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Abstract: For underwater target exploration, multiple Autonomous Underwater Vehicles (AUVs)
have shown significant advantages over single AUVs. Aiming at Multi-AUV task allocation, which
is an important issue for collaborative work in underwater environments, this paper proposes a
Multi-AUV task allocation method based on the Differential Evolutionary Gray Wolf Optimization
(DE-GWO) algorithm. Firstly, the working process of the Multi-AUV system was analyzed, and the
allocation model and objective function were established. Then, we combined the advantages of
the strong global search capability of the Differential Evolutionary (DE) algorithm and the excellent
convergence performance of Gray Wolf Optimization (GWO) to solve the task assignment of the
Multi-AUV system. Finally, a reassignment mechanism was used to solve the problem of AUV
failures during the task’s execution. In the simulation comparison experiments, the DE-GWO, GWO,
DE, and Particle Swarm Optimization (PSO) algorithms were carried out for different AUV execution
capabilities, respectively.

Keywords: multiple Autonomous Underwater Vehicles (multiple AUVs); task allocation; Differential
Evolutionary Gray Wolf Optimization (DE-GWO) algorithm

1. Introduction

In the face of the complex and changing marine environment, manual exploration of
the ocean cannot be accomplished without substantial work and a high degree of danger.
AUVs have the characteristics of a wide exploration area, low cost, and high flexibility [1–3].
They can replace manual labor in this complex and dangerous environment, are intelligent
and autonomous, are safe, efficiently execute high-risk, long-cycle underwater operations,
and have become the key technical equipment for human exploration of the ocean [4,5].
So far, AUVs have had outstanding performance in civil and scientific research fields such
as marine data acquisition, undersea terrain exploration, and marine search and rescue,
as well as in military missions such as demining and minelaying, military support, and
intelligence reconnaissance [6,7].

With the continuous development of Multi-AUV technology, the complex marine
environment and variable mission requirements have posed new challenges to Multi-
AUV systems [8,9]. When the Multi-AUV system carries out cooperative operation task
planning, the problem of Multi-AUV task allocation should be solved firstly [10]. For
different operating environments and mission requirements, a reasonable task-allocation
algorithm can accurately analyze and process the complicated tasks, so that each AUV in
the Multi-AUV system can fully utilize its own resources to efficiently and safely complete
the underwater cooperative operation tasks, optimizing system performance [11–13].

Currently, the main task-allocation methods used in Multi-AUV systems are the swarm
intelligence optimization algorithm and the Self Organizing Map (SOM) algorithm and
market auction algorithm, among which the swarm intelligence optimization algorithm
shows better characteristics and is widely used in AUV task allocation [14,15].
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Market auction algorithms accomplish task allocation by emulating the auction process
of a market economy [16]. Lee et al. put forward a resource-based decentralized auction
algorithm that assigns tasks to the robot that can complete the task in the shortest amount of
time through reciprocal communication between the auctioneer and the robots. However,
this algorithm neglects the auctioneer’s interests [17]. Wang and colleagues addressed the
problem of Multi-AUV task allocation through the development of a distributed auction
algorithm incorporating the interests of the auctioneer and a task reward feedback mecha-
nism [18]. Although the auction algorithm above can improve task allocation, it necessitates
high real-time communication for the system [19]. Moreover, if there are multiple pending
tasks, the order of task releases impacts the overall completion efficiency [20]. For the
task-allocation problem among multiple AUVs, the computational complexity escalates as
the number of AUVs increases. In large-scale underwater task-allocation problems, market
auction algorithms may not provide efficient solutions within a reasonable time frame [21].

Dong and colleagues utilized a velocity synthesis algorithm and the SOM to address
task assignment for a Multi-AUV system in a 3D time-varying current environment. The
target point functioned as the input layer, while the output layer consisted of the position
of each AUV [22]. Then, Zhu et al. proposed an improved self-organizing algorithm
for grid confidence to solve the task-allocation problem for multiple AUV in an obstacle
environment [23]. Although the above methods have certain advantages in solving the task-
allocation problem, similar to the market auction algorithm, the release order of multiple
parallel tasks is a key factor that affects the overall effectiveness of the system [24]. For the
threshold method, Huizhen Yang et al. used a dynamic ant colony division of labor model
to solve the task-allocation problem for a heterogeneous Multi-AUV system [25]. However,
the constraints it considers are simpler and do not take into account the diversity of task
types. In addition, Cheng et al. added the effect of the ocean current environment to the
SOM network to make the task assignment closer to the real conditions [26]. However, the
SOM is not applicable to the task assignment of a Multi-AUV system because, after the SOM
training is completed, the map structure will remain unchanged unless it is retrained [27].
In dynamic real-world scenarios that necessitate adaptive, real-time decision-making, the
SOM may not be sufficiently flexible to promptly adjust to changes in the task demands,
potentially leading to sub-optimal or inefficient task performance [28].

Swarm intelligence algorithms represent a group of nature-inspired computational
methods that hold significant potential for AUV target search tasks. Among the most-
representative algorithms are the Gray Wolf Optimization (GWO), Differential Evolutionary
(DE), and Particle Swarm Optimization (PSO) algorithms. The wolf optimization algorithm
has the characteristics of a fast convergence speed and few parameters. GWO was proposed
by Mirjalili et al., scholars from Griffith University, Australia, in 2014 [29], which optimizes
the search by simulating the process of gray wolf’s predatory prey activities, and it is easy to
apply [30]. Singh et al. modeled a robot model using an integer-coded wolf pack algorithm,
but the proposed assumptions were more idealistic [31]. Cao et al. proposed the application
of GWO to the path planning of robots, which can enable robots to plan the optimal path
without collision [32]. To improve the accuracy of the gray wolf algorithm during the
search, Paul and Kaushik changed the linear convergence factor to nonlinear [33]. Hao
et al. also used nonlinear parameters to modulate the parameter α in order to achieve a
better balance between exploration and exploitation [34]. All of the above literature has
made nonlinear improvements to the convergence factor in the algorithm, but they have
not taken into account the lack of search diversity in the later stages of the GWO algorithm,
which easily falls into the local optimum [35].

The DE algorithm utilizes biological genetics and natural evolution mechanisms to op-
timize the search results. Its strength lies in its powerful ability to conduct global searches,
resulting in a widespread implementation in various fields. The DE algorithm has the
advantage of a strong global search capability and is suitable for parallel computation, but
the local search capability is limited [36,37]. Chen et al. verified the advantages of the DE
algorithm for solving complex problems in group work, offering the possibility of combin-
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ing it with the GWO algorithm [38]. Zheng and colleagues employed the DE algorithm to
enhance the GWO algorithm and circumvent the issue of local optimality. Currently, the
research on this algorithm is purely theoretical, with no practical applications [39].

As a result, the main contributions of this paper are as follows:

• We propose an architecture for a distributed Multi-AUV task-allocation system. The
process of Multi-AUV task allocation takes into account energy consumption, state
constraints, and capacity constraints, aiming to establish an appropriate objective
function and constraint conditions;

• To address the task allocation in the Multi-AUV system, we introduced the Differ-
ential Evolutionary Gray Wolf Optimization (DE-GWO) algorithm. While the GWO
algorithm exhibits issues with local optimization, the DE algorithm boasts a powerful
global search capability. By combining these two algorithms, we can effectively tackle
both local and global optimization challenges in the Multi-AUV task distribution;

• In order to overcome the issue of AUVs failing to execute their missions, our system
employs a reassignment strategy. Often, when an AUV breaks down, other algorithms
continue to assign tasks to the malfunctioning AUV, resulting in poor mission execu-
tion. The implementation of the re-allocation strategy serves as an effective solution
to address these failures and enhance the overall robustness of the system.

The rest of this paper is structured as follows. Section 2 describes the Multi-AUV task-
ing model, including the objective function and constraints. Sections 3 and 4 describe and
simulate the DE-GWO algorithm. Finally, Section 5 concludes on the result of the research.

2. Mathematical Model
2.1. Analysis of AUV Working Process

With more constraints on the Multi-AUV cooperative task problem, it is more de-
manding in terms of the level of Multi-AUV cooperation and problem-solving complexity.
Essentially, this is a combinatorial optimization problem with multiple constraints [40].
The objective of task allocation is to determine the optimal mapping from the task set
to the multiple AUVs, minimizing the cost of task completion while adhering to both
self-imposed and external constraints within the Multi-AUV system.

In this paper, Figure 1 illustrates the architecture of the distributed task-assignment
system for multiple AUVs, which takes into account practical constraints such as the energy
limitations and capacity constraints for each AUV.

Assuming that there are N AUVs and M tasks in the system, the set of AUVs is
as follows:

AUV = [AUV1, AUV2, AUV3, . . . , AUVN ] (1)

The capabilities of a single AUV are described as follows:

AUVi = [AUVState, AUVPosition, AUVAbility, AUVResource, AUVSpeed] (2)

In this equation, AUVState represents the current status of the AUV, indicating whether
it is in standby mode or actively performing a specific task. AUVPosition indicates the
current position coordinates. AUVAbility describes the capability to complete a task, with
only those equipped with the necessary sensors possessing the ability to carry out the
corresponding task. AUVResource and AUVSpeed represent the energy capacity of the AUV
and navigation velocity, respectively. The set of Tasks is as follows:

Task = [Task1, Task2, Task3, . . . , TaskM] (3)

The parameters of the tasks are described as follows:

Taski = [TaskState, TaskPosition, TaskAbility] (4)
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In this equation, TaskState represents the state of the task, indicating that the task is
currently in a completed state or an uncompleted state; TaskPosition represents the positional
coordinates of the task; and TaskAbility represents the abilities that the AUV needs to have
to complete the task.

AUV1

AUV2

AUV3

AUV4

AUVN

.

.

.

 Task1

 Task2

   .

   .

   .

 TaskM

Controlling Center

Goal

AUV

CostEnergy + CostTime

Figure 1. Architecture of the proposed distributed task system.

Thus, the Multi-AUV task-assignment problem can be represented as follows:

[Task, AUV, Goal] (5)

In this equation, Goal represents the result of the allocation between AUV and Task.
This results in an optimal task-assignment scheme, ensuring that the assignment outcome
is optimal.

2.2. Condition Binding

To meet the performance requirements of collaborative task allocation in a Multi-AUV
system and to ensure that the allocation of Multi-AUV tasks is both reasonable and effective,
the following constraints are considered.

2.2.1. State Constraint

Positional constraints are used to ensure that the AUV is in the safe area and to avoid
obstacles. The AUV’s position (xi, yi) must satisfy:

gi(xi, yi) ≤ 0 (6)

In this equation, gi denotes the inequality condition of the position constraint. Velocity
constraints are used to ensure that the velocity of the AUV is in the safe range. This can be
expressed as follows:

ki(di) ≤ 0 (7)

In this equation, ki denotes the inequality condition of the depth constraint.
In general, the number of tasks is larger than the number of AUVs, with each task

assigned to a single AUV. To prevent multiple AUVs from executing the same task simulta-
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neously and ensure the uniqueness of task execution, state constraints are imposed. The
constraint function is defined as follows:

N

∑
i=1

Xij = 1, ∀Task j ∈ Task (8)

Xij ∈ 0, 1 (9)

where Xij = 1 means that AUVi executes the target task Task j and Xij = 0 means that AUVi
does not execute the task Task j.

2.2.2. Energy Constraint

Typically, the energy consumed by an AUV is related to the distance of the path it
navigates while performing a mission. The distance between the current position of the
AUVi and the Task j can be expressed as follows:

li,j =
√
(xi − xj)2 + (yi − yj)2 (10)

In this equation, Xi and Yi represent the horizontal and vertical position of the AUVi,
while Xj and Yj represent those of the mission target position. The distance between AUVi
and the mission target point is denoted as li,j. Assuming the distance traveled by AUVi to
perform the task at this time is disti, the expression of its energy requirements is as follows:

E−costi = disti × e (11)

In this equation, e represents the energy consumption coefficient, which signifies the
energy consumed per unit distance traveled by an AUV. Each AUV has a limited amount
of energy due to its load limitations. During task allocation, it is crucial to guarantee that
each AUV is equipped with sufficient energy to complete its assigned tasks, while also
ensuring that all AUVs collectively possess enough energy to complete all tasks. The energy
constraint is expressed as follows:

N

∑
i=1

(E−costi ≤ Ei) (12)

In this equation, N is the number of AUVs, E−costi represents the energy consumed by
AUVi to execute the sequence of tasks allotted to it, and Ei represents the energy capacity
of AUVi.

2.2.3. Capacity Constraint

In this paper, tasks are classified into three distinct types based on their specific mission
requirements:

1. Missions requiring underwater cameras: These tasks necessitate AUVs equipped with
underwater cameras for their successful execution.

2. Missions requiring side-scan sonar: AUVs with side-scan sonar capabilities are essen-
tial for these missions.

3. Missions requiring both underwater cameras and side-scan sonar: Some missions
require a combination of both underwater cameras and side-scan sonar. AUVs with
this combined capability can effectively perform all three types of tasks.

2.3. Objective Function

The task of allocating multiple AUVs can be formulated as a multi-objective optimiza-
tion problem. The evaluation metrics in this optimization problem include CostEnergy and
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CostTime. The goal is to minimize the evaluation function to enhance the overall utility of
the Multi-AUV system.

CostEnergy is defined as the total energy consumed by all AUVs during the mission.
Minimizing energy consumption leads to more-efficient energy utilization and shorter
travel distances for the multiple AUVs, ultimately improving mission completion. The
CostEnergy function is represented as follows:

CostEnergy =
N

∑
i=1

M

∑
j=1

E−costi,j (13)

CostTime represents the time taken by all AUVs to complete their tasks, defined as
the maximum time among all AUVs to finish their tasks. The time required for each AUV
to complete its task sequence comprises both the navigation time and the task execution
time. The voyage time is calculated as the total distance traveled by an AUV divided by
its average speed between mission objectives. The mission execution time refers to the
duration an AUV spends performing its assigned tasks. The cost of the mission time is
expressed as follows:

CostTime = max(
M

∑
j=1

(
disi,j

v
+ Timej)) (14)

In this equation, disij represents the distance between AUVi and the Task j’s point, v
represents the navigation speed of the AUV, and Timej is the time consumed by the AUV
to perform Task j. A lower CostTime indicates a shorter time for the Multi-AUV system to
accomplish the entire task, demonstrating that the task assignment output maximizes the
resources of the Multi-AUV system and reduces task execution time. Thus, the objective
function is as follows:

minJ = CostEnergy + CostTime (15)

To fully utilize the effectiveness of the Multi-AUV system under multiple constraints,
the principles governing task assignments can be summarized as follows:

1. Capability matching: The Multi-AUV system splits complex tasks into smaller, man-
ageable sub-tasks. These sub-tasks are then assigned to AUVs based on their capa-
bilities and features. For example, if a task requires underwater imaging, it should
be assigned to AUVs equipped with appropriate cameras or sensors. This princi-
ple ensures that tasks are assigned to AUVs that are best suited for their successful
execution, maximizing the efficiency of the system;

2. Minimizing system cost and energy constraint: Task allocation in a Multi-AUV system
aims to achieve successful task completion while minimizing the overall cost to the
system. This includes considerations such as minimizing fuel consumption, reducing
wear and tear on the AUVs, and avoiding unnecessary duplication of efforts. It is
critical to ensure that the energy constraint of the AUV system is satisfied, as excessive
energy consumption can limit the system’s operational range and duration. Effective
task allocation can help achieve this balance;

3. Load balancing: Load balancing is a crucial aspect of task allocation in a Multi-AUV
system. It involves distributing tasks as evenly as possible among the available AUVs.
An even distribution prevents overburdening certain AUVs while leaving others
underutilized. This not only maximizes the potential of each AUV, but also helps
in achieving efficient task completion. Load balancing may consider factors such as
the capacity of the AUVs, their proximity to tasks, and their current energy levels to
ensure tasks are allocated in a balanced and fair manner.
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3. Innovative DE-GWO Algorithm

In order to solve the issue of local optimality during the task allocation process, we
propose the DE-GWO algorithm. Additionally, we propose the reassignment strategy
for the AUV experiencing faults during task execution. Our algorithm is superior to
other methods.

3.1. Overview of the Proposed Algorithm

Given the discrete nature of the Multi-AUV task-allocation problem, the GWO algo-
rithm requires a discretization operation to map the task-allocation problem model. The
number of tasks to be executed by the Multi-AUV setup determines the location dimension
for each gray wolf in the population. For example, if there are N tasks that need completion,
each gray wolf’s location is represented as an N-dimensional vector. Once the gray wolf
population is positioned, we sort each individual’s position within the N-dimensional
space by magnitude to generate the task sequence for the AUVs. Furthermore, the task se-
quences are randomly grouped based on the number of AUVs. This random grouping adds
an element of discretization to both the algorithm and the task sequences for each AUV.
Consequently, the position of each gray wolf signifies how the AUV task sequences are
allocated and organized. If the generated task allocation plan fails to meet the Multi-AUV
task allocation constraints, we regenerate the locations and groupings of gray wolves until
the plan aligns with the task requirements. Through continuous iterations of the algorithm,
we ultimately obtain an allocation that optimizes the objective function.

The GWO algorithm faces challenges related to poor population diversity and prema-
ture convergence when solving complex problems. To address these issues in the context
of Multi-AUV task allocation, this study initially employed Singer chaotic mapping to
initialize the gray wolf population, thereby enhancing population diversity. This approach
ensures a uniform distribution of gray wolves within the search space, which, in turn,
boosts the algorithm’s global search capability and introduces greater randomness and
diversity into the sequence of Multi-AUV tasks. Singer chaotic mapping is a type of
chaotic mapping known for its numerous advantages, including a simple structure, high
randomness, and a uniform distribution [41]. Its mathematical expression is as follows:

dk+1 = µ(7.86dk − 23.31d2
k + 28.75d3

k − 13.302875d4
k) (16)

In this equation, µ ∈ [0.9, 1.08] and dk ∈ [0, 1] are used to initialize the gray wolf
population position. Xk is defined as follows:

Xk = umin + dk(umax − umin) (17)

In this equation, umax and umin are the upper and lower bounds of the search space,
respectively.

Meanwhile, this paper employed a strategy of nonlinear convergence to enhance
the convergence factor and optimize the position update formula in the GWO algorithm,
aiming to boost its global search capabilities. Considering the fast convergence speed of the
DE algorithm and its role in strengthening information exchange between individuals in the
population while improving population diversity through mutation, this paper introduced
the crossover, selection, and mutation operations of the DE algorithm during the evolution
of the GWO algorithm. This promotes continuous evolution among gray wolf individuals
through the survival of the fittest, thus enhancing the population diversity of the GWO
algorithm and improving its ability to escape local optima.

In the standard GWO algorithm, the vector A represents the extent of prey search
undertaken by the gray wolf population. The convergence factor a is crucial in balancing
the algorithm’s local and global search capabilities. The convergence factor a affects the
coefficient vector A as follows:

a = 2× (1− t
T
) (18)
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A = 2a · r1 − a (19)

In this equation, T is the maximum number of iterations of the algorithm and r1 is a
random vector between [0, 1]. When solving complex problems, it is important to consider
the update strategy of a linearly decreasing convergence factor. The strategy causes the
algorithm to fall into local optimum during the iteration. To enhance the algorithm’s
global search ability, this paper used a nonlinear update strategy for the convergence factor,
formulated as follows:

a = 2 · (1− (e
Iter

MaxIter − 1
e− 1

)) (20)

In this equation, Iter represents the current number of iterations and MaxIter rep-
resents the maximum number of iterations of the algorithm. The convergence factor a
decreases nonlinearly from 2 to 0 during the iteration process. It takes a larger value in the
early iterations, decaying more slowly, thus improving the global search capability. In the
late iterations, the convergence factor quickly reduces to 0, facilitating a swift convergence
of the algorithm.

In the standard GWO algorithm, α β and δ together guide the gray wolves in the
population to update their positions so as to gradually approach the target, and the formula
is expressed as follows:

Dα = |C1 · Xα(t)− Xk(t)|
Dβ = |C2 · Xβ(t)− Xk(t)|
Dδ = |C3 · Xδ(t)− Xk(t)|

(21)

X1(t + 1) = Xα(t)− A1 · Dα

X2(t + 1) = Xβ(t)− A2 · Dβ

X3(t + 1) = Xδ(t)− A3 · Dδ

(22)

Xk(t + 1) =
(X1(t + 1) + X2(t + 1) + X3(t + 1))

3
(23)

In the aforementioned equation, Xα(t), Xβ(t), and Xδ(t) represent the positions of
the α-wolf, β-wolf, and δ-wolf, correspondingly, in the present iteration. Additionally, the
search steps conducted in adherence to the guidelines of the α-wolf, β-wolf, and δ-wolf are
identified by Dα, Dβ, and Dδ, respectively. Xi(t + 1), (i = 1, 2, 3) represent the positions
of individual gray wolves in the population after position updating led by the α-wolf,
β-wolf, and δ-wolf, respectively; A1, A2, A3 and C1, C2, C3 are the corresponding coefficient
vectors. In order to improve the GWO algorithm’s ability to escape local optima and
prevent algorithm stagnation when the α-wolf, β-wolf, and δ-wolf are trapped in local
optima, we propose a dynamic weighting strategy in this paper. The population’s position
is updated using the following formula:

wi =
f (Xi)

f (X1) + f (X3) + f (X2)

Xk(t + 1) =
∑3

i=1 wi × Xi(t + 1)
3

(24)

In the equation above, the objective function calculates the adaptation values of the α-
wolf, β-wolf, and δ-wolf, denoted as f (Xi) for (i = 1, 2, 3), respectively. The corresponding
weights of the adaptation values are given by wi for (i = 1, 2, 3). Following the movement
of the gray wolf, the task sequence uses a grouping method that selects the most-effective
allocation scheme between the original method and the α-wolf grouping method to improve
the algorithm’s ability to find the optimal solution.

The paper addressed the issue of premature convergence and limited global search
capabilities in the standard GWO algorithm. To overcome these challenges, the paper
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suggested the DE algorithm, which provides faster convergence and enhances population
diversity through information exchange during the mutation process among individuals.
Through a comprehensive comparison and analysis of the advantages and disadvantages
of both algorithms, this paper introduced the DE-GWO algorithm as an effective solution
for Multi-AUV task allocation. When updating the positions of individual gray wolves,
the DE algorithm utilizes the mutation, crossover, and selection operations to increase the
diversity of the gray wolf population, improve the algorithm’s global search capabilities,
aid in escaping local optima, and expedite the convergence speed.

After revising the position under the guidance of the α-, β-, and δ-wolves, the individ-
uals of the gray wolf population underwent a mutation operation utilizing the DE/best/1
mutation strategy outlined in Table 1. The mutation process involves selecting the α-wolf of
the gray wolf population and summing the deviation vectors of two chosen gray wolf indi-
viduals after weighting them accordingly, resulting in the creation of a mutated individual.
The variant individuals will generate task sequences randomly to group them, which will
increase diversity in the allocation scheme. Then, either the variant individual or target
individual will be chosen randomly as the newborn individual for the current iteration, as
described below:

vi,j(g) =
{

hi,j(g), rand(0, 1) ≤ CR, randi(1, D) = j
Xi,j(g), otherwise

(25)

In this equation, rand(0, 1) represents a random number between [0, 1], CR denotes
the crossover probability, and hi,j(g) signifies the variant individual.

Table 1. Differential evolutionary algorithm mutation strategies.

Variation Strategy Concrete Form

DE/rand/1 Vi(g) = Xp1(g) + F · (Xp2(g)− Xp3(g))
DE/best/1 Vi(g) = Xbest(g) + F · (Xp1(g)− Xp2(g))

DE/randtobest/1 Vi(g) = Xi(g) + F · (Xbest(g)− Xi(g)) + F · (Xp1(g)− Xp2(g))
DE/rand/2 Vi(g) = Xp1(g) + F · (Xp2(g)− Xp3(g)) + F · (Xp4(g)− Xp5(g))
DE/best/2 Vi(g) = Xbest(g) + F · (Xp1(g)− Xp2(g)) + F · (Xp3(g)− Xp4(g))

p1, p2, p3, p4, p5 denote the random individuals in the population, and p1 6= p2 6= p3 6= p4, respectively; F is
the variation operator with the ability to balance the global search with the local search; Xbest(g) is the optimal
individual in the population in the gth generation; xpi(g)− xpj(g) represent the deviation vectors of the two
random individuals; Vi(g) represents the gth generation of the variation vector.

3.2. Steps of DE-GWO

The DE-GWO algorithm utilized in this study was derived from the GWO algorithm,
which draws parallels between the solution process of the Multi-AUV multi-task issue
and the gray wolf searching for prey in the search space. The gray wolf stands for a set of
feasible solutions for the Multi-AUV task assignment, with the optimal solution being the
location of the prey. The flowchart of the DE-GWO algorithm is shown in Figure 2:

Step 1: First, the necessary algorithm parameters are initialized, including a population
N of 20, a Tmax of 1000, and a CR of 0.8.

Step 2: The population positions are initialized using Singer chaotic mapping and
denoted as Xi = [xi1, xi2, xi3, . . . , xiD]. Subsequently, these positions are sorted in ascend-
ing order, and the task sequences for the Multi-AUV system are generated. These task
sequences are then grouped together to establish the Multi-AUV task allocation scheme.

Step 3: Calculate the objective function value of the individual gray wolves in the
population, and rank the individuals based on the size of the objective function value, then
select the optimal top three gray wolf individuals denoted as Xα, Xβ, and Xδ, respectively.

Step 4: Calculate the convergence factor a using Equations (16) and (17), and determine
the values of A and C. Update the positions of the individual gray wolves in the population
using Equation (22), and compute the updated population’s objective function value.
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Step 5: Choose the DE/Best/1 mutation strategy from Table 1 for the mutation opera-
tion. Then, perform the crossover operation, using Equation (23) to generate a temporary
population, and calculate the objective function value for each gray wolf in this population.

Step 6: Perform a one-to-one selection operation between individuals in the temporary
population and the individuals in the original population. Retain the individuals with
better fitness values in the original population for the next iteration. This selection process
ensures that the population evolves over the iterations, with individuals having better
fitness values being preserved for further exploration in the search space.

Step 7: Sort the gray wolf individuals in the resulting population after the update ac-
cording to the size of the fitness value, and update the positions of the gray wolf individuals
Xα, Xβ, and Xδ, with the top three fitness values.

Step 8: If the current number of iterations reaches the maximum number of iterations
Tmax of the algorithm, the optimal result Xα is output and the algorithm is terminated;
otherwise, skip to Step 4.

T>Tmax？Ending

N

Update gray wolf 
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Update gray wolf 
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Initialize the population 

parameters and the 

maximum number of 

iterations 

initializes gray wolf 
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generates multi-AUV 

allocation schemes

Calculate the individual 

gray wolves and select the 

optimal individuals.

Calculating the fitness of 

individual gray wolves.

Perform mutation and 

crossover operations.

Selection individuals 

and interim populations.

Calculate updated gray 

wolf population

Y

Figure 2. Flowchart of DE-GWO.

3.3. Mandate Redistribution Mechanism

The marine environment is complex and variable. AUVs encounter complications
during cooperative operation tasks, including entangled propellers and collisions with sea-
weed. These events cause AUV failure and prevent the Multi-AUV system from achieving
its preset mission objectives. It is important to consider the environment’s effects when
utilizing AUVs. Therefore, the Multi-AUV system requires a task reassignment capability
to address AUV failures during the mission, which can result in mission failure. To tackle
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this challenge, the DE-GWO algorithm, known for its faster problem-solving capabilities,
was employed for task reassignment, as depicted in Figure 3.

During the initial assignment of multiple tasks, the Multi-AUV system can assign
intricate collaborative tasks to the AUV. If the AUV malfunctions during the mission
implementation and is unable to carry out the mission as initially planned, the Multi-
AUV system sends out an alarm message to notify the researchers. Meanwhile, the Pilot
within the system can redistribute tasks centrally after considering the completion status
of the current collaborative tasks and the state of the remaining AUVs. If the Pilot AUV
experiences a failure, the system will choose another AUV with higher remaining energy
and a shorter distance from the center of the current AUV to take over as the new Pilot.
Tasks will then be reassigned to decrease the time necessary for the new Pilot to finish
its mission. The overall goal is to improve the quality of communication during the
information interaction process and successfully accomplish remaining tasks.

Y
Whether there is a 

malfunction?

Start

Ending

N

Continued implementation of the 

mandate as originally 

programmed

Continued implementation of the 

mandate as originally 

programmed

Initial task allocation based on DE-

GWO

Whether the faulty AUV is 

leader?

Whether the task was 

completed?

Y

Redefine the leader 

AUV

N

Reassignment and 

implementation of tasks

N

Y

Figure 3. Task reassignment flowchart.

4. Results

In this study, simulation experiments were conducted using Matlab 2020 to assess
the effectiveness and reliability of the DE-GWO algorithm in solving the Multi-AUV
task-assignment problem. The paper presents a model of the marine environment for
Multi-AUV cooperative operations, including the map of the environment and task points
for the AUVs to complete before returning to the recovery point at the starting location.
Given the expansive scope of the research objectives in the context of the vast oceanic area,
the mission objectives were consolidated. Figure 4 shows the environmental maps.

In this paper, we classified tasks into three categories based on specific requirements.
Each task requires the AUV to be equipped with the corresponding sensors before execution.
In Table 2, we present information on the task configuration along with a representation
graph in the result diagram. The starting point is symbolized by a blue dot, while the
recovery point is depicted by a black pentagram.

The main objective of this paper was to facilitate the completion of ten target tasks
by three AUVs and to determine the optimal Multi-AUV task-allocation approach while
considering multiple constraints. In this paper, we conducted comparative experiments
using the GWO algorithm, DE algorithm, PSO algorithm, and DE-GWO algorithm. We
assumed that each AUV consumes one unit of energy when sailing a distance of 1 km,
and a unit length in the environment map corresponds to a distance of 1 km in the actual
marine environment. Thus, the energy consumption coefficient was one unit of energy
per kilometer. Additionally, each AUV was equipped with different energy sources. The
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experiment assumed that the three AUVs had an average speed of 2 km/h and it took
each AUV 0.1 h to perform a task. The experiment’s parameters specified that there were
three AUVs, ten tasks, and a population size of 100 for the different algorithms, and each
algorithm was executed in a loop 20 times.

0 5 10 15 20
0

5

10

15

20

Task1

Task2

Task3

AUV

Recycle

Figure 4. Mission environment map.

Table 2. Mission information sheet.

Type of Task Sensors Required
for the Task Task Number Corresponding

Graphs

Task 1 Underwater camera 2 5 6 Green dots
Task 2 Side-scan sonar 3 4 9 10 Black rhombus

Task 3 Underwater camera
and side-scan sonar 1 7 8 Blue square

4.1. Multi-AUV Task Allocation with Equal Capability

In this section, we investigate the problem of task allocation for multiple AUVs
with identical capabilities, but varying energy sources. We assumed that each AUV was
equipped with the same sensors and was capable of performing all types of tasks. The three
AUVs, each loaded with distinct energy sources, were deployed to fulfill ten operational
tasks that had varying demands. It is essential to ensure that all constraints related to task
allocation are met. The configuration details of the three AUVs can be found in Table 3.

Table 3. AUV information sheet.

AUV Number Number of
Energy Sources Sensor Type Starting Point Recovery Point

AUV 1 35
Underwater
camera and

side-scan sonar
(1.5, 4.5) (22.5, 12.5)

AUV 2 33
Underwater
camera and

side-scan sonar
(1.5, 15.5) (22.5, 12.5)

AUV 3 30
Underwater
camera and

side-scan sonar
(1.5, 10.5) (22.5, 12.5)
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Figure 5 illustrates the outcome achieved by assigning Multi-AUV systems of iden-
tical capacity and differing energy sources utilizing the GWO, DE, PSO, and DE-GWO
algorithms, respectively.
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Figure 5. Comparison of task-assignment algorithms for a Multi-AUV system. (a) Results of task
allocation using the GWO algorithm; (b) results of task allocation using the DE algorithm; (c) results
of task allocation using the PSO algorithm; (d) results of task allocation using the DE-GWO algorithm.

When utilizing the GWO algorithm, the Multi-AUV system consumed 78.3002 of
energy and took 15.2167 h to complete the task. In the case of the DE algorithm, the
Multi-AUV system consumed 79.1058 of energy and took 15.6928 h. Similarly, with the PSO
algorithm, the system consumed 78.3002 of energy and took 15.2167 h. Lastly, employing
the DE-GWO algorithm resulted in the Multi-AUV system consuming 76.4632 of energy
and taking 13.7185 h to complete the task. The detailed information about the resources
consumed by each individual AUV is shown in Table 4.

Table 4. Multi-AUV system task-allocation strategy for different algorithms with AUVs with the
same capability.

Algorithm Name AUV Number Energy Consumption Time Used to
Complete Tasks

Sequence of Tasks
Allocated

GWO
AUV 1 29.6334 15.2167 h 3 4 9 10
AUV 2 26.6370 13.7185 h 1 6 2 5
AUV 3 22.0298 11.2149 h 8 7

DE
AUV 1 30.5855 15.6928 h 3 8 4 9
AUV 2 23.8826 12.2413 h 1 2 5
AUV 3 24.6377 12.6189 h 6 7 10

PSO
AUV 1 29.6334 15.2167 h 3 4 9 10
AUV 2 26.6370 13.7185 h 1 6 2 5
AUV 3 22.0298 11.2149 h 8 7

DE-GWO
AUV 1 26.1027 13.3514 h 3 4 9
AUV 2 26.6370 13.7185 h 1 6 2 5
AUV 3 23.7235 12.1618 h 8 7 10

When comparing different algorithms for the Multi-AUV task-allocation problem with
equal capacity, it became evident that both the GWO and PSO algorithms produced the
same optimal allocation results. Additionally, they slightly outperformed the DE algorithm
in terms of energy and time consumption of the Multi-AUV system. Moreover, the DE-
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GWO algorithm’s optimal allocation results surpassed those of the other algorithms in
terms of energy and time consumption. This algorithm also proved beneficial in reducing
the task completion time and saving the energy consumed by the Multi-AUV system to
complete the task.

Table 5 demonstrates that the DE-GWO algorithm outperformed other algorithms
regarding the average objective function value and solving time in multiple solving pro-
cesses. Additionally, this algorithm had a faster convergence speed and could discover a
more-suitable task allocation scheme in a shorter period of time.

Table 5. Algorithm comparison table.

Algorithm Name Average Objective
Function Value

Objective Function
Variance

Algorithm Average
Solution Time

GWO 94.9813 1.71 7.52 s
DE 95.1979 2.92 8.33 s

PSO 95.4234 1.85 7.96 s
DE-PSO 91.1158 1.53 6.12 s

4.2. Multi-AUV Task Allocation with Different Capabilities

This section explores the issue of allocating tasks to the fleet of multiple AUVs with
varied task execution capabilities and energy sources. The AUV possesses unique capa-
bilities to execute tasks that should match the required target task specifications. The
three AUVs, carrying different energy sources and equipped with a variety of sensors,
must accomplish ten operational tasks, each with unique requirements, while meeting all
mission assignment constraints. The configuration details of the three AUVs are displayed
in Table 6.

Table 6. AUV information sheet.

AUV Number Number of
Energy Sources Sensor Type Starting Point Recovery Point

AUV 1 37 Underwater
camera (1.5, 4.5) (22.5, 12.5)

AUV 2 40
Underwater
camera and

side-scan sonar
(1.5, 15.5) (22.5, 12.5)

AUV3 35 Side-scan sonar (1.5, 10.5) (22.5, 12.5)

Figure 6 displays the various outcomes achieved by assigning the Multi-AUV system
with diverse abilities and power sources utilizing the GWO, DE, PSO, and DE-GWO
methodologies, respectively.

When utilizing the GWO algorithm, the overall energy consumption of the Multi-AUV
system was 89.9397 and the task was completed within 15.4555 h. Conversely, if the DE
algorithm was employed, the Multi-AUV system consumed a total energy of 92.3244 and
operated for 18.4596 h. When using the PSO algorithm, the Multi-AUV system required
93.1948 of energy and 18.8948 h to complete the task. Finally, the DE-GWO algorithm
consumed 86.1051 of energy and took 15.2494 h to complete the task when implemented.
Table 7 presents a comprehensive summary of the individual AUVs’ consumed resources.

Table 8 shows the comparison table of the DE-GWO algorithm with the GWO algo-
rithm, DE algorithm, and PSO algorithm based on the Multi-AUV task-allocation problem
with different capabilities and different energy sources.
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Figure 6. Comparison of task assignment algorithms for Multi-AUV system. (a) Results of task
allocation using the GWO algorithm; (b) results of task allocation using the DE algorithm; (c) results
of task allocation using the PSO algorithm; (d) results of task allocation using the DE-GWO algorithm.

Table 7. Multi-AUV system task-allocation strategy for different algorithms with the same capabil-
ity AUV.

Algorithm Name AUV Number Energy Consumption Time Used to
Complete Tasks

Sequence of Tasks
Allocated

GWO
AUV 1 30.0176 15.1088 h 2
AUV 2 29.8111 15.4056 h 1 6 8 7 5
AUV 3 22.0298 15.4555 h 3 4 9 10

DE
AUV 1 30.026 15.213 h 2 5
AUV 2 35.7191 18.4596 h 1 6 3 8 7 10
AUV 3 26.5793 13.4897 h 4 9

PSO
AUV 1 30.0260 15.2130 h 2 5
AUV 2 36.5895 18.8948 h 1 6 8 3 7 10
AUV 3 26.5793 13.4897 h 4 9

DE-GWO
AUV 1 30.0260 15.2130 h 2 5
AUV 2 29.4987 15.2494 h 1 6 8 7 10
AUV 3 26.5804 13.5902 h 3 4 9

In the study of task allocation for multiple AUVs with varying capabilities, the com-
parison of the results obtained from various algorithms demonstrated that the DE-GWO
algorithm yielded superior outcomes regarding energy consumption and time consump-
tion when compared to the other algorithms. According to Table 8, the DE-GWO algorithm
can identify the superior task assignment approach in a shorter time, thereby enhancing
the effectiveness of the Multi-AUV system.

Based on the data presented in Tables 5 and 8, distinct algorithms yielded differing
outcomes for both the Multi-AUV task-allocation problem with similar capacities and those
with varying capabilities. While the GWO algorithm can produce improved solutions, its
global search proficiency was inferior and may result in a local optimal solution. Compared
to the GWO algorithm, the DE-GWO algorithm exhibited superior global search abilities,
faster convergence speeds, and greater algorithmic stability, enabling it to efficiently and
effectively address the Multi-AUV task-allocation problem.
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Table 8. Algorithm comparison table.

Algorithm Name Average Objective
Function Value

Objective Function
Variance

Algorithm Average
Solution Time

GWO 105.9953 2.52 11.76 s
DE 111.1839 2.83 14.55 s

PSO 112.9896 2.05 12.39 s
DE-PSO 102.6181 1.77 9.34 s

4.3. Reassignment of Tasks

Based on the Multi-AUV large-scale task-allocation experiment, we simulated the
situation where one AUV fails and used the DE-GWO algorithm for task reassignment,
assuming that each AUV had the same speed. AUV 2 failed at the “×” marking, as shown
in Figure 7a. AUV 2 malfunctioned after completing Task 7, and Task 5 and Task 22 in its
initial task sequence could not be completed as initially planned. The DE-GWO algorithm
was used for task reassignment, which is shown in Figure 7b. After task reassignment, Task
5 and Task 22 were assigned to AUV 1, which was closer to the task point and had fewer
initial tasks to execute.
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Figure 7. Comparison before and after task reassignment. (a) AUV 2 malfunctioned; (b) task
reassignment results.

4.4. Sea Trial Certificate

In the process of multiple AUVs conducting cooperative operation, there are many
disturbing factors that are difficult to reproduce in the simulation environment. In order
to further verify the effectiveness of the method in the actual marine environment, three
self-developed Model 260 AUVs were used to conduct the sea trial experiment.

Figure 8a illustrates the device model, which is the Model 260 AUV. This AUV boasts
physical dimensions of 260 mm (outer diameter) × 2.5 m (length), weighs 100 kg in its
standard configuration, and can achieve a maximum speed of 6–8 kn. In the context of the
experiment, AUV 1, AUV 2, and AUV 3 represented the Model 260A AUV, Model 260B
AUV, and Model 260C AUV, respectively.

The sea trial experiment area was situated in the offshore waters near Tundao Bay
in Qingdao City, Shandong Province, China. A satellite map of the experiment area is
depicted in Figure 8b, with red rectangles indicating the approximate boundaries of the
experimental zone. The average water depth in the displayed sea area was approximately
10 m. To enhance clarity, the coordinates were converted and projected onto the geodetic
coordinate system based on the Universal Transverse Mercator Grid System coordinates in
meters. The sea trial experiment process is elucidated in Figure 8c,d.
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（a）

（d）（c）

（b）

Figure 8. Sea trial experiment. (a) Static display of Type 260 multi-AUV system; (b) deployment of
260B; (c) sea trial experiment in progress; (d) AUV sailing in the water.

To validate the feasibility and effectiveness of the Multi-AUV task-allocation method
proposed in this paper, the algorithm was implemented within the AUVs, and the designed
task allocation method was executed on a physical platform. In the established experimental
area, four locations were randomly chosen as the starting and recovery points for the three
AUVs, while ten task points of various types were designated.

Assuming that the three AUVs possessed identical initial energy sources and con-
sumed one unit of energy for each unit of path navigated, the experiment unfolded as
follows: the three AUVs initiated their tasks from different starting points, completing
their respective assignments before traveling to the recovery point. Detailed configuration
information for the three AUVs can be found in Table 9.

Table 9. Algorithm comparison table.

AUV Number Equipped with
Energy Source Starting Point Recovery Point

AUV 1 1500 (31.53, 72.63) (385.54, 202.33)
AUV 2 1500 (30.96, 248.79) (385.54, 202.33)
AUV 3 1500 (32.26, 165.68) (385.54, 202.33)

In the Multi-AUV task-assignment experiment with identical capabilities, the three
AUVs equipped with side-scan sonar and underwater cameras had the same operational
capabilities. Three types of tasks were involved in this experiment, and these task types are
detailed in Table 3. The task assignment results are presented in Table 10.

In the experiment involving Multi-AUV task assignment with varying capabilities,
this section delimits the capabilities of the three AUVs. Specifically, the capabilities of
AUV 1, AUV 2, and AUV 3 are outlined in Table 6. The results of the task assignments are
displayed in Table 10.

Table 10. Results of Multi-AUV task assignment in the sea trial experiment.

Status of AUV Capacity AUV Number Energy Consumption Sequence of Allocated Tasks

Same-capacity AUV
AUV 1 576 3 4 9
AUV 2 599 1 6 2 5
AUV 3 522 8 7 10

Different-capacity AUV
AUV 1 661 2 5
AUV 2 680 1 6 8 7 10
AUV 3 584 3 4 9
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In conclusion, the task-allocation method based on the DE-GWO algorithm showed
promising results in the real sea trial experiments. This approach effectively reduced the
energy consumption of the Multi-AUV system, thereby enhancing its efficiency without
compromising task completion. The experiments served as a validation of the feasibility of
the DE-GWO algorithm.

5. Conclusions

In an effort to address the Multi-AUV task-allocation problem, this paper presented a
DE-GWO algorithm and conducted an investigation. The initial step involved creating a
mathematical model for the Multi-AUV task-allocation problem. Subsequently, the paper
employed the GWO algorithm and incorporated Singer chaotic mapping for population
initialization. Furthermore, the algorithm was enhanced by adopting a nonlinear con-
vergence factor and dynamic weight updating strategy, thereby improving its ability to
perform global searches and avoid local optima. The DE algorithm was then introduced,
integrating the crossover, selection, and mutation operations into the optimization process.
These operations continuously updated the population’s position, enhanced its diversity,
and accelerated the algorithm’s convergence speed. Lastly, to assess the efficiency and
effectiveness of the DE-GWO algorithm in solving the Multi-AUV task-allocation problem,
several rounds of simulation experiments were conducted.

In the process of the research and summarization, this paper identified areas for poten-
tial improvement and enhancement, which are summarized in the following two points:

1. While this paper introduced the DE-GWO algorithm, the complexity of Multi-AUV
cooperative operation tasks necessitates higher real-time capabilities and flexibility
in the task-allocation algorithm. Future research efforts should focus on studying
more-dynamic task-allocation algorithms. This would enable the Multi-AUV system
to dynamically adjust to environmental changes and real-time task modifications,
allowing it to handle more-complex task situations with flexibility.

2. The working state of AUVs during movement was not comprehensively considered,
indicating a need for further improvement.
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