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Abstract: An outlier, known as an error state, can bring valuable cognitive analytic results in many
industrial applications. Aiming at detecting outliers as soon as they appear in data streams that
continuously arrive from data sources, this paper presents an adaptive-kernel-based incremental
scheme. Specifically, the Gaussian kernel function with an adaptive kernel width is employed to
ensure smoothness in local measures and to improve discriminability between objects. The dynamical
Gaussian kernel density is presented to describe the gradual process of changing density. When new
data arrives, the method updates the relevant density measures of the affected objects to achieve
outlier computation of the arrived object, which can significantly reduce the computational burden.
Experiments are performed on five commonly used datasets, and experimental results illustrate that
the proposed method is more effective and robust for incremental outlier mining automatically.

Keywords: outlier detection; incremental scheme; adaptive Gaussian kernel; dynamical density;
incremental outlier factor

1. Introduction

Outlier detection, also termed anomaly detection or abnormal detection, is an essential
research work in the data-mining domain. In industrial applications, the process has gained
much attention as fault detection to identify error states that appear rarely and deviate
so much from others [1–6], ranging from network intrusion, video surveillance, factory
production monitoring, and fraudulent transactions, etc. Static outlier-detection methods
determine outliers in a dataset without new data arriving. In practice, outlier detection
from streaming data is of great importance in real-time automatic monitoring. Streaming
data are characterized by unbalanced data distribution or complex density regions due
to uncertain sources of outliers. To meet a broad range of requirements, there are two
solutions. One is the reapplication of the static method for the dataset with added data, and
the other is the application of the incremental outlier-detection method. The first technique
is not applicable in big data streams because of the computational expense of the objects
not suffering from the newly collected data [7,8]. Hence, it is necessary to research a more
competitive incremental method.

From a review of the literature, four main categories of the incremental method are
presented for outlier mining [9–11], namely the model-based method, clustering-based
method, distance-based method, and density-based method. The characteristics of four
main categories of incremental outlier-detection methods are briefly shown in Table 1.
The model-based incremental method [12–14] is easy to implement, while its excellent
performance depends on sufficient data and the prior knowledge of dataset distribution,
and the method is only applicable to low-dimensional datasets. The incremental multi-class
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outlier-detection model [14], a model-based incremental method, employs an incremental
support vector machine (ISVM) to divide the incoming query sample and detect outliers in a
multi-class data stream. The clustering-based incremental method [15,16] is a low-cost and
highly portable method that mostly considers the optimization of clusters. For this method,
the deviation degree of the object cannot be reflected, and the detection performance is
mainly determined by the adopted clustering algorithm. Incremental DBSCAN [17,18]
can find clusters with arbitrary shapes and handle the noise, and it calculates the means
between newly obtained data and core objects of existing clusters to assign the cluster of
the data. The distance-based incremental method’s conception [19] is easy to comprehend,
while it is sensitive to the nearest neighbor parameter, and it is not suitable for an unbal-
anced density distribution dataset. Exact-Storm [20] conducts expired slide processing,
new slide processing, and outlier reporting when the introduced window slides, and the
window includes data storage as well as the specific structure to keep neighborhood in-
formation incrementally. All the methods mentioned above use a global perspective to
recognize outliers, while the density-based incremental method employs the definition
of local density to realize outlier detection in unbalanced distribution [21,22]. The classic
and state-of-the-art incremental method is the incremental local outlier factor algorithm
(IncLOF) [23]. IncLOF possesses the same detection results as the reapplication of the
static LOF [24], which detects outliers based on local reachability density. Furthermore,
IncLOF needs to recompute a small fraction of the objects affected by new arriving objects
so it can reduce the time complexity of outlier mining. As with IncLOF, the incremental
connectivity-based outlier factor algorithm (IncCOF) also possesses the same detection
results as the reapplication of the static COF, which detects outliers based on average local
connectivity [25]. IncLOF is limited in that it only considers the density difference between
objects and their neighbors, while IncCOF considers both local density and connectivity.
However, IncCOF may not always outperform IncLOF in outlier detection. The choice
between IncLOF and IncCOF depends on the characteristics of the dataset. These two
incremental methods are both sensitive to the number of nearest neighbors and do not
perform well for datasets with small clusters. More variants of IncLOF are also presented,
mainly considering how to tackle the memory-occupied issue, such as memory-efficient
incremental LOF [26], density-summarizing incremental LOF [27], time-aware density-
summarizing incremental LOF [28] and self-adaptive density-summarizing incremental
LOF [29]. Memory-efficient incremental LOF considers a sliding window, which lets data
profiles update within the window and indicates whether a suspected outlier is truly an
outlier. Density-summarizing incremental LOF employs nonparametric Rényi divergences
to improve the summarization process, where the past data are summarized, and a model is
proposed for detecting outliers in a stream environment. Time-aware density-summarizing
incremental LOF presents “approximate LOF” based on historical information following
the discharge of out-of-data data to detect local outliers in streaming data. Self-adaptive
density-summarizing incremental LOF proposes a density-based sampling technique that
summarizes the historical data without prior distribution knowledge of objects so the
algorithm can determine the outlier score of each object with a little memory. However, the
accuracy of outlier score calculation in these variants is sacrificed to some extent to guaran-
tee a reduction of memory consumption due to the historical estimation being imprecise. In
addition, these algorithms are also sensitive to the number of nearest neighbors. It is worth
noting that the kernel-density-based method can achieve smoothness and improvement of
discriminability in outlier measures [30,31], where the calculation of data converts to the
inner product of high-dimensional space by kernel function to enhance the difference of
data. On the other hand, the existing representative incremental methods ignore the chang-
ing density of the object with its neighbors increasing to improve the different descriptions
of density. Thus, the main problem of the previous density definition is the lack of inter-
pretability of density changes and the consideration of parametric sensitivity. To leverage
the advantages and overcome the drawbacks of the density-based incremental method,
the proposed algorithm is motivated by the IncLOF and kernel method, and its important
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research problems are the emphasis on the recognition of local outliers, incrementation,
adaptability, interpretability, effectiveness, and robustness.

Table 1. Characteristics of the four main categories of incremental outlier-detection methods.

Method Categories Advantages Drawbacks

Model-based incremental method global perspective, excellent performance,
easy to implement

depend on the sufficient data and the
prior knowledge of dataset distribution,
only applicable to
low-dimensional datasets

Clustering-based incremental method global perspective, low cost,
high portability

without deviation degree, depend on the
adopted clustering algorithm

Distance-based incremental method global perspective, give outlier degree,
easy to comprehend

sensitive to the nearest neighbor
parameter, not suitable for unbalanced
density distribution dataset

Density-based incremental method

consider local measures of objects, give
outlier degree, suitable for unbalanced
density distribution dataset, adapt to
practical application

sensitive to the nearest neighbor
parameter, ignore the density changes
in objects

In this paper, an adaptive-kernel-based incremental scheme is proposed for outlier
detection in a data stream with newly arriving data. The goal is to learn efficient incremen-
tal outlier detection to identify the outliers of the newly collected data. The incremental
outlier factor is calculated to indicate the degree of the object being an outlier, whereas
the incremental dynamical Gaussian kernel density outlier factor is presented to reflect
the dynamic changes in kernel density as one nearest neighbor after another arrives. The
measured kernel density is defined via the Gaussian kernel function with an adaptive
width, where the kernel function improves discriminability between objects and improves
robustness to the nearest neighbor size, and the adaptive width increases the discrim-
inability further. To achieve incremental outlier detection, the method determines the
affected objects and updates their helpful measures served for the computation of new
objects, where the computation cost is reduced greatly. Specifically, this paper contains the
following main contributions.

1. A Gaussian kernel function with an adaptive kernel width is employed to ensure
smoothness in the local measures and to improve discriminability between objects.

2. The dynamical Gaussian kernel density is presented to describe the gradual process
of changing density.

3. When new data arrives, the method updates the measures of the affected objects used
for outlying computation of the arrived object, which can significantly reduce the
computational burden.

4. The experimental results illustrate that the proposed method is more effective and
robust for incremental outlier mining automatically.

2. Preliminaries

In this section, the computation of outlier factors and incremental learning schemes
are introduced in detail.

Computation of Outlier Factor
Ascending distance series of an object p: The ascending distance series is a merging of

the object p and its nearest neighborhood, in ascending order by their Euclidean distance,
denoted as ADS(p), which is expressed as

ADS(p) = {p, c1, c2, · · · , cr}

dist(p, ci) ≤ k-distance(p), ci ∈ Nk(p), i = 1, 2, · · · , r
(1)
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where r, Nk(p) and dist(p, ci) denote the size of Nk(p), the nearest neighborhood of p and
the Euclidean distance between p and ci, respectively. k-distance(p) denotes the k-distance
expressing the Euclidean distance of p from the kth nearest neighbor.

Gaussian kernel function with an adaptive width: the adaptive Gaussian kernel func-
tion achieves the calculation of data and converts to the inner product of high-dimensional
space by the mapping function [30,32–35], denoted as Ker(o, p), which can be written as

Ker(o, p, σs(p)) =< Φ(o), Φ(p) >

=
SS

∑
s=1

1
SS

exp(−‖o− p‖2/σ2
s (p))

σs(p) = 2s−1σ(p), s = 1, 2, · · · , SS

(2)

σ(p) = α[distmax + distmin + ε− distk(p)] (3)

where <,>, Φ(), σ(p) (σ(p) > 0) and SS denote the inner product, the mapping function,
the adaptive kernel width, and the multiscale kernel parameter, respectively. distk(p) =
1
k

r
∑

i=1
dist(p, ci) is the neighborhood distance of p. distmin = min

{
distk

(
pj
)
|j = 1, 2, · · · , r

}
and distmax = max

{
distk

(
pj
)
|j = 1, 2, · · · , r

}
are the largest and the smallest neighborhood

distances of all objects, respectively. ε is a given positive to ensure non-zero for the width,
and α is a compensation parameter for smoothness control.

Notably, the multiscale kernel method is intended to find a set of kernel functions with
multiscale representation capabilities [33,34]. The synthetic kernel method, a multiscale
kernel method, is proposed based on the linear combination of the single kernel function.
However, there is no theory for the parameter setting and the combination type of synthetic
kernel to solve the uneven distribution of objects, which limits the representation ability of
the synthetic kernel method. The Gaussian kernel function possesses a typical multiscale
character, which is widely used because of its universal approximation ability. The width
of the Gaussian kernel function depends on the object’s location. The large width is well
suited for an object positioned within a high-density region. Conversely, the width of the
object should be set to a small value when it is situated in a low-density region. In this
paper, ss, α and ε are set as 1, 0.5, and 10−6, respectively.

Calculation of kernel distance: According to the theory of Gaussian kernel function,
the distance of an object in the high-dimensional space and the dynamical Gaussian kernel
distance of an object in the nearest neighborhood, denoted as k_dis(o, p) and dk_dis(p, ci),
are calculated as follows:

k_dis(o, p) =
√
‖Φ(o)−Φ(p)‖2

=
√

Φ(o)Φ(o)− 2Φ(o)Φ(p) + Φ(p)Φ(p)

=
√

Ker(o, o, σs(o))− 2Ker(o, p, σs(p)) + Ker(p, p, σs(p))

=

√
2− 2

ss

∑
s=1

1
ss

exp(−‖o− p‖2/σ2
s (p))

(4)

dk_dis(p, ci) =
i

∑
ii=1∧k_dis(p,cii) 6=k_dis(p,cii′ ),ii′<ii

k_dis(p, cii) (5)

Calculation of kernel density: According to the theory of Gaussian kernel function and
the formula of kernel distance, a new definition of Gaussian kernel density is presented to
express the density between the object and its nearest neighbor, denoted as gk_den(p, ci),
which is calculated as

gk_den(p, ci) =
1 + i

i
∑

ii=1
dk_dis(p, cii)

(6)

Furthermore, dynamical Gaussian kernel density and dynamical Gaussian kernel
density fluctuation are both presented to indicate Gaussian kernel density changes in an
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object with its neighbors increasing, respectively, denoted as gk_DD(p) and gk_DDF(p),
which are calculated as follows:

gk_DD(p) =
r

∑
i=1

(
(gk_den(p,ci)−gk_den(p,ci+1))

gk_den(p,ci)

)2

i
(7)

gk_DDF(p) =
r

∑
i=1

(
(gk_DD(p)−gk_DD(ci))

gk_DD(p)

)2

i
(8)

Please note that the estimated contribution of gk_DD(p) and that of gk_DDF(p) are
more obtained by the earlier objects in ADS(p).

The calculation of incremental outlier factor: based on calculations on kernel density,
the incremental dynamical Gaussian kernel density outlier factor of an object is estimated
by the ratio of its dynamical Gaussian kernel density fluctuation and the average dynamical
Gaussian kernel density fluctuation of its neighbors, denoted as IncDGOF(p), which is
calculated as

IncDGOF(p) =
|Nk(p)| · gk_DDF(p)
∑o∈Nk(p) gk_DDF(o)

(9)

The IncDGOF value is a local deviate factor to indicate the outlier degree of the object,
and the higher degree of the object indicates a larger value of IncDGOF.

3. Incremental Learning Scheme

An incremental learning scheme is proposed based on a Gaussian kernel function with
an adaptive kernel width and updating the measures of the affected objects along with the
new objects arriving.

The detection task has two phases for incremental outlier detection of streaming data.
The first phase is the model-training phase to learn the normal pattern of the training dataset,
and the second phase is the model-testing phase to compare newly arrived objects with
the previously learned normal pattern. The requirement of the task is the training dataset
consisting of normal objects. Notably, the fundamental assumption of the incremental
learning scheme is that normal objects of the detection system are not changing over time;
in other words, the change in normal objects is negligible in the incremental detection
period of the detection system. Theoretically, the model can be retrained regularly to absorb
the normal change emerging in the incremental detection system.

To update the measures of the affected objects, they are both determining the affected
objects and recalculating their measures when the new object arrives. There are two
orders of the affected objects, including the objects whose dynamical Gaussian kernel
density caused by the k-distance and the nearest neighborhood are changed and whose
dynamical Gaussian kernel density fluctuation caused by dynamical Gaussian kernel
density is changed. When a new object o arrives, the first affected object p will be updated
with a new k-distance and a new nearest neighborhood. Figure 1 shows three situations of
incremental updating of the k-distance and the nearest neighborhood after the arrival of a
new object.

Three situations are analyzed in detail as follows:

(a) If dist(p, o) > k-distanceold(p), then do not update.
(b) If dist(p, o) = k-distanceold(p), then update Nk(p).
(c) If dist(p, o) < k-distanceold(p), then update k-distance(p) and Nk(p).
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Figure 1. Three situations of incremental updating of k-distance(p) and Nk(p) after a new object o
arrived (k = 5).

Moreover, the neighborhood distance of the new object may be exceedingly large
in the model-testing phase. According to Formula (3), its positivity requirement could
probably be violated by a negative Gaussian kernel width. To meet the adaptive of the
width, the updating function is proposed as

σ(p) =
{

α[distmin + ε], distk(p) > distmax
α[distmax + distmin + ε− distk(p)], otherwise

(10)

where distmin and distmax have been fixed in the model-training phase.
Simplistically, if a few objects arrive at the same time, at this point, we can focus on the

newly arrived objects to update the measures of objects, including the nearest neighborhood
of the newly arrived objects, the nearest neighborhood of the former nearest neighborhood,
and the nearest neighborhood of the former nearest neighborhood further.

4. The Proposed Method

In this section, the proposed incremental outlier-detection algorithm is formulated in
detail, and we analyze the time complexity of the proposed algorithm.

4.1. IncDGOF Algorithm

For streaming data, the status of objects would be changed when new objects arrive.
This paper proposes the IncDGOF algorithm for outlier detection in a data stream. To
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achieve efficient incremental outlier mining, the IncDGOF algorithm updates the measures
of the affected objects used for outlying computation of the arrived object. This algorithm
includes the computation of outlier factors and an incremental learning scheme consisting
of finding affected objects and updating their measures. The detailed IncDGOF algorithm
is formulated in Algorithm 1. First, calculate the Euclidean distance between the newly
collected object and each object of the existing dataset and compute its ascending distance
series, kernel width, and kernel density. Next, find the first-order affected objects and
update their measures regarding the calculation of dynamical Gaussian kernel density.
Then, find the second-order affected objects and update their measures regarding the calcu-
lation of dynamical Gaussian kernel density fluctuation. Finally, determine the incremental
outlier factor of the collected object.

Algorithm 1: IncDGOF algorithm
Input: Dataset D, new collected object o, nearest neighbor number k
Output: IncDGOF value of o
1: Scale o to zero mean and unit variance
2: for all p ∈ D do
3: Compute dist(o, p), dist(p, o) = dist(o, p)
4: end for
5: Compute ADS(o)
6: Compute σ(o) using Formula (3)
7: Compute gk_den(o, a), a ∈ Nk(o) using Formula (6)
/*Find 1st order affected objects and update their measures*/
8: for all p ∈ D do
9: if dist(p, o) ≤ k−distance(p) then
10: Sa f f ect ← p
11: end if
12: for all ds ∈ Sa f f ect do
13: Update σ(ds) using Formula (10)
14: Update gk_den(ds, ci), ci ∈ Nk(ds) using Formula (6)
15: Update gk_DD(ds) using Formula (7)
16: end for
17: Compute gk_DD(o) using Formula (7)
/*Find 2nd order affected objects and update their measures*/
18: for all p ∈ D do
19: if ds ∈ Sa f f ect ∧ ds ∈ Nk(p) then
20: SIa f f ect ← p
21: SAa f f ect ← Sa f f ect ∪ SIa f f ect

20: end if
21: end for
22: for all ds ∈ SAa f f ect do
23: Update gk_DDF(ds) using Formula (8)
24: end for
25: Compute gk_DDF(o) using Formula (8)
26: Compute IncDGOF(o) using Formula (9)

4.2. Time Complexity Analysis

For the proposed algorithm, let n, d, and k be the size of the dataset, the dimension, and
the nearest neighbor, respectively. Moreover, let a and b be the size of the object whose dy-
namical Gaussian kernel density is changed and whose dynamical Gaussian kernel density
fluctuation is changed, respectively. According to the description of Algorithm 1, the time
complexity of the algorithm can be considered to be two main parts with two sub-steps. The
two sub-steps of each part determine the affected objects and the updating of their related
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measures when the new object arrives. First, the time complexity of determining in Sa f f ect
is O(nd), and the time complexity of updating kernel width, Gaussian kernel density, and
dynamical Gaussian kernel density of the objects in Sa f f ect is O(a + a + ak). Second, the
time complexity of determining in SAa f f ect is O(ank), and the time complexity of updating
dynamical Gaussian kernel density fluctuation of the objects in SAa f f ect is O(bk). There-
fore, the time complexity of the whole process is O(nd + a + a + ak + ank + bk). Although
a, b, k, d� n, the whole time complexity of the algorithm can be written as O(n).

5. Experimental Setup and Analysis

In this section, IncDGOF, IncLOF, and IncCOF are performed on five real datasets
with different sizes to verify their performance. Furthermore, the experiments evaluate the
involved scaling factors to demonstrate the suggestion value of α and the suggestion value
of SS for the proposed method.

5.1. Experimental Datasets and Implementation Details

Five frequently adopted datasets are taken from the UCI Machine-Learning Repository
(http://archive.ics.uci.edu/ml, accessed on 15 March 2021) , which are the Wine dataset,
Ionosphere dataset, Phoneme dataset, Vowel dataset, and Cup 99 Smtp dataset [29,31,32].
Concretely, experiments are performed on datasets to search their rare class, and some
objects are randomly eliminated from the classes of the Wine dataset, Ionosphere dataset,
Phoneme dataset, and Smtp dataset to build an uneven distribution. This operation is
commonly used by many researchers to evaluate the performance of outlier-detection
algorithm [36,37]. The experiments contain two parts. For the first part, algorithms are
performed on the training dataset, which comprises 80% of the dataset. For the second part,
algorithms are performed on the rest of the objects of the dataset, consisting of all outliers
and the other normal objects of the dataset, expressed as the newly arriving dataset. The
summary of details for each dataset is provided in Table 2.

Table 2. Characteristics of five experimental datasets.

Datasets Objects Training
Dataset

New Arriving
Dataset

Attributes Outliers

Wine 81 65 26 12 10
Ionosphere 245 196 34 5 20
Phoneme 500 400 100 5 50

Vowel 1456 1167 289 12 50
Smtp 5000 4000 1000 3 30

The effectiveness of algorithms is estimated by four metrics, which are the precision,
the recall, the rank power, and the area under the receiver’s operational characteristic
(ROC) curve [37], denoted as Pr, Re, RP, and AUC, respectively. In addition, AUC is
also employed to analyze the robustness of algorithms to the tuning parameters, where
the value of k ranges in [1, 50] [38]. Pr represents the proportion of abnormal samples
within the first m samples detected. As precision increases, so does the number of detected
outliers in the sample. Re refers to the proportion of samples predicted to be outliers
out of the actual abnormal samples. A higher recall rate indicates a greater proportion
of correctly detected abnormal samples. RP assesses the positions of returned outliers.
An outlier positioned earlier in the returned list has a greater contribution to the rank
power compared to one placed later in the list. AUC is a better metric used to quantify an
algorithm’s capacity to distinguish outliers. The ROC curve’s horizontal axis represents
the false positive rate, while the vertical axis represents the true positive rate. When an
algorithm exhibits higher classification accuracy, the ROC curve approaches the top-left
corner, and the AUC value approaches 1. Conversely, when the algorithm’s classification
accuracy is lower, the ROC curve tends to be closer to the lower-right corner, resulting in

http://archive.ics.uci.edu/ml
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a lower AUC value. In summary, the larger the value of Pr, Re, RP, and AUC, the more
efficient the outlier-detection algorithm.

5.2. Experimental Results and Discussions of the Methods

For effectiveness estimating, the nearest neighbor size k is set at 5% of the object
number of the dataset. The values of k are 4, 12, 25, 73, and 250 for the Wine dataset,
Ionosphere dataset, Phoneme dataset, Vowel dataset, and Cup 99 Smtp dataset, respectively.
The proposed method is performed with the fixed empirical parameters in the experiments,
where the values of α and that of SS are set to 0.5 and 1, respectively. Experimental results
of IncLOF, IncCOF, and IncDGOF for five different datasets are shown in Table 3, where
the top m denotes the number of the observed outlier candidates and m is set as multiples
of the number of outliers in the dataset within four multiples. For five different datasets,
the experimental results of IncDGOF are always superior to those of IncLOF and IncCOF,
except for the RP values of the Smtp dataset. The RP values of IncDGOF are just inferior
to those of IncLOF for the Smtp dataset. According to the incremental scheme of IncLOF
and IncCOF, IncLOF values and IncCOF values of all affected objects will be recomputed
in the training dataset. However, the training dataset consists of normal objects and the
outlier degree of the object should be fixed in the training dataset, i.e., the outlier degree of
the training dataset should not be influenced by the newly collected objects, particularly
the anomalies. Nevertheless, in the incremental scheme of IncDGOF, the outlier degree of
the training dataset is retained, and outlier factors of the affected objects are just updated
to serve outlier computation of the newly collected objects. Thus, IncDGOF can reduce
the computational burden. The proposed incremental scheme is more suitable to real
application data and is more efficient in application.

Table 3. Experimental results of IncLOF, IncCOF, and IncDGOF for all datasets.

Datasets Methods
IncLOF IncCOF IncDGOF

Pr Re RP AUC Pr Re RP AUC Pr Re RP AUC

Wine

Top 10
Top 20
Top 30
Top 40

parameter k

0.30
0.20
0.20
0.18

4

0.30
0.40
0.60
0.70

4

0.67
0.34
0.26
0.23

4

0.68

4

0.30
0.30
0.27
0.25

4

0.30
0.60
0.80
1.00

4

0.40
0.37
0.34
0.31

4

0.83

4

0.40
0.40
0.30
0.23

4

0.40
0.80
0.90
0.90

4

0.50
0.44
0.44
0.44

4

0.84

4

Ionosphere

Top 20
Top 40
Top 60
Top 80

parameter k

0.30
0.33
0.25
0.24
12

0.30
0.65
0.75
0.95
12

0.35
0.34
0.33
0.29
12

0.88

12

0.55
0.40
0.30
0.24
12

0.55
0.80
0.90
0.95
12

0.72
0.60
0.52
0.50
12

0.94

12

0.90
0.48
0.32
0.24
12

0.90
0.95
0.95
0.95
12

0.96
0.95
0.95
0.95
12

0.98

12

Phoneme

Top 50
Top 100
Top 150
Top 200

parameter k

0.08
0.17
0.15
0.14
25

0.08
0.34
0.44
0.54
25

0.08
0.14
0.14
0.14
25

0.59

25

0.12
0.13
0.13
0.14
25

0.12
0.26
0.40
0.54
25

0.10
0.13
0.13
0.14
25

0.59

25

0.46
0.36
0.26
0.21
25

0.46
0.72
0.76
0.82
25

0.54
0.47
0.44
0.39
25

0.87

25

Vowel

Top 50
Top 100
Top 150
Top 200

parameter k

0.38
0.26
0.20
0.17
73

0.38
0.52
0.60
0.68
73

0.66
0.44
0.36
0.29
73

0.74

73

0.40
0.26
0.21
0.16
73

0.40
0.52
0.62
0.62
73

0.48
0.38
0.32
0.32
73

0.86

73

0.58
0.41
0.31
0.24
73

0.58
0.82
0.92
0.94
73

0.75
0.57
0.50
0.49
73

0.98

73

Smtp

Top 30
Top 60
Top 90

Top 120
parameter k

0.67
0.33
0.22
0.17
250

0.67
0.67
0.67
0.67
250

1
1
1
1

250

0.87

250

0.67
0.33
0.22
0.17
250

0.67
0.67
0.67
0.67
250

0.98
0.98
0.98
0.98
250

0.78

250

0.67
0.33
0.22
0.18
250

0.67
0.67
0.67
0.70
250

0.98
0.98
0.72
0.72
250

0.92

250
The bolder ones mean better.

Outlier-detection algorithms adopt k-nearest neighbors to calculate the outlier factor,
so they are probably sensitive to the parameter k. Figure 2 shows AUC values with k
ranging from 1 to 50 for five different datasets, which clarifies the influence of the nearest
neighbor size for the algorithms. Compared with the AUC curves of IncLOF and that of
IncCOF, the AUC curves of IncDGOF are always smoother and steadier for each dataset,
and IncDGOF possesses larger AUC values for various k values in five different datasets.
Gaussian kernel function with adaptive width can realize that the inseparable issue of low-
dimensional space is transformed into a linearly separable issue of high-dimensional space,
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and it can increase the adaptivity of the algorithm to parameter k. On the other hand, the
presented dynamical Gaussian kernel density improves the difference description between
the objects. Therefore, the proposed algorithm not only builds a precise incremental scheme
but is also robust to the nearest neighbor size for the computation of outlier degrees.

(a) Wine (b) Ionosphere

(c) Phoneme (d) Vowel

(e) Smtp

Figure 2. AUC values of IncLOF, IncCOF and IncDGOF for (a) Wine dataset, (b) Ionosphere dataset,
(c) Phoneme dataset, (d) Vowel dataset, and (e) Smtp dataset, respectively.
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5.3. Experimental Results and Discussions for the Involved Scaling Factors

The Ionosphere and Vowel datasets are adopted to evaluate the involved scaling
factors of the proposed algorithm by comparing AUC values. Moreover, the suggestion
value of α and the suggestion value of SS are determined for using density estimation in the
proposed method. For the smoothness experiments regarding the controlling parameter, SS
of the proposed method is set as 1, and α of the proposed method is, respectively, set as 0.1,
0.3, 0.5, 0.7, and 0.9. For the parameter experiments regarding multiscale kernel function, α
of the proposed method is set as 0.5, and SS of the proposed method is, respectively, set as
1, 2, 3, 4, and 5.

For the Ionosphere and Vowel datasets, AUC values of the proposed algorithm with
different values of α are shown in Figure 3, and the AUC values with k ranging from 1 to
50 reflect how the value of α works for outlier detection. The proposed algorithm with
various k values has close and larger AUC values when the value of α is 0.5, 0.7, and
0.9. Furthermore, the proposed algorithm has similar stable AUC curves when the value
of α is 0.5, 0.7, and 0.9. The AUC values of the proposed algorithm are greatly changed
and inferior when the value of α is 0.1 and 0.3. Therefore, the suggestion value of α can
be chosen in [0.5, 1] for the proposed algorithm. This conclusion satisfies that α can be
determined by “Silverman’s rule-of-thumb” with regard to the density estimation issue
where the suggestion value is selected in the interval [0.5, 1] [32,39].

(a) Ionosphere (b) Vowel

Figure 3. AUC values of the proposed method with α = 0.1, 0.3, 0.5, 0.7, 0.9 for (a) Ionosphere dataset,
and (b) Vowel dataset, respectively.

For the Ionosphere and Vowel datasets, AUC values of the proposed algorithm with
different values of SS are shown in Figure 4, and the AUC values with k ranging from
1 to 50 reflect how the value of SS works for outlier detection. The proposed algorithm
performed similarly with stable and higher AUC values along with k increasing when SS
is set as 1, 2, and 3. The proposed algorithm has obvious fluctuation and relatively worse
values of the AUC curve when SS is set as 4 and 5. Therefore, the suggestion value of SS
can be given as 1, 2, and 3 for the proposed algorithm.

According to the experimental results of parameters α and SS on two different charac-
teristic datasets, the suggestion value of α can be chosen in [0.5, 1], and that of SS can be set
to 1, 2, and 3.
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(a) Ionosphere (b) Vowel

Figure 4. AUC values of the proposed method with SS = 1, 2, 3, 4, 5 for (a) Ionosphere dataset, and
(b) Vowel dataset, respectively.

6. Conclusions

This paper has proposed an adaptive-kernel-based incremental scheme for industrial
outlier detection. In data streams, the automatic monitoring of outliers integrates the com-
putation of outlier factors and adaptive incremental strategy. The definition of outlier factor
indicates the gradual process of changing density, which enhances the discriminability
between objects and the explanation of the density change. Gaussian kernel function with
an adaptive kernel width is employed to ensure smoothness in the local measures and
to improve discriminability between objects, and dynamical Gaussian kernel density is
presented to describe the gradual process of changing density. When new data arrives, the
method updates the measures of the affected objects used for outlying computation of the
arrived object, which can significantly reduce the computational burden. According to the
experimental results, IncDGOF is superior in terms of detection capability and robustness
to the nearest neighbor size compared with IncLOF and IncCOF. For the scaling factors
of IncDGOF, the suggestion value of α is selected in the interval [0.5, 1], and the sugges-
tion value of SS can be given as 1, 2, and 3. Moreover, incremental strategy reinforces
its applicability in the industrial field. The proposed method holds significant potential
for widespread application in industrial complex data streams characterized by varying
density regions because it can indicate the gradual process of changing density. In the
industrial domain, engineers can efficiently manage objects that display high outlier factor
values in real time in accordance with specific actual requirements.

The multiple kernel function can be built based on various kernel functions. Consider-
ing the diversity of the kernel function and its difference description of separability in high-
dimensional space, the estimation of an outlier factor combined with the multiple kernel function
is also an interesting future research issue for improving detection performance.
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