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Abstract: High effectiveness and high reliability are two fundamental concerns in data transmission.
Non-orthogonal multiple-access (NOMA) technology presents a promising solution for high-speed
data transmission, which has long been pursued by academia and industry. However, there is still a
significant road ahead for it to effectively support a wide range of applications. This paper provides
a comprehensive study, comparison, and classification of the current advanced NOMA schemes
from the perspectives of single-carrier (SC) systems, multicarrier (MC) systems, reconfigurable-
intelligent-surface (RIS)-assisted systems, and deep-learning (DL)-assisted systems. Specifically,
system implementation issues such as the transition from SC-NOMA to MC-NOMA, the relaxation
of distinct channel gains, the consideration of imperfect channel knowledge, and the mitigation of
error propagation/intra-group interference are involved. To begin with, we present an overview
of the state-of-the-art developments related to the advanced design of SC-NOMA. Subsequently, a
generalized MC-NOMA framework that provides the diversity–multiplexing gain by enhancing users’
signal-to-interference-plus-noise ratio (SINR) is proposed for better system performance. Moreover,
we delve into discussions on RIS-assisted NOMA systems, where the receiver’s SINR can be enhanced
by intelligently reconfiguring the reflected signal propagations. Finally, we analyze designs that
combine NOMA/RIS-NOMA with DL to achieve highly efficient data transmission. We also identify
key trends and future directions in deep-learning-based NOMA frameworks, providing valuable
insights for researchers in this field.

Keywords: non-orthogonal multiple-access (NOMA); single-carrier paradigm; multicarrier framework;
multiplexing and diversity; reconfigurable intelligent surface (RIS); deep learning (DL)

1. Introduction

The evolution of modern communications technologies, with the developments of
the last ten years, has changed from connecting people to providing connections for
people, things, the Earth, and even the universe. Therefore, enabling each device to enjoy
ubiquitous connectivity is the inevitable trend of future communications and networking.
The Fifth-Generation (5G) network, for example, opens the era that everything could be
connected, and this story line will be enriched and extended by its successors such as the
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Sixth-Generation (6G) or the Seventh-Generation (7G) network to realize the great vision of
“One as All, All as One” [1–3].

In fact, the networking construction of connecting everything is already in progress.
According to the report from Market Research Future, the machine-to-machine connections
market size was valued at USD 35.6 billion in 2022. The machine-to-machine connections
market industry is projected to grow from USD 37.5 billion in 2023 to USD 57.4 billion
in 2032, exhibiting a compound annual growth rate of 5.40% during the forecast period
(2023–2032). On the other hand, and coincidentally, Cisco’s predictions were similar to the
above prediction, in which it reported that about 14.7 billion machine-to-machine devices
would be deployed to support the Internet of Things (IoT) by the year 2023, and more than
78 billion devices are connected via cellular networks to access services. Furthermore, with
the explosive growth of devices/equipment intended for the IoT, it has been reported that
an average of 6–7 devices were carried per person by the year 2020, and the number of
devices connected per person will be about 20.5 billion by the year 2030. Besides, there
are millions of mobile users with an annual growth rate of around 25%, and the number is
expected to reach 80 billion by 2030 [4,5].

How to effectively support such a huge amount of IoT networking devices and meet their
explosive data traffic requirements are of great importance, yet represent challenging tasks [6].
Fortunately, this issue can be effectively addressed with the utilization of non-orthogonal
multiple-access (NOMA) techniques. NOMA surpasses the limitations of orthogonal multiple-
access (OMA) techniques and offers appealing advantages that are highly desirable in future
networks, including vehicular communication networks. These advantages include higher-
speed data exchange, improved reliability, denser connectivity, and reduced latency [7,8].
Therefore, one of the motivations of this paper was to summarize methods for suppressing
intra-group interference in NOMA. Additionally, studies on how to effectively relax the strin-
gent requirements on users’ channel qualities and reduce the computational complexity for
users’ symbol decoding to achieve performance gains in NOMA were thoroughly reviewed.
Specifically, NOMA provides a compelling solution to meet the evolving demands of modern
networks [9,10]. As a member of the family of multiple-access techniques, the idea of NOMA
dates far back in the past, with the first being introduced to wireless communications sys-
tems coming as early as 1972. After 2014, it suddenly gained momentum and became a hot
research topic in the field of multiple-access techniques, and one can see that the cumulative
results of yearly searches for publications using the acronym “NOMA” on the IEEE Xplore
Digital Library over the past decade include a sharp increase in conference papers and jour-
nal publications, as illustrated in Figure 1. Besides, it can integrate with other existing key
techniques, for example massive multiple-input multiple-output (massive MIMO) [11–17],
cooperative communication [18–21], millimeter wave (mmWave) [22,23], index modulation
(IM) [10,24–26], the reconfigurable intelligent surface (RIS) (also termed the intelligent reflect-
ing surface (IRS)) [27–34], artificial intelligence (AI) [35–42], edge computing [43,44], and
holographic technology [45], to strive for further improvement of system performance. With
the ubiquity and pervasiveness of IoT devices in our daily activities, in a word, NOMA is
currently attracting more and more attention from both academia and industry [46]. As shown
in Figure 1, one can see that there were just a handful of publications each year before 2014.
After that, the number of yearly publications has grown exponentially, reaching almost 500
publications in 2017. This exponential rate of increase continues, and the number of yearly
publications exceeded 1000 in 2019. However, the growth of yearly publications slowed in
2020 because of the outbreak of COVID-19. Although the rapid spread of COVID-19 has led
to a significant decrease in the publication of conference papers, NOMA remains a hot topic
of research. As shown in Figure 1, the publications in journals are still increasing rapidly.
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Figure 1. Cumulative results of yearly searches for publications using the acronym “NOMA” on the
IEEE Xplore Digital Library over the past decade including conference papers, journal publications,
and the total number of publications.

Among those publications, NOMA is mainly classified into two categories: power
domain NOMA and code domain NOMA [47]. In this article, we focused on the former,
and the term “NOMA” in the following denotes power domain NOMA. As is known
to all, NOMA has its inherent advantages in terms of spectral efficiency, but some of its
flaws, such as the single-resource-block-based design, the stringent requirements on users’
channel qualities, the requirement of channel state information (CSI) at the transmitter, and
the possible error propagation caused by performing successive interference cancellation
(SIC), should be ameliorated or avoided. To this end, recent efforts to solve these flaws
and the related research progresses are highlighted to provide some new insights into the
potential future directions for researchers in this field [10,18,48–53]. In particular, unlike
the existing single-resource-block-based NOMA structure, some novel multicarrier-based
NOMA frameworks that combine transmit diversity and data multiplexing have been
developed to achieve both high capacity and high reliability. The design principles and
key features of such a framework are well discussed [50,51]. Besides, since deep learning
approaches are powerful tools to provide solutions for networks where their system models
are complex and difficult to describe with tractable mathematical expressions, the designs
that join NOMA and deep learning are then discussed to seek high-performance data
transmission for large-scale heterogeneous networks with low-cost signal processing [39–41].
In addition, some key challenges and future directions of the deep-learning-powered NOMA
frameworks are also identified. Finally, the conclusions of this article are given.

2. Features of the Single-Resource-Block-Based NOMA Paradigm and Its Improvements

The current NOMA architecture is mainly a single-resource-block-based operation
unit, in which its data exchange processes are performed on the same radio resources, and
it was first conceived of to serve multiple user devices for the scenarios where their channel
qualities are distinct. To be more specific, all users’ intended symbols are multiplexed on
the same single resource block at the transmitter side by utilizing superposition coding
(SC), and then, each user demultiplexes its requested data at the receiver side via SIC. In
practice, the SIC decoding order is naturally formed according to the difference in the users’
channel conditions [46].
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Single-resource-block-based structure design: For NOMA, the usage of SC to serve
multiple users with the same radio resources enhances the system sum rate and user
fairness well, but the intra-group interference, an inherent flaw caused by the scheduled
near users, is inevitable and, thus, degrades the system reliability [10]. For example, the
outage performance—a metric characterizing the reliability of systems—will be affected.
Without loss of generality, assuming an N users scheduled case and for the i-th user
Ui, the outage performance is determined by the condition αi

α̃i
≥ γth

i , where αi denotes
the power allocation factor assigned for Ui’s decoding symbol si, α̃i = ∑l αl represents
the sum of the power allocation factors assigned for the other users who are treated as
interference for decoding si with l ∈ {1, · · · , i− 1} or l ∈ {i + 1, · · · , N}, and γth

i is the
fixed threshold of the signal-to-interference-plus-noise ratio (SINR) (The threshold value
γth

i can be deduced from the predefined targeted rate, and the inherent flaw associated
with the single-carrier NOMA paradigm can be solved by enhancing the received SINR
through diversity-achieving transmission schemes.) for the SIC detector of Ui to decode
its intended symbol si and other relevant symbols that must be first decoded. Noting that
Ui itself is the nearest user since SIC is applied, its intended symbol si can be acquired
usually after its relatively far users’ symbols have been decoded. Due to the existence
of inter-user interference, the degeneration of users’ outage performance finally becomes
more severe for cases where more than two users are co-scheduled to perform NOMA on
this single-resource-block-based structure.

To avoid this issue, it is usually assumed that the SIC processor of Ui can adjust
its detection capability according to the current decoded symbol sj with j ∈ {i, · · · , N}
or j ∈ {1, · · · , i}, and γth

i is written as γth
ij for consistency. Here, γth

j or γth
ij denotes the

dynamic predefined threshold of the SINR for decoding symbol sj at the processor of Ui.
Typically, the threshold set for the far user is less than that of the near user considering
that the far user suffers interference from the near one. In this sense, users’ quality of
service (QoS) requirements are taken into account. Therefore, the SIC processor’s detection
capability will be strengthened when decoding the far user’s symbol and weakened while
decoding the near one’s data. For example, γth

ij set for decoding the far user’s data is far
less than that of the near user’s for the same SIC processing at Ui, as shown in [46]. Frankly,
the detection capability of the SIC processor can be dynamically switched at the same
user device, which sounds amazing, but may be impractical in the industrial context. The
reason is that, for the processor of the near user, it requires decoding the symbols both
of the far user and the near user itself. In this sense, the near user would not weaken
the processing power when decoding its intended data in a practical application. On the
contrary, it will take steps to strengthen the processing power to be comparable to that
of the decoding of the far user’s intended data, and thus, the predefined thresholds set
for both the near and far users are similar. Finally, the phenomenon of the SIC decoder’s
detection capability being strengthened when decoding the far user’s data and weakened
when decoding the near user’s data would not appear. Therefore, it is reasonable to assume
that the processing capabilities for decoding the far and near users’ intended data are
equivalent for the processor in general, but such an assumption has rarely been considered
in the existing single-resource-block-based NOMA structure.

Cognitive radio networking, a concept first introduced by Joseph Mitola [54], is
another paradigm utilizing the QoS to improve system spectral efficiency, and from the
viewpoint of cognitive radio technology, a user’s device can be further classified as either a
primary user device type or a secondary user device type. The IoT devices, for example,
which are usually deployed in a massive machine-type communications system, wearable
healthcare system, or autonomous unmanned system with the rigorous requirements of
a low data rate, low latency, and high reliability, are usually treated as the primary user
devices [55] and, thus, show a higher priority than their secondary counterparts. In the
existing NOMA-based studies, for instance, the cell-edge user itself is equivalently viewed
as the primary user, and its cell-center counterpart is, thus, regarded as the secondary
user [10]. By introducing the aforementioned concepts, it is reasonable to assume that the
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signal-detection capability of the primary user is more powerful than that of the secondary
user, and thus, the primary user can be satisfied to decode its intended data for cases where
strong interference is presented. But, one should bear in mind that the data rate required
by the primary user is still low. A detailed analysis was presented in [48], where a novel
user-scheduling strategy for which the decoding order can be dynamically adapted based
on the users’ CSI and QoS was established to realize NOMA transmission without outage
probability error floors for the uplink communication scenario, thus achieving the goal of
reliability improvement.

Besides, the Alamouti scheme is considered the most-efficient solution for the MISO
broadcast channel. It not only has very low signaling and computational overhead for
IoT devices, but also achieves an optimal balance between diversity and multiplexing.
The authors in [56] were the first to attempt integrating the Alamouti encoding method
with NOMA. This integration aimed to provide transmit diversity for cooperative com-
munications systems and improve the received SINR. After that, there have been many
studies on combining the Alamouti encoding method and NOMA to further enhance the
reliability of data transmission in wireless communications systems [57–60]. Similar to
the conventional Alamouti scheme, two time slots are needed for the Alamouti-NOMA

scheme to transmit two superposition symbols
{

sl
SC

∣∣∣2
l=1

}
to the user terminal. Specifically,

the first transmitting antenna broadcasts s1
SC in the first time slot and −s2

SC
∗ in the second

time slot, while the second transmitting antenna sends s2
SC and s1

SC
∗ during the first and

the second time slots, respectively, with (·)∗ denoting the conjugate operation.
However, the approach proposed in [48] is a partial-user-based scheduling scheme,

in which only two users are selected to perform NOMA, and thus, the system spectral
efficiency and massive connectivity cannot be fully exploited in practice. On the other
hand, in the single-carrier NOMA structure, while far users may aim to improve their
diversity order to compensate for the poor channel quality, near users may instead seek
a higher multiplexing gain due to their favorable channel conditions. Such requirements,
however, were not discussed in [56–60], which leads to the waste of the degrees of freedom
and suggests that simply combining NOMA with the Alamouti encoding method may
not be the optimal solution for improving system performance. To address these issues,
multicarrier-based operation units were proposed to either boost the capacity by enjoying
the multiplexing gain or improve the reliability by enjoying the diversity gain [10]. But,
it is challenging for the single-cell edge user to pair with multiple near users to perform
NOMA [61].

Stringent requirement on users’ channel qualities: The superiority of NOMA over
OMA is based on the prerequisite that users’ channel qualities are distinct enough [11]. In
other words, once the users’ channel qualities are similar to each other, the advantages
brought by performing NOMA will no longer exist compared with OMA. On the contrary,
this will directly result in a higher system complexity when employing NOMA for those
cases. Actually, the channel qualities of the scheduled users in the same resource block are
sufficiently distinct, so it has difficulty satisfying these from the perspective of the network
topology. Typically, users’ distributions along the vertical direction will display varying
channel conditions, namely they are located at different equal channel quality zones, and
that means the network topologies with distinct channel gain are satisfied; conversely, users’
distributions along the circumferential direction will display constant channel conditions,
namely they are located at the same equal channel quality zone, and that means the network
topologies with equal channel gain are satisfied. Therefore, there are four basic network
topologies for the three-node co-scheduled case according to their locations (It has been
reported that the optimal scheduling strategy is one in which only two or three nodes are
co-scheduled in each resource block [62], and the three-node scheduling case was taken as
a demonstrative example in this article.), that is all nodes’ channel qualities are distinct, all
nodes’ channel qualities are similar, two nodes’ channel qualities are similar and theirs are
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better than that of the other one, and two nodes’ channel qualities are similar and theirs are
worse than that of the other one, as shown in Figure 2.

N1

N3

N3

N3

N3

Distributions 

in the vertical 

direction

(a)

(b)

(c)

(d)

Borderlines

of different 

equal

channel

quality 

zones

Distributions in the 

circumferential 

direction

Figure 2. Basic network topologies with three co-scheduled nodes (N1 , N2, and N3) in a concentric
model: (a) all nodes’ channel qualities are distinct; (b) two nodes’ channel qualities are similar and
theirs are better than that of the other one; (c) two nodes’ channel qualities are similar and theirs are
worse than that of the other one; (d) all nodes’ channel qualities are similar. The annular band along
the direction of the arrow indicates that users have similar channel conditions.

As mentioned above, for the scenario where all nodes fall into equal channel qualities
zones, as shown in Figure 2d, it is better to adopt OMA rather than NOMA or their hybrid
to yield a reasonable performance gain. Therefore, this network topology is not discussed
in this article for consistency. On the other hand, as is known to all, NOMA can yield
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a reasonable performance gain over OMA under the condition that all scheduled users’
channel qualities are distinct. Therefore, only the network topology in which the total users’
locations fall into the vertical distributions is considered to perform NOMA, as illustrated
in Figure 2a. Therefore, one will naturally ask how the pure NOMA structure (namely, the
single-carrier framework) can relax or break this stringent channel quality requirement
imposed on the scheduled users and perform effectively in those scenarios where some of
their channel qualities are similar (For those scenarios where some users’ channel qualities
are not sufficiently distinct, it has been pointed out that the use of pure NOMA shows a
better performance than pure OMA or their hybrid scheme [10]), as shown in Figure 2b,c.

Several attempts have been made in the literature to address this issue. For example,
a bandwidth-division-based two-user pairing networking topology was first proposed
to handle the case in which two far users with equal channel qualities are co-scheduled
with a near user to perform NOMA [49]. Besides, the authors of [10] proposed a flexible
bandwidth-division-based NOMA operation structure to improve the near users’ reliability
for those cases in which near users have identical channel qualities. To be more specific,
the proposed NOMA operation structure was constructed by multiple virtual near–far
user pairs, in which the far users are paired with each near user to perform NOMA at
each sub-band. It was reported that the proposed pure NOMA greatly improves user
fairness and the system’s decoding complexity compared with the pure OMA or their
hybrid scheme.

Perfect channel knowledge is needed: Different from OMA, for NOMA, the trans-
mitter needs to know the perfect CSI to, on the one hand, select proper users/devices/
equipment for grouping, clustering, or pairing scheduling such as the matching-theoretical
algorithm or graph-theoretical approach and, on the other hand, develop an appropriate
power budget scheme to perform SC for the scheduled users, and such a process carries the
message of decoding, which will be passed to the receiver to form a specific SIC decoding
order. Therefore, most of the existing works have assumed that the perfect CSI could be
available at the transmitter. In reality, however, due to heavy feedback overhead, as well
as harsh feedback delay constraints, it is a challenging task to obtain a perfect CSI at the
transmitting side, especially for cases where massive MIMO and NOMA are applied jointly
to strive for further performance improvement. To overcome this problem, it has been
reported that, on the one hand, for cases where users have mobility, a class of low-feedback
schemes has been developed. For example, a one-bit feedback-based users’ channel quality
order design has been proposed and compared with the order design with perfect channel
knowledge; there was no performance loss for this low-feedback design scheme [51]. On
the other hand, for cases where users have low mobility or a fixed location, it is a good
choice to use the statistical CSI to form both SC and the decoding order at the transmitter
and receiver, respectively, and a superior performance was clearly presented in [18].

Possible error propagation caused by employing SIC: Theoretically, the usage of SC
at the transmitter enhances the system sum rate, user fairness, and scheduling flexibility,
and the inter-user interference created by deploying SC can be eliminated by employing
SIC at the receiver. This is the widely used structure design in NOMA for the spectral
efficiency improvement [48,49,53]. However, a possible intrinsic weakness termed as error
propagation could be introduced by the use of SIC, and this is an issue that needs to be
taken seriously and well addressed [32]. The solution first conceived of by researchers is
to assign more power budget to the far users, whose intended symbols usually need to
be decoded first and many times [46]. Unfortunately, this approach will cause damage to
system performance, especially for the cases where a large number of users are scheduled.
Therefore, the authors in [48] proposed a reliable transmission scheme to remove the error
floors caused by the error propagation, where the SIC decoding order can be dynamically
adapted based on the users’ CSI and QoS. Moreover, different from the above solutions
proposed for the single-carrier-based NOMA systems, the generalized multicarrier frame-
work [10,51] and the RIS-assisted structure, designed to enhance users’ SINR to eliminate
the error propagation [29,63], will be discussed in Sections 3 and 4 in detail, respectively.
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On the other hand, users’ information sources (ISs) in the aforementioned works were
usually assumed to be independent. In fact, there are four different cases according to the
correlation of the ISs in the multiple-access channel, including the other cases where users’
ISs are correlated [53], as shown in Table 1. Therefore, for the cases where the users’ ISs
are correlated, the SIC technique would still be needed; in other words: Would the SIC
technique would still be the best performance booster? The answer is no, and this fact was
revealed in [53]. To be more specific, for cases where the correlation of users’ ISs is greater
than 0.8, the author in [53] pointed out that there is no capacity loss with the proposed
non-SIC NOMA scheme. The non-SIC NOMA scheme here denotes that the near user
can directly decode its intended data by treating the far user’s data as noise, thus greatly
reducing its decoding complexity compared to the existing SIC-based NOMA scheme and
totally eliminating the error propagation problem [10,18,47–49,52].

Table 1. The correlation of information sources for a two-user case.

Relationship of Users’ Coded ISs (CISs)

Independent Correlated

Relationship of Users’
Original ISs (OISs)

Independent ρOISs
i,j = 0, ρCISs

i,j = 0 ρOISs
i,j = 0, ρCISs

i,j 6= 0

Correlated ρOISs
i,j 6= 0, ρCISs

i,j = 0 ρOISs
i,j 6= 0, ρCISs

i,j 6= 0

3. Evolutions towards the Generalized Multiple-Resource-Block-Based
NOMA Frameworks

It is a common myth that the use of SIC is what will lead to the problem of error
propagation in NOMA. In fact, such a belief is exactly incorrect, and from the perspective
of information theory, this problem can be addressed by using a multicarrier-based NOMA
design to improve the transmitted data’s SINR. The concept of a multicarrier-based NOMA
design was first proposed by the authors in [10,50] to handle the cases where users’ channel
qualities (the far users’ and the near users’) are similar or not distinct enough, as illustrated
in Figure 2b,c. The core idea behind these solutions is that the single-resource block (this
usually means the frequency band resource) is divided into multiple sub-blocks/sub-bands
and all users are accommodated in each sub-block/sub-band to perform NOMA [51,64].
Moreover, only far users employ repetition-based transmission across all sub-bands to
acquire diversity gain by performing maximum ratio combining (MRC) at the receiver.
Finally, a combination of MRC and SIC is integrated in each sub-block/sub-band to take
advantage of the parallel processing for data decoding. The key difference between the
works [10,50] is that the former focuses on improving the reliability of data transmission
via enhancing the diversity gain, while the latter aims at boosting the achievable capacity
by harvesting the multiplexing gain. For those network topologies in which users’ channel
qualities are distinct, on the other hand, as shown in Figure 3a, a multicarrier-based NOMA
networking design, which can improve the cell-edge users’ SINR significantly, is proposed
to tackle problems caused by SIC, as described in [51]. Unlike the works [10,50], the scheme
presented in [51] is a simple and subtle design, in which the diversity–multiplexing gain
can be harvested for NOMA to achieve both the high performance of ultra-reliability and
high-capacity. More specifically, repetition-based coding is employed for the far users at the
transmitter, and the maximum ratio combination (MRC) is integrated with SIC to jointly
decode their intended symbols at the receiver. By doing so, on the one hand, NOMA’s
merit is that the spectral efficiency dominated by near users has not been weakened; on the
other hand, NOMA’s drawback is that the reliability limited by the far users can be broken.
However, the correlation between the repetition-based coding implementation and the
frequency band resource scheduling has not been well discussed, which is a fundamental
tradeoff related to diversity–multiplexing that one should be concerned about in the above
multicarrier NOMA design.
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Figure 3. Baseband model of the MRC-enabled multicarrier NOMA communications system: (a) de-
tails of the inputs of users’ source data; (b) processes of the data’s transformation from serial to
parallel, mapping, and encoding; (c) specifications of the MRC operation groups.

To provide inspiration and guidance for readers on how to understand this tradeoff,
in this section, we elaborate on a more-generalized MRC-enabled multicarrier NOMA
framework, as shown in Figure 3, in which N subcarriers with N = KM are shared by
users with G far ones and Q near ones. K and M here denote that the N subcarriers
are divided into K groups and each group has M subcarriers, and k ∈ {1, · · · , K} and
m ∈ {1, · · · , M} denote the subcarriers in the k-th group and the m-th subcarrier in the
k-th group, respectively. Here, the repeated transmission is applied to the far users for

data exchange, and their required dataset,
{

d〈k−1〉
Fg

∣∣∣G
g=1

}
, will be transmitted repeatedly in

every M subcarrier of the k-th group to harvest the diversity gain with the MRC-operation-
group-based receiver, as shown in Figure 3c; thus, only K data will be sent in each time
slot. Note that the letters d and F denote the data required by the far users, and g and
〈k− 1〉 denote the g-th far user’s required data d〈k−1〉

Fg
transmitted in each of the subcarriers
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of the k-th group, with g ∈ {1, · · · , G} and k − 1 =
⌊
(k=1)M+m=1

M

⌋
. On the other hand,

none of the near users apply the repeated transmission scheme, and their required data
will be transmitted in each subcarrier; for example, the transmitted dataset in the m-th

subcarriers of the k-th group is
{

d(k−1)M+m−1
Nq

∣∣∣Q
q=1

}
, and thus, there are KM different

data that are finally sent in each time slot. Similarly, the letters d and N denote the data
required by the near users, and q and (k− 1)M + m− 1 denote the q-th near user’s required
data d(k−1)M+m−1

Nq
transmitted in the ((k− 1)M + m)-th subcarrier of the k-th group, with

q ∈ {1, · · · , Q}. Finally, the symbol s(k−1)M+m−1
SC transmitted in the m-th subcarrier of the

k-th group is shown in Figure 3, encircled by an oval-shaped mark, and its specific form is
formulated in the corresponding part in an enlarged manner, with α

〈k−1〉
Fi

and α
(k−1)M+m−1
Nj

denoting the power allocation factor of the i-th far user in the k-th group and the power
allocation factor of the j-th near user in the (k− 1)M + m-th subcarrier of the k-th group,
respectively.

By varying parameters G, Q, K, and M, the proposed NOMA-based generalized
multicarrier framework can usually be degraded as the existing NOMA structures. For ex-
ample, it is degraded as the classic two-user pairing single-carrier NOMA system [46] with
KM = 1 or it is degraded as the existing multicarrier frameworks such as the conventional
OFDM-based NOMA system [19,20] and the multiple-pairwise-based NOMA system [10]
when M = K = 1, respectively. Besides, letting G = 2, Q = 1, K = 2, and M = 1 and with
the assumptions that the near user can enjoy both subcarriers and the two far users have
the same channel gains, the proposed framework can further be degraded as the system
presented in [50]. The results are summarized in Table 2, where the diversity-multiplexing
gain is fully characterized by K or M. Specifically, increasing K (meaning that a decrease in
M) results in higher multiplexing gain for the near users and lower diversity gain for the
far users, and vice versa [51]. To demonstrate the superiority of the multicarrier NOMA
scheme, finally, the performance comparison is presented in Figure 4, highlighting its
advantages over other schemes such as the OMA scheme and the single-carrier NOMA
scheme over Rayleigh flat-fading channels (The formulas that allow us to obtain the results
of the sum rate and the outage probability were given and proven by the authors in [51].
For simplicity, they are omitted here).We use the terms SC-NOMA and MC-NOMA to
denote the single-carrier NOMA scheme and the multicarrier NOMA scheme, respectively.
Their comparison results are shown in Figure 4, in which the simulation parameters are
set as: G = 1, Q = 2, K = 1, M = 2, the channel variances of U1, U2, and U3 are σ2

1 = 10,
σ2

2 = 6, and σ2
3 = 2, respectively, the targeted rate for each user is Rth

i = 1.5 bps/Hz, and
the total bandwidth is B = 1. Besides, the power allocation factors assigned for U1, U2, and
U3 with NOMA are α1 = 0.6, α2 = 0.3, and α3 = 0.1, respectively, while the ones assigned
for users with OMA is equal. Since the average sum rate decreases as M increases, one
can see that the average sum rates of MC-NOMA are worse than those of SC-NOMA. But,
fortunately, the loss for MC-NOMA is negligible since its sum rate is mainly determined by
the near user, whose performance is not affected by changes in M. Besides, the average
sum rates of MC-NOMA are greatly superior to those of OMA in the whole SNR region. On
the other hand, due to the diversity gain that is able to be achieved, the outage probability
of MC-NOMA is superior to that of SC-NOMA, especially for those cases where the users’
rate thresholds are relatively high, as shown in Figure 4b.
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Table 2. The proposed generalized multicarrier framework is degraded in the existing NOMA
schemes with varying parameters.

Conditions
Existing Works

Parameter Setting Channel Setting

G = 1, Q = 1, KM = 1 Channel qualities are distinct [46,48]

M = 1 Channel qualities are distinct [39,40]

K = 1 Near users’ channel qualities are distinct [10]

G = 2, Q = 1, K = 2, M = 1 Far users’ channel qualities are distinct [50]
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Figure 4. Performance comparisons among the OMA scheme, the single-carrier NOMA scheme, and
the multicarrier NOMA scheme with three users scheduled: (a) ergodic sum rates versus the transmit
signal-to-noise ratio (SNR); (b) outage probability versus the transmit SNR.

4. Developments towards RIS-Assisted NOMA Systems

Due to its strong capability of reconfiguring the reflected signal propagations intel-
ligently, the RIS has been viewed as a powerful solution to enhance the performance of
NOMA [27,28]. It has been pointed out that the RIS can offer additional channel paths to
create stronger combined channels with noticeable strength differences. Additionally, it can
artificially realign the combined channels of users to achieve NOMA gains for challenging
scenarios where the channel qualities of different users are similar [30].

According to the basic network topologies, the RIS-assisted NOMA systems, which
usually comprise a source node, BS, the intelligent reflective surface node, RIS, and multi-
user nodes, U, can be simply divided into four categories, namely the uplink/downlink
single-RIS union-assisted multi-user scenario, the uplink/downlink single-RIS partition-
assisted multi-user scenario, the uplink/downlink multi-RIS union-assisted multi-user
scenario, and the uplink/downlink multi-RIS partition-assisted multi-user scenario, as
shown in Figure 5a–d. Without loss of generality and for simplicity, the downlink single-
RIS-assisted NOMA network was taken as an example to analyze how to exploit interfer-
ence cancellation to enhance the SINR in this paper. We, more specifically, considered a
downlink single-RIS-assisted NOMA network, in which N multiple users

{
Un|Nn=1

}
are

served by a single BS and an RIS consisting of V elements, as shown in Figure 5a,b. Let
f ∈ CV×1 with fT = [h1, · · · , hv, · · · , hV ], gn ∈ CV×1 with gn

T = [h1,n, · · · , hv,n, · · · , hV,n],
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and hn denote the channel coefficients of the BS-to-RIS, RIS-to-Un, and BS-to-Un, respec-
tively. Besides, letting Θ ∈ V×V denotes that, for the RIS’s diagonal phase shift ma-
trix with θv ∈ [0, 2π) denoting the phase shift of the v-th reflecting element, we have
Θ = diag

{
ejθ1 , · · · , ejθv , · · · , ejθV

}
. For the cases without the assistance of the RIS, we

further assumed that the end-to-end channel gains
{
|hn|2

∣∣∣N
n=1

}
have a fixed user order

for each channel realization. Without loss of generality, this fixed user order was assumed to
be
〈

πw/o : |h1|2 ≤ · · · ≤ |hn|2 ≤ · · · ≤ |hN |2
〉

, and the SINR of Un to decode its intended

symbol in that case can be formulated as SINRn
w/o =

ρ|hn |2αn

ρ|hn |2 ∑N
i=n+1 αi+1

with ρ denoting the

SNR [46,50].
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Figure 5. Network topologies of RIS-assisted NOMA systems with channels ordered: (a) up-
link/downlink single-RIS union-assisted multi-user scenario; (b) uplink/downlink single-RIS
partition-assisted multi-user scenario; (c) uplink/downlink multi-RIS union-assisted multi-user
scenario; (d) uplink/downlink multi-RIS partition-assisted multi-user scenario. The solid line de-
notes the information link, and the dashed line denotes the residual interference.

The downlink RIS union-assisted multi-user system: All the reflecting elements adjust
their phase shifts with a unified control/processing strategy, termed as the RIS union-
assisted design. In this case, Un’s equivalent end-to-end channel coefficients, denoted by
h̃n, can be formulated as h̃n = hn + gn

TΘf. This means that, by intelligently tuning Θ,
RIS-assisted NOMA can effectively enhance the system design by introducing more degrees
of freedom (DoFs). In simpler terms, this technology can not only create a considerable dis-
parity in the channel gains experienced by different users, but also allow the customization
of their effective channel gains to meet their QoS requirements [27]. More specifically, by
adjusting the phase shift of the reflecting element with unified control/processing in Θ, for
example, the optimal user order πw may be any one of all the V! different user orders with〈

πw :
∣∣h̃N

∣∣2 ≤ · · · ≤ ∣∣h̃n
∣∣2 ≤ · · · ≤ ∣∣h̃1

∣∣2〉, which is totally different from the fixed order
πw/o given in the NOMA networks without the assistance of the RIS. From this perspective,
we can effectively reduce the computational complexity of successive interference cancella-
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tion (SIC) by flexibly adjusting users’ decoding order based on the actual needs. On the
other hand, by adjusting the phase shift values in Θ to make the direct signal (originated
from the BS-to-Un link) and the reflected signal (originated from the BS-to-RIS-to-Un link)
have the same phases at receiver Un, we will have that

∣∣hn + gn
TΘf

∣∣2 ≥ |hn|2 holds. The

SINR of Un, denoted by SINRn
w =

ρ|hn+gn
TΘf|2αn

ρ|hn+gnTΘf|2 ∑N
i=n+1 αi+1

, will be improved significantly

compared with SINRn
w/o. Finally, the capacity, reliability, and error propagation of the

RIS-assisted NOMA system will be significantly enhanced.
The downlink RIS partition-assisted multi-user system: The reflecting elements’ phase-

adjusting strategy with the divide and rule strategy is more effective than that of the
unified control/processing in reality, especially for the cases where the locations of the
users are clustered in a distributed manner around the RIS or users are randomly located
in the vicinity of the RIS, and the superiorities were shown in [31,32]. This divide and
rule strategy is termed as the RIS partition-assisted design. In this case, all the V elements
are partitioned into N subsurfaces, and the n-th subsurface, denoted by Sn, consists of Vn
elements, as shown in Figure 5b. Therefore, when compared to the RIS union-assisted
design, the RIS partition-assisted design poses greater challenges in accurately adjusting
the phase shifts of each subsurface. This is because, in the partition-assisted design, all
subsurfaces’ phase adjustments must be coordinated with each other to achieve optimal
interference reduction. As a result, this may lead to significant computational overhead for
each channel realization.

5. DL-Enabled NOMA Frameworks

In general, conventional data-processing methods in communications systems are
usually built on tractable mathematical models, in which the ideal hypotheses, for example
linear, stationary, and so on, are assumed. However, most of the practical systems are
non-linear and/or time varying, and thus, they cannot be fully captured by such algorithms.
The reasons why the conventional data-processing methods could not be the optimal choice
for communications systems are typically twofold: the first is the current modular systems’
design, whose signal-processing blocks such as the coding, modulation, and equalization
only carry out their individual tasks, making it difficult for them to find the optimal
solution, and second is that there is not always an effective treatment for those complex
systems such as large-scale heterogeneous wireless networks, which limits their practical
implementation.

On the other hand, AI or, more precisely, DL is a powerful tool to provide better perfor-
mance for communications systems, especially for the RIS-assisted NOMA networks, where
the system models are complex and difficult to describe with tractable phase adjusting and
wireless resource management [33,36]. In other words, the powerful information-processing
capabilities are the most-attractive advantage of DL [37], which makes it effectively handle
the problems related to communications systems that cannot be solved mathematically.
Therefore, DL for wireless communications is a hot spot in current research, and it has been
widely applied to assist the design of communications systems, including aspects of the
system modeling such as channel estimation/equalization, high-performance beamform-
ing construction, constellation/codebook design, signal/symbol processing, multi-user
detection, and so on, as well as the resource management, such as spectrum resource alloca-
tion, energy resource control, cloud resource optimization, opportunistic user scheduling,
computing resource on- and off-loading, and so on.

In general, DL-enabled frameworks can be categorized into two major groups, that
is data-driven and model-driven architectures (The pseudo-code and equations of the
considered deep learning algorithm are the same as those of the existing approaches
whose pseudo-code and equations have been well formulated. Therefore, for the sake of
simplicity, we omitted the pseudo-code and equations here).A data-driven architecture
shows less effort for system construction, but more effort for training data to make the
system stabilize and converge. Conversely, a model-driven architecture can relieve the load
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on the training data to promote learning efficiency with the domain knowledge (also termed
as prior information) of the system; but, accurate domain knowledge is usually difficult
to obtain in a real environment. Fortunately, such knowledge has been fully explored
and exploited over several decades for wireless communications systems. In a word, by
integrating NOMA and the deep learning approach, there will be a significant performance
improvement on the above-mentioned tasks. In the next section, the deep-learning-enabled
NOMA frameworks are discussed in detail.

5.1. Deep Learning for System Modeling

The model-driven architecture, as one of the typical paradigms of deep learning, is a
powerful tool for optimization in physical layer communications. Unlike the conventional
optimization methods, deep-learning-based data processing can be flexibly operated in
either a point-to-point (local) or an end-to-end (global) manner to find the optimal solution
for system modeling. In a local optimization case, for example, an optimal receiver is
designed for symbol detection with the assistance of a model-driven architecture [39], as
illustrated in Figure 6a (the baseband transceiver design of [39] is not shown in Figure 6a
because it has the same structure as that presented in Figure 3 with M = 1), in which
the functions of channel estimation/equalization and symbol demodulation are fulfilled
simultaneously. More specifically, L users’ intended data are scheduled in each OFDM
subcarrier to perform NOMA, and the quadrature phase-shift keying (QPSK) modulation
is chosen to map their intended bits to symbols at the transmitter. At the receiver, the
received signal will be first demodulated and, then, input into the mentioned deep-learning-
enabled data-processing unit—a structure with seven layers, namely the reshape layer,
convolutional layer, batch normalization layer, Relu activation function layer, flatten layer,
long short-term memory (LSTM) layer, and fully connected (FC) layer with the softmax
activation function, as shown in Figure 6a.
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Figure 6. Illustrations of the deep-learning-enabled frameworks for NOMA: (a) a local optimization
case with the assistance of a model-driven architecture; (b) a global optimization case with the
assistance of a data-driven architecture.



Electronics 2023, 12, 4577 15 of 19

The key difference between the conventional method and the deep learning approach
is that the deep learning design is proposed to simultaneously fulfil the functions of channel
estimation, equalization, and demodulation, which brings a gain coming from such a whole-
system optimization perspective—something not possible for traditional methods. Besides,
compared with the conventional methods, the gain achieved by the deep learning approach
is higher in general, especially for the cases where the number of usersis small and the near
user’s intended symbol is decoded after the far user’s one. For example, the gaps of the
far and near users between the conventional MMSE-SIC detection algorithm and the deep
learning approach at a symbol error rate (SER) value of 10−2 can be up to 1 dB and 5 dB [39],
respectively. Furthermore, the deep learning approach has less computational complexity
as compared with the conventional data-processing methods such as the above-mentioned
MMSE-SIC detection algorithm, in which the intensive computational requirement for the
matrix inversion operation is usually inevitable.

Typically, the model-driven architecture is suitable for the optimization of the local
system, while the data-driven architecture is used to construct a global system. The authors
in [41] proposed a pure data-driven architecture, termed as the fully connected deep neural
network (FC-DNN), to find the global optimal solution to improve the reliability of a
grant-free NOMA network, as shown in Figure 6b. Compared with the existing NOMA
scheme, their results showed that there was about a 5 dB gain in the SER. More details can
be found in [41].

5.2. Deep Learning for Resource Management

Resource management, such as user scheduling, channel assignment, and/or power
allocation, is a key issue that should be taken into account in performing NOMA. However,
the traditional resource-management methods have considerable complexity, especially for
large-scale heterogeneous networks, where the optimum designs/solutions are not known
or not available, thus leading to practical limitations. The deep learning approach can play
an essential role in addressing the challenges of resource management in such networks.
The key advantage of such an approach is that the deep-learning-enabled framework,
as stated above, can flexibly carry out the design of optimizing performance in either a
local or a global manner, and moreover, it will not introduce any additional transmission
overhead or latency compared to the conventional methods. In [40], a deep-learning-aided
low-complexity real-time resource allocation algorithm, termed as PAUS, was proposed. In
this case, the resource management is performed in two stages, that is the power allocation
stage and the user scheduling stage. In the first stage, the power allocation is implemented
to optimize the system sum rate by using the interior point method (IPM)—a way of
processing data that can accelerate the convergence and calculation speed of the training
of deep neural networks; in the second stage, a dynamic networking algorithm is carried
out to perform the user scheduling globally, and thus, the system sum rate can be further
improved. It was shown that the achievable sum rate of the NOMA system can be improved
significantly by employing deep learning with the proposed PAUS algorithm.

5.3. Challenges and Future Directions

As discussed above, deep learning and NOMA comprise an effective means of trans-
mission to accomplish data exchange, and by doing so, the system spectral efficiency can
be improved significantly. However, this does not mean that deep-learning-based NOMA
structure designs can be completely transplanted to the 5G and beyond networks. As is
known to all, unified data networking and processing across large-scale heterogeneous
networks comprise the direction for the mainstream development of future communica-
tion networks. The devices/user equipment belonging to subnetwork systems such as
the IoT, wireless sensors, massive machine-type communications (mMTC), and vehicle-
to-everything (V2X) in the heterogeneous network usually have limited data-processing
capabilities, but at the same time, they have very high expectations for the need to build
high-reliability, low-complexity, and low-delay methods during signal processing. Al-
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though deep learning is an effective way to address the problems of network systems,
it needs tonnes of data and many attempts to succeed on very specific problems, and
furthermore, it has difficulty generalizing its knowledge to very different tasks compared
to those it has trained upon. For example, the knowledge learned with different encod-
ings/decodings may vary greatly. In this sense, this is a really tough task for devices
whose data-processing capabilities are limited, thus causing unacceptable complexity and
delay for systems. The ways to circumvent the problem are mainly threefold: algorithm
design, big data utilization, and computing power configuration. Therefore, on the one
hand, considering the variability of the dynamical topologies of heterogeneous networks,
deep-learning-enabled unified frameworks for NOMA should be primarily built to cut the
computational complexity and data processing delay from an end-to-end perspective [20];
on the other hand, new deep-learning-based data-processing algorithms, which can further
reduce the complexity and delay at the expense of marginal performance degradation from
a point-to-point perspective, need to be developed urgently. A specific example of using a
step-by-step resource management strategy to reduce the complexity of real-time resource
management was discussed in an earlier subsection [19]. It is highly expected that the
deep-learning-enabled frameworks for NOMA will be able to be carefully designed to meet
the demands of various application scenarios in the 5G and beyond networks.

6. Conclusions

In this article, recent efforts to remove the flaws of the single-resource-block-based
NOMA structure were fully revealed, and some significant research progresses have been
made in the aspects of the system design, near–far effect utilization, channel knowledge
management, and error propagation control. Besides, different from the conventional
single-carrier structure, a generalized multicarrier-based NOMA framework has been con-
ceived of and developed for achieving both high reliability and high spectral efficiency. In
such a framework, the design of encoding and decoding, the complexity of the hardware
implementation, and the flexibility of the system extension have been clearly stated. Fur-
thermore, RIS-assisted NOMA networks have been developed to improve the receivers’
SINR through the intelligent reconfiguration of the reflected signal propagations. The
system designs with RIS union assistance and RIS partition assistance were both discussed
in detail. Finally, the designs that combine NOMA/RIS-NOMA and deep learning to
accomplish high-efficiency data transmission at a low cost were comprehensively discussed
from both the local and global optimization perspectives. Finally, some key trends and
future directions for the design of the deep-learning-based NOMA frameworks were also
highlighted.
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