whilst concurrently establishing a robust framework beneficial to encouraging
future research and development in privacy-preserving methodologies for managing IoT
Big Data across large-scale scenarios.

1. IoT Data
Acquisition and

Preprocessing Layer

2. Local Model
Training and Data

Security Layer

Data Generation
and Collection

Data
Preprocessing

Local Model
Training

Data Security and
Privacy-Preserving

Mechanism

3. Federated
Learning and Model
Aggregation Layer

Federated
Learning using

FATE
Model

Aggregation

4. Federated
Learning and Model
Aggregation Layer

Global Model
Deployment

Feedback
Mechanism

5. Scalability and
Management Layer

Scalability
Management

System
Management and

Monitoring

Figure 1. The basic architecture.

3. Methodology

In this section, we provide a comprehensive overview of the steps taken in the data
poisoning attack strategies that we propose for federated machine learning. Initially, the
concept of federated multi-task learning functions as a general framework for multi-task
learning in a federated environment is given. We then present the mathematical formulation
of our poisoning attack and describe how to further optimise the model. The abbreviations
for the variables used in our work are given in Table 2. To make it simpler for the reader
to follow our methodology and comprehend the underlying principles, we introduce
and elucidate these notations in depth throughout the paper. Moreover, we provide a
representation of our methodology, which includes plots, to help the reader understand
the steps involved in our proposed attack.
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Table 2. Notation for utilised variables.

Symbol Interpretation

Di Uninfected data for node i
Dt Uninfected data for target node t
D̃i Infected data for node i
D̃s Infected data for attacking node s
T Set of target nodes
S Set of attacking nodes
H Upper level function
W Weight matrix
Ω Model relationship matrix

Objectives of Federated Machine Learning

In this section, we address the issue of data poisoning attacks in federated multi-task
learning. We introduce three types of attacks based on real-world scenarios and propose a
bilevel formulation to determine the optimal attacks. The goal of the attacker is to degrade
the performance of a set of target nodes T by injecting corrupted or poisoned data into a
set of source attacking nodes S . The objective of federated machine learning is to develop a
model from data generated by n distinct devices denoted as Di with i ∈ [n], which may
have different data distributions. To address this, separate models w1, . . . , wn are trained
on individual local datasets. The focus of this paper is on a horizontal (sample-based)
federated learning model known as federated multi-task learning [83], which is a general
multi-task learning framework applied in a federated setting. The federated multi-task
learning model can be represented as:

N

∑
i=1

Mi

∑
j=1
Li
(

wi>xi, j, yi, j
)

, (3)

regularised by the trace of the product WΩW> scaled by λ1 and the Frobenius norm of W
squared scaled by λ2:

λ1Tr
(

WΩW>
)
+ λ2|W|2F. (4)

The symbol Tr denotes the trace, and |W|F denotes the Frobenius norm of W.
Here, (xj

i , yj
i) is the j-th sample of the i-th device and mi represents the number of clean

samples in the i-th device. The matrix W ∈ Rd×n, with the i-th column being the weight
vector for the i-th device, comprises the weight vectors w1, . . . , wn. The relationships
among the devices are modelled by Ω ∈ Rn×n, and the regularisation terms are controlled
by the parameters λ1 > 0 and λ2 > 0.

In the context of federated machine learning, finding the Ω matrix can be computed
separately from the data, as it is independent of them. A key contribution of [83] was
the creation of an effective method for distributed optimisation to update the W matrix.
This was accomplished by incorporating the ideas of distributed primal–dual optimisation,
which were previously outlined in [84].

Let m = ∑n
i=1 mi and X = Diag(X 1, . . . , X n) ∈ Rnd×m. Holding the Ω matrix

constant, the optimisation problem can be re-expressed in its dual form with the dual
variables αi ∈ Rmi as follows:

min α, W, Ω ∑ i = 1n ∑ j = 1miLi

(
−α>i xj

i

)
+ λ1Tr

(
WΩW>

)
. (5)

where Tr denotes the trace function and λ1 is a hyperparameter. The optimisation process
of finding the Ω matrix is separable from the data, allowing it to be calculated at a central lo-
cation. The study by [83] contributed a robust method for distributed optimisation to refine
the W matrix, building upon the concepts of distributed primal–dual optimisation described
in [84]. The optimisation involves the conjugate dual function Li∗ of Li and the term λ1 that
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regularises Tr
(
WΩW>

)
. The variable α

j
i in � ∈ Rn represents the j-th sample (xj

i , yj
i) from

the i-th device. In this work, we designate Di = (xj
i , αi, yj

i) | xj
i ∈ Rd, αi ∈ Rmi , yj

i ∈ Rmi as
the uncorrupted data in device i. The malicious data injected into node i are represented as:

D̃i = (X̃i, α̃i, ỹi) | X̃i ∈ Rd×ñi , α̃i ∈ Rñi , ỹi ∈ Rñi (6)

where ñi is the number of injected samples for node i. If i /∈ S , then D̃i = ∅, meaning that
ñi = 0. The three types of attacks we focused on for FL systems are:

• Direct attack: T = S . The attacker can directly inject data into all the target nodes,
exploiting a vulnerability during data collection. For instance, in the case of mobile
phone activity recognition, an attacker can provide counterfeit sensor data to directly
attack the target mobile phones (nodes).

• Indirect attack: When no direct data injection is possible into the targeted nodes,
symbolised by T ∩ S = ∅, the attacker can exert influence on these nodes indirectly.
This is achieved by introducing tainted data into adjacent nodes, exploiting the com-
munication protocol to subsequently impact the target nodes. Such an attack leverages
the interconnected nature of the network, allowing for the propagation of the attack
effects through the established data-sharing pathways.

• Hybrid attack: This form of attack represents a combination of both direct and indirect
methods, wherein the aggressor has the capability to contaminate the data pools
of both the target and source nodes at once. By employing this dual approach, the
attacker enhances the potential to disrupt the network, manipulating data flows and
learning processes by simultaneously injecting poisoned data into multiple nodes,
thereby magnifying the scope and impact of the attack across the network.

The objective to maximally impair the functioning of the target nodes is structured as
a two-tiered optimisation challenge, in line with the model proposed by [55]:

max
D̃s|s∈S

∑ t|t ∈ T Lt(Dt, wt), s.t., min α, W, Ω
m

∑
`=1

1
n` + ñ`

L`(D` ∩ D̃`) + λ1R(Xα). (7)

Here, D̃s|s ∈ S denotes the set of injected data for the source attacking nodes. The upper-
level problem is defined as maximising the performance degradation of the target nodes
and is denoted asH. The secondary optimisation issue, addressed by the second condition,
concerns a federated multi-task learning scenario in which the training dataset comprises a
combination of unaltered and compromised data points.

max
D̃s⊂S

∑
t∈T
Lt(Dt, wt),

s.t., min
α,W,

Ω

(
m

∑
`=1

1
n` + ñ`

L`(D` ∪ D̃`, W) + λ1R(Xα) + λ2‖W‖2
F

)
,

‖αi‖2 ≤ C, ∀i ∈ {1, . . . , n}.

(8)

The adjusted optimisation challenge, as specified in Equation (8), is detailed as follows:

• The aim, symbolised by maxD̃s |s∈S ∑t|t∈T Lt(Dt, wt), seeks to escalate the collective
loss for all target nodes within the group T , with D̃s representing the data manipulated
by the attackers.

• The initial limitation strives to diminish the total loss for all learning tasks under the

federation, depicted by minα,W,Ω

(
∑m
`=1

1
n`+ñ`

L`(D` ∪ D̃`, W) + λ1R(Xα) + λ2‖W‖2
F

)
.

This includes both the original and tampered data, with L` denoting the loss for each
task `.

• To deter overfitting, which is fitting the model too closely to a limited set of data
points, the model includes penalty terms λ1R(Xα) and λ2‖W‖2

F. These terms penalise
the model’s complexity, balanced by the parameters λ1 and λ2.
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• A constraint ‖αi‖2 ≤ C ensures that the model’s parameters α do not exceed a certain
threshold C, maintaining the model’s general performance and stability.

In essence, this framework streamlines the complex aspects of federated learning
when tasked with handling both unmodified and tampered data, a situation often arising
in extensive data settings such as the IoT.

4. Attacks on Federated Learning

This section presents the newly developed FAAMT algorithm, designed to identify the
most-strategic approaches for launching attacks within federated learning environments.
The algorithm builds upon the commonly used approach in data poisoning attack research,
based on related works, and utilises a projected stochastic gradient ascent method to
effectively raise the empirical loss of the target nodes, thereby reducing their performance
in classification or regression tasks.

In the health IoT domain, a notable innovation is the DPFL-HIoT model, which applies
Gradient Boosting Trees (GBTs) to detect healthcare fraud [85]. This method effectively
safeguards patient data privacy while still enabling the machine learning model training
process. Considering the sensitivity of health information and the difficulties in merging
such data, FL emerges as a practical AI-powered tool. It serves the vast amounts of
medical data stored in healthcare institutions, crucial for enabling smart health services like
telehealth, diagnostics, and ongoing patient monitoring. FL, thus, offers a critical solution
that allows for the use of these data while prioritising privacy.

A recent study described a method for executing tensor decomposition while safe-
guarding privacy within federated cloud systems [86]. This method is detailed extensively,
alongside a comprehensive analysis of its complexity. It employs the Paillier encryption
scheme and secure multi-party computation to ensure the confidentiality of the decom-
position process. Additionally, the paper evaluates the precision of its predictive ratings
alongside the computational and communication overhead incurred by users. The analysis
of complexity includes the unfolding of tensors, the application of the Lanczos algorithm
to these unfolded matrices, the determination of truncated orthogonal bases for tridiagonal
matrices, and the construction of the core tensor using encrypted data. The findings within
this paper validate the method’s efficacy in maintaining privacy while facilitating tensor
decomposition in a federated cloud context.

An innovative strategy has been developed to address the complexity of IoT device
data and privacy concerns in Recurrent Neural Network (RNN) models [87]. This approach
introduces a Differentially Private Tensor-based RNN (DPTRNN) framework dedicated to
maintaining the confidentiality of sensitive user information within IoT applications. The
proposed DPTRNN model is designed to tackle the challenges of dealing with heteroge-
neous IoT data and privacy issues in RNN models. Employing a tensor-based algorithm
for back-propagation through time, enhanced with perturbation techniques to ensure pri-
vacy, the efficacy of the DPTRNN model is evaluated against video datasets. The results
indicated that the model surpasses previous methods in terms of accuracy while providing
a higher level of privacy protection.

4.1. Strategies for Attacking via Alternating Minimisation

The task of refining the attack strategy within bilevel problems presents a significant
hurdle, mainly attributed to the intricate and non-convex characteristics of the subordinate
problem. In our bilevel construct, the dominant problem is a straightforward primal issue,
whereas the subordinate issue reveals a complex, non-linear, and non-convex nature. To
navigate these complexities, we adopted an alternating minimisation technique. This
method involves a cyclic update of the injected data to amplify the impact on the function
H, which quantifies the performance deterioration of the targeted nodes. This technique
is instrumental in addressing the challenging non-convexity of the subordinate problem,
paving the way for an enhanced attack stratagem tailored to federated learning contexts.
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By implementing this alternating minimisation, we capitalise on its inherent flexibility
to fine-tune our approach iteratively, aligning our injected data with the optimal points of
disruption. Each iteration brings us closer to a strategy that can subtly, yet substantially
weaken the model’s performance from within. Moreover, this method’s iterative nature
allows us to monitor and adjust the attack in real-time, reacting to changes and defences put
in place by the network, ensuring that our attack remains effective throughout the learning
process. Such adaptability makes it an indispensable tool in the arsenal for compromising
federated learning systems.

To tackle the non-convex nature of the lower-level problem in the bilevel optimisation
of the attack problem, we adopted an alternating minimisation approach, where we op-
timise the features of the injected data, denoted by

(
D̃s,i, αs, i

)
, by fixing the labels of the

injected data. The updates to the injected data D̃s,i are obtained via the projected stochastic
gradient ascent method as shown below:

(
D̃s,i
)k ← Proj X

((
D̃s,i
)k−1

+ η1∇(D̃s,i)
k−1H

)
, (9)

Here, η1 denotes the learning rate, k indexes the current iteration, and X defines the
set of all permissible injected data, as outlined by the initial restriction in the primary
problemH. The projection operator Proj X(·) ensures that the injected data lie within the
`2-norm ball of radius r. The corresponding dual variable αs, i is updated accordingly as
D̃s,i evolves:

αk
s,i ← αk−1

s,i + ∆αs,i (10)

where ∆(αs,i) is the step in the dual space that maximises the upper-level problemH. The
equation for computing the gradient of the t-th target node in Equation (9) is derived using
the chain rule.

∇x̂t
a
Lt(Dt, wt) = ∇wtLt(Dt, wt) · ∇x̂±a wt. (11)

The gradient of the objective function at the upper level with respect to both x̂t
a and

wt is given by ∇x̂t
a
Lt(Dt, wt) = ∇wtLt(Dt, wt)×∇x̂t

a
wt. The first term on the right-hand

side, ∇wtLt(Dt, wt), is readily computable as it solely relies on the loss function Lt(·).
Conversely, the second term, ∇x̂t

a
wt, hinges on the optimal conditions of the lower-level

problem as set out in Equation (7).
In order to ascertain∇x̂t

a
wt, we commence by fixing the parameter Ω in the lower-level

issue to sidestep its constraints, leading us to the dual problem stated as:

min
α,W

m

∑
`=1

1
n` + ñ`

L`(D` ∪ D̃`) + λ1R(Xα) (12)

Considering the optimality conditions of the lower-level problem as constraints within
the upper-level problem, we treat Ω as a constant matrix during the gradient determina-
tion. Furthermore, given that R(Xα) is continuously differentiable, we correlate W and
α through the relationship w`(α) = ∇R(Xα). Lastly, we proceed with updating the dual
variable α and calculating the ensuing gradients as shown in Equation (9).

To update the dual variable α, we seek to maximise the dual objective with a least-
squares loss or hinge loss function by updating each element of α individually. The
optimisation problem in Equation (11) can be reformulated into a constrained optimisation
problem for node ` as:

min
α

m

∑
`=1

1
n` + n̂`

(
L`?

(
−αi

`

)
+ L`?

(
−α̂`i′

))
+ λ1R?(X[α`; α̂`]) (13)
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To enable distributed computation across multiple nodes, the optimisation problem
in Equation (10) can be separated into smaller, data-local subproblems. This is achieved
by making a quadratic approximation of the dual problem. At each step k, two samples
are chosen randomly, one from the original clean data (i.e., i ∈ 1, . . . , n`) and one from
the injected data (i.e., i′ ∈ 1, . . . , n̂`). The updates for both αi

` and α̂i′
` in node ` can be

computed as: (
αi
`

)k
=
(

αi
`

)k−1
+ ∆αi

`,
(

α̂`i′
)k

=
(

α̂`i′
)k−1

+ ∆α̂i′
` , (14)

where ∆αi
` and ∆α̂i′

` are the stepsizes that maximise the dual objective in Equation (15)
when all other variables are fixed. To achieve maximum dual ascent, we optimise:

∆αi
` = arg min

a∈R
L∗`

(
−
(

α`i + a
))

+ a
〈

w`(α`), xi
`

〉
+

λ

2

∣∣∣xi
`a
∣∣∣M2

` (15)

∆α̂`i′ = arg min â ∈ RL∗`
(
−
(

α̂`i′ + â
))

+ â
〈

w`(α̂`), x`i′
〉
+

λ

2

∣∣∣xi′
` â
∣∣∣M2

` (16)

Here, M is a symmetric positive definite matrix and M` ∈ Rd×d is the `-th diagonal
block of M. The inverse of M is expressed as

M−1 = Ω +
λ2

λ1
Imd×md. (17)

where Ω := Ω⊗ Id×d ∈ Rmd×md and λ1 and λ2 are positive constants. For the least-squares
loss function, the closed-form solution for ∆αi

` is:

∆αi
` =

yi
` −

(
xi
`

)>xi
`α

i
` − 0.5

(
αi
`

)k−1

0.5 + λ1
∣∣xi

`

∣∣M`2 . (18)

For the hinge loss, ∆α̂ir
` can be computed as follows:

∆α̂`ir = y`ir max

0, min

1,
1−

(
xir
`

)>
xir
`

(
αk−1
`

)
yir
`

λ1
∣∣xir

`

∣∣M`
2 +

(
αk−1
`

)
yir
`


− (αk−1

`

)
(19)

The gradient associated with each of the injected data x̂i
s for the corresponding target

node t is expressed as:

∇(x̂s
s)Lt

(
(wt)

>xj
t, yj

t

)
= 2

(
(wt)

>xj
t − yj

t

)
xj

t · ∆α̂i
sΩ(t, s) (20)

For the hinge loss, the gradient is:

∇(x̂u
s )Lt

(
(wt)

>xj
t, yj

t

)
= yj

tx
j
t · ∆αi

sΩ(t, s) (21)

The algorithm for the attack on federated learning is given in Algorithm 1.
The Federated Adversarial Attack for Multi-Task Learning (FAAMT) Algorithm 1 is an

essential mechanism designed to test the robustness of federated learning systems against
malicious attacks. It systematically integrates adversarial samples into a network’s nodes,
specifically within a multi-task learning setting. Through iterative updates governed by
a central learning rate and convergence criteria, FAAMT evaluates the vulnerability of
federated learning structures. This assessment is essential for strengthening the defence
mechanisms of such systems against advanced adversarial strategies.
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Algorithm 1 Federated Adversarial Attack for Multi-Task Learning (FAAMT).

1: procedure FAAMT(T, S, n̂s)
2: Randomly initialise the current state f (X̂0, v̂0, ŷ0) ∈ S
3: Initialise the set of injected data as D̂ = D̂0, and set the iteration counter k = 0
4: Set the global learning rate α and tolerance ε for convergence
5: while k < maximum number of iterations and not converged do
6: # of parallel computations for each node
7: for all nodes i = 1 to m in parallel do
8: Calculate the solution δvi for node i using Equation (15) or Equation (16)
9: Update the local variables vi ← vi + α · δvi

10: if i ∈ S then
11: Calculate the solution δv̂i for node i using Equation (15) or Equation (16)
12: Update the adversarial variables v̂i ← v̂i + α · δv̂i
13: end if
14: end for
15: Aggregate local updates to update Global Model parameters Wk
16: Check for convergence with a predefined criterion, e.g., ||Wk −Wk−1|| < ε
17: Increase counter k← k + 1
18: # of injected data point updates for source nodes
19: for all source nodes s = 1 to S in parallel do
20: Update the injected data point x̂s using Equation (7)
21: end for
22: Update the set of injected data as D̂ ← D̂ ∪ {x̂s}S

s=1
23: end while
24: if converged then
25: return Successfully converged with adversarial examples D̂
26: else
27: return Algorithm reached maximum iterations without convergence
28: end if
29: end procedure

Further Analysis

To attack the federated learning model, we focused on the bilevel optimisation problem.
The upper-level problem aims to find the optimal attack strategy, while the lower-level
problem is to update the model weights. The bilevel problem can be expressed as:

max
D̃s,i ,αs,i

H(D, W; D̃s,i, αs, i) subject to |D̃s,i|2 ≤ r, W = arg min W ′L(D ∪ D̃s,i, W ′; αs, i) (22)

For the non-convex nature of the lower-level problem, we used the alternating min-
imisation approach to optimise the bilevel problem. We initiate by fixing the labels of
the injected data and optimising the features of the injected data, denoted by

(
D̃s,i, αs, i

)
,

as follows: (
D̃s,i
)k ← Proj X

((
D̃s,i
)k−1

+ η1∇(D̃s,i)
k−1H

)
, (23)

To compute the gradient, we first derive the gradient of the target node loss function
Lt(Dt, W) with respect to the model weights W:

∇WLt(Dt, W) = ∑ j = 1nt∇w`(w>t xj
t, yj

t), (24)
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where `(·) is the loss function, xj
t and yj

t are the j-th data point and its label in the target
node dataset, and nt is the number of data points in the target node dataset. Next, we need
to compute the gradient of the upper-level objective with respect to the injected data D̃s,i:

∇D̃s,i
H =

T

∑
t=1
∇D̃s,i

Lt(Dt ∪ D̃s,i, W). (25)

To calculate this gradient, we utilise the chain rule, obtaining:

∇D̃s,i
H =

T

∑
t=1
∇WLt(Dt, W) · ∇D̃s,iW. (26)

For the lower-level problem, we update the model weights W using gradient descent
with learning rate η2:

Wk ←Wk−1 − η2∇WL(D ∪ D̃s,i, Wk−1; αs, i). (27)

After updating the features of the injected data, we fix the features and optimise the
labels of the injected data:

αs, ik ← ProjY
(

αs, ik−1 + η3∇αs,ik−1H
)

, (28)

where ProjY projects the labels into the feasible set Y .
To compute the gradient of the upper level objective with respect to the labels of the

injected data, we have:

∇αs,iH =
T

∑
t=1
∇αs,iLt(Dt ∪ D̃s,i, W). (29)

We apply the chain rule to obtain the following expression:

∇αs,iH =
T

∑
t=1
∇WLt(Dt, W) · ∇αs, iW. (30)

Finally, the alternating minimisation algorithm consists of iterating through these
updates for the features of the injected data, the labels of the injected data, and the model
weights until convergence. By focusing on the gradients of the loss function, the attacker
can effectively manipulate the model’s behaviour, leading to a successful attack.

5. Experimental Results
5.1. System Specifications of Experiments

The ensuing experimental design, crucial for substantiating the efficacy of FLIBD,
was scrupulously devised to accurately emulate a pragmatic IoT Big Data management
context. This, in turn, allows for a discerning evaluation of the approach’s potency in
safeguarding privacy within expansive systems. In particular, the experiments were enacted
within a high-performance computing environment, marked by its robust computational
and storage capabilities, thereby being impeccably aligned for navigating through the
complexities of resource-demanding federated learning tasks among handling copious IoT
Big Data. A comprehensive exposition of the essential system specifications leveraged for
the experiments is proffered in Table 3.

The above system was orchestrated to emulate large-scale system scenarios for fed-
erated learning with a lens toward IoT Big Data management. The CPU, equipped with
an extensive number of cores, alongside the robust RAM, facilitates efficient parallel pro-
cessing capabilities, ensuring expedited computational procedures. The GPU, boasting a
substantive video memory, becomes quintessential in efficiently managing and processing
massive datasets, especially under operations requiring enhanced parallelisation, such as
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model training in federated learning frameworks. The ultra-fast NVMe storage plays a criti-
cal role in minimising data retrieval and storage times, thus mitigating potential bottlenecks
arising from disk I/O operations. Furthermore, the experiment leveraged Apache Spark
with Federated AI Technology Enabler (FATE) to enable secure computations and model
training, allowing data privacy preservation through federated learning mechanisms.

Table 3. System specifications for experimental evaluation.

Component Specification

CPU AMD 5950X
RAM 64GB DDR4

Storage 2TB NVMe
GPU 3090Ti (24GB VRAM)

Operating System Ubuntu 18.04 LTS
Network Interface 1GBPS

Software Framework Apache Spark with FATE

5.2. Experimental Evaluation of Attacking Mechanism

In the ever-expanding domain of Federated Learning (FL), the imperative to guard
against adversarial attacks whilst ensuring accurate model predictions has become
paramount. The ensuing analysis offers a rigorous examination of the Federated Adver-
sarial Attack for Multi-Task Learning (FAAMT) algorithm (Algorithm 1). This adversarial
approach, developed with meticulous attention to the intricacies of multi-task learning,
seeks to diminish the predictive accuracy of various federated learning methods, even those
that are conventionally recognised for their robustness against adversarial machinations.

To unravel the efficacy of FAAMT, it was assessed against several widely acknowl-
edged federated learning methods and defences, such as the Global Model, Median Model,
Trimmed Mean Model, Krum, Bulyan, RFA, and Romoa. Each method typically exhibits
substantial resistance to conventional adversarial tactics, establishing them as formidable
entities in federated learning defences. However, through the vision of FAAMT, we sought
to decipher whether their robustness holds steadfast or gradually attenuates under the
sophisticated attack mechanisms unleashed by the algorithm.

The outcomes derived from applying the FAAMT method (Figure 2) show the per-
formance variations among the federated learning mechanisms previously discussed,
unmasking their potential susceptibilities. This analytical exploration, thus, enriches our
comprehension of the resilience landscape among adversarial challenges within federated
learning frameworks, underscoring the specific vulnerabilities and strengths inherent in
each approach.

Intriguingly, the derived results emanating from the visual representation expose a
compelling narrative pertaining to the potency of the FAAMT mechanism. A discerning
glance at the plot elucidates a conspicuous decrement in the predictive accuracies of the
defended federated learning methods under attack, reinforcing the assertion that FAAMT
has managed to permeate their defensive veils to a certain degree.

Certain defence mechanisms, which previously heralded unwavering resilience in the
face of adversarial onslaughts, now showcase perceptible vulnerabilities when entwined
with the FAAMT. This not only lays bare latent susceptibilities within these methods, but
also accentuates the detail and sophistication embedded within the FAAMT algorithm.
Notably, certain defences exhibited a more-pronounced susceptibility, suggesting a hier-
archical differentiation in robustness among the examined methods and emphasising the
necessity for an incessant evolution in defence strategies.

As the realm of federated learning continues to evolve, so too will the complexity
and cunning of adversarial attacks. Thus, the illumination of FAAMT’s ability to infiltrate
these robust defence mechanisms propels the discourse on the perennial battle between
adversarial attacks and defence methods forward. It beckons the scientific community to
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explore further, excavate deeper, and innovate with a renewed zeal to safeguard federated
learning models against progressively shrewd adversarial endeavours. It is within this
iterative process of attack and defence that the future robustness and reliability of federated
learning models will be forged, ensuring the integrity and durability of decentralised
learning mechanisms in real-world applications.
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Figure 2. Efficacy assessment of FAAMT against various federated learning defence mechanisms.

5.3. Experimental Evaluation of Defences

This section will analyse the plots produced during the experimental evaluation of
the implemented defences based on the proposed attack. In each case, the maximum
number of clients was 10 and the number of attackers in the system varied from none to
5 clients, i.e., 50% of the system. A higher percentage than this was not considered as there
is no point in implementing a defence on a system that malicious users mostly own. The
section will start with the results of the attack on a network using the standard FedAvg
aggregation method and then split by the percentage of exposure. For the experiments,
we utilised the widely used CIFAR-10 dataset, which contains 32 × 32 images, which
are classified into various object categories like birds, cats, and aeroplanes. The training
dataset contains 5000 images for each of the 10 classes. The purpose of this analysis was
to determine the effectiveness of the implemented defences against the proposed attack
and to identify any vulnerabilities or limitations. The experimental evaluation aimed to
provide insights into the defences’ strengths and weaknesses under different conditions.
The experimental results of this analysis may guide the development of future defences
and enhance the security of federated learning systems. We evaluated the methods of the
Median, Trimmed Mean, Krum, and Bulyan before the attack and afterwards. Before the
label-flipping attack, we observed that a very simple logistic regression model in this task
had significant accuracy, approaching 98%. In other words, it is a relatively tractable and
simple way to implement this task. This is illustrated in Figure 3a.

From above, we can see the same results as previously, but with the difference that,
now, 20% of the users in our system were malicious. We can see from the F1-score that
there was a significant decrease in accuracy, which can be catastrophic. In the end, we also
provide the F1-score for the case where 50% of the clients were malicious. In Figure 3b, we
can see that the Digit 5 class had a significant decrease even with 20% of the clients being
malicious. An important by-product of this attack is that the class to which we converted
Digit 5 (i.e., Class 2) also had a significant reduction in its F1-score. In Figure 4a, we can
observe that the convergence in the F1-score was not as good as in the simple FedAvg method,
which started from the third round, while the Median started from the fourth or even fifth
round. In Figure 4b, we can see that, even with a method as simple as the Median, we can
identify an increase in the F1-score that was immediate. Also, the convergence was similar.
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(a) F1-score for each digit before attacking. (b) F1-score for each digit after attacking.

Figure 3. Performance of the Global Model after each round of FL.

(a) F1-score for each digit before attacking. (b) F1-score for each digit after attacking.

Figure 4. Performance of the Median Model after each round of FL.

For the Trimmed Mean method, the results are shown in Figure 5a. Similar to the
previous method, convergence occurred later. The Trimmed Mean method (Figure 5b) was
observed to not perform as well, but this may be attributed to the fact that the customer
sample after trimming the edges was small. For the Krum method, the results are shown
in Figure 6a. Compared to the previous method, it appeared to have higher convergence.
However, after the attack (Figure 6b), it appeared that it lowered while maintaining higher
results than the Trimmed Mean method. For the Bulyan method, the results are shown
in Figure 7a. Here, the convergence was similar to the Trimmed Mean method, but lower
than the Krum model. However, the attack on the model (Figure 7b) appeared to have a
more-robust performance.

(a) F1-score for each digit before attacking. (b) F1-score for each digit after attacking.

Figure 5. Performance of the Trimmed Mean Model after each round of FL.
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(a) F1-score for each digit before attacking. (b) F1-score for each digit after attacking.

Figure 6. Performance of the Krum model after each round of FL.

(a) F1-score for each digit before attacking. (b) F1-score for each digit after attacking.

Figure 7. Performance of the Bulyan model after each round of FL.

Evaluation Metrics:

To rigorously assess the effectiveness of the Federated Adversarial Attack for Multi-
Task Learning (FAAMT) and the robustness of various federated learning defensive mecha-
nisms, we employed two pivotal metrics: accuracy and the F1-score. The accuracy metric
gauges the overall performance of the model by evaluating the ratio of correctly predicted
instances to the total instances and is defined as

Accuracy =
True Positives (TPs) + True Negatives (TNs)

Total Instances (P+N)
(31)

where TPs and TNs denote the number of true positive and true negative predictions,
respectively, and P and N represent the total actual positive and negative instances, re-
spectively. The F1-score, the harmonic mean of precision and recall, offers a balanced
perspective, especially pivotal when dealing with imbalanced datasets, and is expressed as:

F1-Score = 2× Precision× Recall
Precision + Recall

(32)

where
Precision =

TP
TP + False Positives (FP)

(33)

and
Recall =

TP
TP + False Negatives (FN)

(34)
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Utilising these metrics, the ensuing sections deliberate the comprehensive evaluation
of the FAAMT and the subjected defence mechanisms, shedding light on their respective
strengths and vulnerabilities amidst adversarial incursions.

The results for the proposed attack and defence mechanisms are shown in Table 4,
where we assess the accuracy and F1-score for the attack (FAAMT method), as well as the
defence mechanism behaviour. Lastly, we evaluated the performance of both the attack
and defence on 2 clients infected out of 10.

Table 4. Metrics assessing the performance of attack and defence mechanisms.

Method Attack (A) Defence (D) Affected Clients (D)

Accuracy F1-Score Accuracy F1 Score out of 10

Global Model 0.88 0.84 0.85 0.81 2
Median Model 0.86 0.82 0.87 0.83 2

Trimmed Mean Model 0.86 0.81 0.86 0.82 2
Krum 0.90 0.84 0.88 0.83 2

Bulyan 0.93 0.80 0.89 0.83 2

6. Discussion

The experimental analysis presented delved into the complex interactions between
various federated learning defence mechanisms and a sophisticated adversarial attack, the
FAAMT. The results from the high-performance computational environment underscored
the imperative of robust defences in the realm of IoT Big Data management. The exper-
iments revealed that even well-established defences, such as Krum and Bulyan, exhibit
vulnerabilities when confronted with the FAAMT, hinting at the subtleties in the defence
mechanisms that must be addressed. This observation is crucial, for it demonstrates that
the current landscape of federated learning is not impervious to novel attack strategies and
must continuously evolve.

Notably, the FAAMT elucidated a significant reduction in the F1-scores of the federated
learning models, which was particularly pronounced for certain classes within the CIFAR-
10 dataset. This degradation in performance suggests that, while current defences offer
a degree of resilience, they are not entirely foolproof against such calculated adversarial
intrusions. This is a stark reminder that the security of federated learning models remains a
moving target, requiring ongoing research and refinement to mitigate the risk of adversarial
exploitation.

The experimental evaluation also offered insights into the performance of various
defence strategies post-attack. Methods like the Median and Trimmed Mean, traditionally
considered less sophisticated than Krum or Bulyan, displayed a delayed convergence,
indicating a slower recovery from adversarial disturbances. This behaviour highlights the
need for a balance between the complexity of defence algorithms and their adaptability in
the face of adversarial manoeuvres. The nuanced decrease in the performance of the Krum
and Trimmed Mean Models post-attack further accentuates the need for dynamic defence
strategies capable of coping with the evolving nature of adversarial threats.

In contrast, the Bulyan method showcased a relatively more-robust performance under
adversarial conditions, suggesting that certain combinations of defence methodologies may
offer enhanced resilience. The experimental results suggested a promising direction for
future investigation: examining combined or multi-level defence strategies that could offer
stronger protection against adversarial attacks. The field of federated learning, especially
within the context of the IoT and Big Data, is, thus, poised at a crucial juncture where the
iterative process of developing and testing new defence strategies is not just beneficial, but
necessary to safeguard the integrity of decentralised learning models against increasingly
sophisticated adversarial tactics.
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7. Conclusions

In our investigation, we presented the Federated Adversarial Attack for Multi-Task
Learning (FAAMT) algorithm, which significantly exposed the susceptibilities of federated
multi-task learning frameworks to data poisoning. Our results provided clear evidence
that FAAMT can critically undermine the training process, leading to a noticeable deteri-
oration in model accuracy and performance. This highlights an urgent necessity for the
establishment of robust defence strategies within such systems.

As we look to the horizon of federated multi-task learning, it is imperative to address
the challenges presented by the FAAMT algorithm. The development and in-depth ex-
amination of defence strategies such as secure aggregation, robust outlier detection, and
the integration of differential privacy mechanisms are pivotal areas requiring immediate
attention. The future landscape should include extensive evaluations of these defences’
effectiveness against sophisticated data poisoning tactics with respect to multi-task learn-
ing environments.

The fine-tuning of FAAMT can lead to many potential enhancements. Its adaptabil-
ity could be tested against various data poisoning strategies to assess impacts on user
data confidentiality. Furthermore, its extension to other federated learning paradigms,
such as federated transfer learning, could provide significant insights. Investigating the
resilience of optimisation techniques like gradient clipping related to adversarial inter-
ventions in multi-task scenarios could yield beneficial strategies for maintaining system
integrity. Additionally, adversarial tactics that specifically target individual tasks or users,
while minimising disruption to other system components, could reveal specific system
vulnerabilities and build room for the enhancement of privacy-preserving measures.

In summary, this study highlighted a critical and immediate need to reinforce the
security and privacy protocols of federated multi-task learning systems. The safe and
effective application of these systems in practical settings demands the creation and imple-
mentation of robust defence mechanisms. Addressing these open challenges is essential to
advancing the adoption of federated multi-task learning, ensuring that it can be confidently
deployed to facilitate collaborative learning processes across heterogeneous devices, all
while maintaining a steady defence of user privacy in the interconnected ecosystems of the
IoT and Big Data.

7.1. Future Work

The prospect of combining Federated Learning (FL) and Automated Machine Learning
(AutoML) opens new opportunities for enhancing data privacy and optimising Big Data
management. The integration of FL with AutoML, as envisioned in the studies [88,89],
provides a robust foundation for the development of the Federated Adversarial Attack for
Multi-Task Learning (FAAMT) algorithm. This algorithm aims to address the complexities
of multi-task learning within a federated framework, where the goal is to enable the
collaborative training of models across multiple tasks while ensuring data privacy and
robustness against adversarial attacks. The FAAMT approach could leverage the privacy-
preserving nature of FL to protect data across distributed networks and the efficiency
of AutoML to optimise learning tasks, thereby ensuring that the integrity of multi-task
learning is maintained even in the presence of potential adversarial threats.

The integration of edge intelligence and edge caching mechanisms outlined in the first
study with the advanced hyperparameter optimisation techniques from the second study
provides the foundational elements necessary for the further development of FAAMT. The
algorithm could harness the computational power available at the network edge, alongside
sophisticated AutoML methods, to effectively manage the multi-faceted challenges of Big
Data in a federated context. This synergy promises to deliver not only more-personalised
and immediate data processing at the edge, but also a robust framework for multi-task
models that are inherently more resistant to adversarial attacks. In such a way, the FAAMT
algorithm has the potential to become a quintessential part of smart, decentralised networks,
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enabling them to remain resilient in the face of evolving cyber threats while making the
most of the vast datasets generated across IoT environments.

The development of the FAAMT algorithm points us in a new direction for research
that incorporates the protective features of federated learning with the dynamic fine-tuning
abilities of AutoML. By utilising both, future work can focus on improving this algorithm
to better manage the complex tasks of learning multiple things at once in environments
where there may be hostile attempts to disrupt learning. This will include creating better
methods to spot and stop such attacks in networks where data are shared across different
computers, making algorithms that can learn different tasks more effectively and efficiently,
and ensuring that the system can handle the unevenly distributed data that are often found
in everyday situations. Further studies can also investigate how to best spread out the
work of computing across the edges of the networks, making the most of local computing
for AutoML tasks and further protecting the privacy of data within the federated learning
setup. As the FAAMT algorithm improves even more, it could be used in many areas,
turning multi-task learning in networks where data are shared across many computers into
not just a possibility, but a strong method for keeping data private and safe in a world that
is more and more connected.
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