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Abstract: This research aims to apply an output filtering method to conduct the system parameter
identification of an unstable wheel‑driven pendulum system. First, the nonlinear dynamic model
of the system is established by utilizing the Lagrangian dynamic theorem. Next, the Least‑Square
(LS) is introduced for system parameter identification formulation. Nevertheless, considering the
real scenario, the wheel displacement is acquired from encoders subject to quantization errors. The
pitch angle of the pendulum cart is also accompanied by Gaussian noise. Therefore, using numer‑
ical differentiation for angular acceleration in the LS estimations directly would induce incorrect
state information seriously. To address this practical issue, an output filtering method is considered.
The developed parameter identification algorithm could attenuate the influence of the quantization
effect as well as noisy data and thus obtain much more accurate parameter identification results.
Comparative simulation reveals that the output filtering method has a superior parameter estima‑
tion performance than the direct numerical difference method.

Keywords: pendulum; parameter identification; least square; noise filtering; quantization error

1. Introduction
System parameter identification (SPI) uses the input and output histories to establish

to describe its dynamic behavior [1–4]. Several data‑driven identification methods for a
nonlinear mechanical system can be found in [5,6]. The reasonwhy SPI is important is that
system parameters coupling with states would have a great effect on the system’s dynamic
response. Namely, those parameters represent the system’s features. If those parameters
can be identified accurately, it is without a doubt that the procedure of designing a control
law will become more time‑saving, efficient, and robust.

Nevertheless, without an accurate dynamic model, all attempts at parameter identi‑
fication and rule‑based controller designs are inefficient or even futile. Thus, establish‑
ing an accurate system model becomes the primary step. In the past decade, significant
progress has been made in the research on self‑stabilizing two‑wheeled robots. Various
models and controllers have been employed to interpret and control the dynamics of two‑
wheeled robots. Further research on the dynamic modeling of two‑wheeled robots is also
reviewed in [7]. There are several ways to derive the wheel‑driven pendulum’s dynam‑
ics equation, such as the Newton methods [8] and the Lagrangian dynamic theorem [9].
Among different approaches, this paper adopts the Lagrangian dynamic theorem owing
to its systematic formulation procedures. Moreover, due to the unstable nature of an in‑
verted pendulum, a simple PID controller must be applied firstly to stabilize the system’s
attitude when conducting the SPI processes.

Secondly, based on the derived model, it can be found that the SPI can be formu‑
lated as a standard LS solution. The LS method is widely applied in parameter identifi‑
cations [10,11]. According to the LS, an over‑determined normal equation Y(t) = Φ(t)X
is formulated, where the output vector Y(t) and the observation matrix Φ(t) are the key
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measurements to determine the parameter vector X accurately. To fulfill the observation
matrix Φ(t), some states need to be estimated through numerical differentiation [12,13].
Nonetheless, from the practical realization point of view, the wheel angle data measured
from encoders are subjected to quantization effect. Meanwhile, the measured pitch angle
and angular velocity from an orientation sensor, such as the inertial measurement unit
(IMU), would accompanied by inevitable Gaussian noise. As pointed out in [14], the mea‑
surement noisewill be amplified ifY(t) andΦ(t) contain serious noise, which further gives
rise to a negative influence on parameter identification.

To address the potential issue discussed above, the filter regression model is applied
to the identificationmethodology for robotmanipulators and industrial robots, eliminating
the need for either the measurement or off‑line calculation of the linear and angular accel‑
erations [15–19]. Inspired by the works [20,21], an output filtering method is considered
to tackle this problem and is applied to the unstable wheel‑driven pendulum system. The
advantage of the presented method is that the observation matrix of the filtering method
does not contain the raw noise corrupted measurements, the filtered ones are adopted in‑
stead. Moreover, there is no need to involve the acceleration information, which is not
directly available from sensors. Refer to the associated studies [22,23]; they present an
energy‑based regression model that only involves position and velocity. This approach
avoids using numerical differentiation for acceleration estimations and applies integration
on the joint/motor velocities. However, there is no extra degree of freedom to adjust the
pure integration, which can be taken as a special case of a low‑pass filter. Therefore, the
command trajectories should be properly designed. Recent research [24] has emphasized
the significance of coarse encoder quantization errors in angular measurements, which
introduce noise affecting the estimation of velocity and acceleration. Consequently, the ar‑
ticle addresses this issue by applying the filter‑based method. Notably, in comparison to
the differentiation‑based method found in the existing literature, the filter‑based primary
feature is its avoidance of direct differentiation for velocity information acquisition. More‑
over, the filter‑based approach offers a more efficient approach to mitigate the influence
of quantization noise. Experimental results presented in [24] affirm that filter‑based SPI
surpasses differentiation‑based SPI in terms of parameter estimation accuracy. However,
a simple stable motor system was presented [24]. To exploration the potential capability
of the filter‑based method, this work applied it to highly nonlinear unstable wheel‑driven
pendulum system.

Note that the selection of a filtering operator is highly important. A great integral
operator should preserve the system’s dominant frequencies and filter out the unwanted
noises. Otherwise, the integral operator might distort the dominant frequencies or could
not remove the redundant noises. In summary, the importance of SPI mainly includes
two parts: first, SPI allows control engineers to develop a robust control law more easily;
second, dynamics modeling together with SPI can be used as a digital twin to monitor the
system behavior online [25].

The main contributions of the paper are summarized as follows: (1) extending the
filter‑based SPI to a nonlinear unstable wheel‑driven pendulum system; (2) presenting an
output filtering method which can suppress the Gaussian noise and quantization noise
effects; (3) conducting a performance comparison study between the proposed output
filtering method and the direct numerical differentiation method; and (4) demonstrating
the use of aggressive command input citation can enhance the precision of the parameter
estimations.

2. System Description
The description of the wheel‑driven pendulum dynamics model can be found in [26].

Figure 1 shows the position of the system, where θw and θp are the wheel’s rotational angle,
and the inclined angle of the body, respectively. M represents the mass of the body and
m denotes the mass of the wheels. Jw and Jp are the moment of inertia with respect to the
wheel’s axles of the wheel and the body, respectively. R is the wheel radius. W and L are
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the distance between two wheels and the distance between the wheel and the center of
mass, respectively. The positions of the left and right wheels, and the center of mass are
represented by the coordinates (xi, yi, zi), where i corresponds to l, r, or b.
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Figure 1. Cartesian coordinate of thewheel‑driven cart schematic diagram, where red dot represents
the center of mass of the cart.

2.1. Modeling of a Wheel‑Driven Pendulum Cart
According to the Lagrangian dynamics, it is composed of the kinetic energy T and the

potential energy U, which can be described as L = T − U, in which

L = mR2
.
θw

2 + 1
2 MR2

.
θw

2 + MR
.
θw

.
θpL cos

(
θp
)
+ 1

2 M
.
θp

2L2 + Jw
.
θw

2 + 1
2 Jb

.
θp

2 + ε2 Jm
.
θw

2

− 2ε2 Jm
.
θw

.
θp + ε2 Jm

.
θp

2 − MgR − MgL cos θp
(1)

Based on the definition of the Lagrangian dynamics, one has

d
dt

(
∂L

∂
.
θq

)
− ∂L

∂θq
= Fq (2)

where q denotes the general coordinate, and Fq represents the general force with respect
to the general coordinate. Hence, the dynamics equation of a wheel‑driven pendulum cart
can be written as

Fθw =
(
(2m + M)R2 + 2JW + 2ε2 Jm

) ..
θw +

(
MLR cos

(
θp
)
− 2ε2 Jm

) ..
θp − MLR

.
θp

2 sin
(
θp
)

(3)

and

Fθp =
(

MLR cos
(
θp
)
− 2ε2 Jm

) ..
θw +

(
ML2 + Jb + 2ε2 Jm

) ..
θp − MgL sin

(
θp
)

(4)

where Fθw , Fθp denotes the generalized forcewith respect to the general coordinate
[
θw θp

]
,

respectively.

2.2. Model Description of a Motor
The governing equations of the electrical driving circuit and the motor mechanism

can be expressed by

L
di
dt

+ iRm + Kew = Vin (5)

and
Jm

dw
dt

= Kti − Bmw − TL (6)
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respectively, in Equation (5), L is the inductance, Rm is the resistance, Ke is the back emf
constant, Vin is the applied voltage, i is the armature current, and w is the motor’s angular
velocity which is equivalent to the wheel’s angular velocity

.
θw. Moreover, in (6), Jm is the

motor’s moment of inertia, Kt is the torque constant, Bm is the viscous coefficient, and TL
represents the external load.

According to the property that electric power is equivalent to mechanical power, it
follows that (Kew)i = (Kti)w. Therefore, one has Ke = Kt := K. Since the mechanical
dynamics of a wheel‑driven pendulum cart are much slower than electrical dynamics, (5)
reduces to

Vin ≈ iRm + Kw (7)

Based on (4)–(7), the actuator dynamics can be simplified by

Jm
dw
dt

=
K

Rm
Vin −

(
K2

Rm
+ Bm

)
w − TL (8)

The external loads are mainly caused by the friction between the cart’s body and
wheels, and also between the wheels and the ground. Moreover, the influence of the mo‑
tor’s viscosity can be neglected. Thus, TL can be modeled by

TL = fm

( .
θp −

.
θw

)
(9)

Substituting (9) into (8) yields

Jm
dw
dt

= Fθw (10)

in which
Fθw = αVin − 2(β + fw)

.
θw + 2β

.
θp (11)

and the equivalent coefficients α and β are

α = 2εKt
Rm

,

β = εKtKb
Rm

+ fm
(12)

Furthermore, because of the inverted pendulum’s physical behavior, it is obvious that
Fθw = −Fθp . Therefore, one has

Fθp = −αVin + 2(β + fw)
.
θw − 2β

.
θp (13)

2.3. Integrate the Model of a Pendulum Cart and Motors
Based on (4), (11) and (13), the complete dynamics equations of the wheel‑driven pen‑

dulum cart can be represented by

αVin = 2(β + fw)
.
θw − 2β

.
θp − MLR

.
θp

2 sin
(
θp
)
+
(
(2m + M)R2 + 2JW + 2ε2 Jm

) ..
θw

+
(

MLR cos
(
θp
)
− 2ε2 Jm

) ..
θp

(14)

and
αVin = 2(β + fw)

.
θw − 2β

.
θp −

(
ML2 + Jb + 2ε2 Jm

) ..
θp + MgL sin

(
θp
)

−
(

MLR cos
(
θp
)
− 2ε2 Jm

) ..
θw

(15)

Apparently, the dynamics of the wheel‑driven pendulum are highly nonlinear and unsta‑
ble. In order to estimate the parameters, the equivalent parameter representation should
be further considered. Moreover, since the system is unstable, a stabilizing control law
must be applied for the collection of input/output excitation signals.
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3. System Parameter Identification
3.1. Least‑Square Algorithm

The LS algorithm has been widely used to identify a system’s parameters since this
approach enables the provision of a globally optimal solution to minimize the residual
error. As a result, the LS algorithm plays an important role in this paper to perform the
system parameter identification.

Consider the regression model as y(t) = φ(t)X, in which y(t) ∈ Rp is the output of
the regression model, φ(t) ∈ Rp×n is the regressor, and X =

[
X1 . . . Xn

]T ∈ Rn is the
unknown parameter vector to be identified.

Based on a sufficiently long period of observation for t = T, 2T, · · · , NT, where T is
the sampling interval, it gives the following over‑determined equation Y = ΦX, where

Y =


y(T)
y(2T)

...
y(NT)


m×1

, Φ =


φ(T)

φ(2T)
...

φ(NT)


m×n

(16)

and m = pN > n. The LS algorithm aims to determine the estimated parameter
^
X =

[
X̂1 . . . X̂n

]T ∈ Rn to minimize the residual error E, which equals to
min

^
X

∥E∥2 ≜ ∥Y− ΦX∥2. For the residual error E, the optimal solution is

^
X =

(
ΦTΦ

)−1
ΦTY ≜ Φ†Y (17)

in which Φ† =
(
ΦTΦ

)−1
ΦT is the pseudo‑inverse of the observation matrix Φ, and the

matrixΦTΦmust be invertible. Moreover, it is worth to note that the identified parameters
^
Xwill deviate from their references significantly if obvious noise appears in (16).

3.2. Regression Model of a Wheel‑Driven Pendulum System
To facilitate the system identification, according to (14) and (15), define

X = [X1, X2, X3, X4, X5, X6, X7]
T as follows,

X1 = (2m+M)R2+2Jw
α , X2 = 2εJm

α , X3 = MLR
α ,

X4 = ML2+Jb
α , X5 = MgL

α , X6 = 2(β+ fw)
α , X7 = 2β

α

(18)

Based on the equivalent parameter representation (18), Equations (14) and (15) become

Vin = (X1 + X2)
..
θw +

(
X3 cos

(
θp
)
− X2

) ..
θp − X3

.
θp

2 sin
(
θp
)
+ X6

.
θw − X7

.
θp (19)

and

Vin = −
(
X3 cos

(
θp
)
− X2

) ..
θw − (X4 + X2)

..
θp − X5 sin

(
θp
)
+ X6

.
θw − X7

.
θp (20)

respectively. Next, to apply the LS algorithm, it is necessary to express the unknown sys‑
tem parameters in terms of a linear regression form

τ(t) = φ(t)X (21)

in which τ(t) = [Vin(t), Vin(t)]
T and

φ(t) =

[ ..
θw

..
θw −

..
θp φ13 0 0

.
θw −

.
θp

0
..
θw −

..
θp φ23 −

..
θp φ25

.
θw −

.
θp

]
(22)
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where
φ13 = cos

(
θp
) ..
θp − sin

(
θp
) .
θ

2
p,

φ23 = − cos
(
θp
) ..
θw,

φ25 = sin
(
θp
) (23)

Given the sampled data for t = T, 2T, · · · , NT, the LS equation can be constructed
by Y = ΦX, where

Y =


τ(T)
τ(2T)

...
τ(NT)


2N×1

, Φ =


φ(T)

φ(2T)
...

φ(NT)


2N×7

(24)

Theoretically, the optimal parameters can be obtained by applying the LS solution
^
X = Φ†Y to minimize the residual error.

However, an examination of the observationmatrix Φ reveals that it involves not only
thewheel rotation angle and the cart’s pitch angle and angular velocity but also thewheel’s
angular velocity, acceleration, and the cart’s pitch angular acceleration. From a practical
realization scenario, thewheel rotation angle can be directlymeasured through an encoder.
Nevertheless, the angle measurement is subject to the quantization effect. Simultaneously,
the pitch angle and the pitch angular velocity are alsomeasurable by an IMU but are prone
to measurement noise. Additionally, the regression matrix (22) includes unmeasurable
variables such as the cart’s pitch angular acceleration, wheel angular velocity, and wheel
angular acceleration, which must be obtained through numerical differencing. It is well
known that the numerical differencing method can significantly amplify the noise. This
amplification of measurement noise leads to the problem formulation of the ideal LS from
Y = ΦX to Y+ ∆Y = (Φ + ∆Φ)X, which causes parameter identification bias even using

the optimal solution
^
X = Φ†Y. In other words, the reduction in ∆Y and ∆Φ would effec‑

tively contribute to the improvement of parameter identification accuracy. This issue is
going to be addressed by applying a filtering based regression model, introduced in the
following section.

3.3. Filtering‑Based Regression Model
It is well known that themeasurement encoder quantization effect as well as the Gaus‑

sian noisemay be amplified by taking the numerical differentiation. To avoid this potential
weakness, the filtering‑based regression model is considered. In other words, (21) should
be rewritten as

τ(t) =
[

d2

dt2φ2(t) +
d
dt

φ1(t) +φ0(t)
]

X (25)

in which
φ2(t) =

[
θw θw − θp 0 0 0 0 0
0 θw − θp 0 −θp 0 0 0

]
,

φ1(t) =

[
0 0 cos

(
θp
) .
θp 0 0 θw −θp

0 0 − cos
(
θp
) .
θw 0 0 θw −θp

]
,

φ0(t) =

[
0 0 0 0 0 0 0
0 0 − sin

(
θp
) .
θp

.
θw 0 sin

(
θp
)

0 0

] (26)

Taking the Laplace transform of (25) yields

τ(s) = φ(s)X (27)

in which s represents the Laplace operator; τ(s) andφ(s) are defined as

τ(s) = L{τ(t)},
φ(s) = φa(s) +φb(s) +φc(s)

(28)
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and
φa(s) = L

{ ..
φ2(t)

}
= s2φ2(s)− sφ2(0)−

.
φ2(0),

φb(s) = L
{ .

φ1(t)
}
= sφ1(s)−φ1(0),

φc(s) = L{φ0(t)} = φ0(s)
(29)

Introduce a double filtering operator

Io(s) =
1

(τ1s + 1)(τ2s + 1)
(30)

where the time constants τ1 ≥ 0 and τ2 ≥ 0 are to be determined. As highlighted in the
recent work [21], the selection of the time constants is supposed to consider the excitation
frequency of the input as well as the dynamic nature of the control system. An inadequate
selection of the time constant may result in an obvious deviation of the identified parame‑
ters. Applying (30) to the Laplace transform (27) gives

τ2 f (s) = φ2 f (s)X (31)

where
τ2 f (s) = Io(s)τ(s),
φ2 f (s) = φ

2 f
2 (s) +φ

2 f
1 (s) +φ

2 f
0 (s)

(32)

and
φ

2 f
2 (s) = Io(s)

(
s2φ2(s)− sφ2(0)−

.
φ2(0)

)
,

φ
2 f
1 (s) = Io(s)(sφ1(s)−φ1(0)),

φ
2 f
0 (s) = Io(s)φ0(s)

(33)

To avoid the use of s2φ2(s), reformulateφ
2 f
2 (s) as follows

φ
2 f
2 (s) = 1

τ1τ2
1
ν1

(
s2φ2(s)− sφ2(0)−

.
φ2(0)

)
= 1

τ1τ2
φ2(s) +

1
τ1τ2ν1

[
−ν2φ2(s)−

(
s + 1

τ1

)
φ2(0)

]
+ 1

τ1τ2ν1

[(
ν2

1
τ1
− 1

τ1τ2

)
φ2(s) +

1
τ1

φ2(0)−
.

φ2(0)
]

= φ′
2(s) + Y2,1(s) + Y2,2(s)

(34)

where
φ′

2(s) =
1

τ1τ2
φ2(s),

Y2,1(s) = 1
τ1τ2

τ2
τ2s+1 [−ν2φ2(s)−φ2(0)],

Y2,2(s) = 1
τ1τ2

1
ν1

[
1

τ2
1
φ2(s) +

1
τ1

φ2(0)−
.

φ2(0)
] (35)

and
ν1 = (s + 1/τ1)(s + 1/τ2),
ν2 = (1/τ1 + 1/τ2)

(36)

In the same manner, removing sφ1(s) inφ
2 f
1 (s) is followed by

φ
2 f
1 (s) = 1

(τ1s+1)(τ2s+1) (sφ1(s)−φ1(0))

= 1
τ1τ2

τ1s+1
ν1τ1

φ1(s) +
1

τ1τ2
1
ν1

[
− 1

τ1
φ1(s)−φ1(0)

]
= Y1,1(s) + Y1,2(s)

(37)

where
Y1,1(s) = 1

τ1τ2

τ2
τ2s+1φ1(s),

Y1,2(s) = 1
τ1τ2

1
ν1

[
− 1

τ1
φ1(s)−φ1(0)

] (38)
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Taking the inverse Laplace transformation of τ2 f (s) = φ2 f (s)X yields the filtering‑
based regression model as

τ2 f (t) = φ2 f (t)X (39)

in which

τ2 f (t) = L−1
{

τ2 f (s)
}

,

φ2 f (t) = L−1
{

φ2 f (s)
}

= φ
2 f
2 (t) +φ

2 f
1 (t) +φ

2 f
0 (t)

= φ′
2(t) + Y2,1(t) + Y2,2(t) + Y1,1(t) + Y1,2(t) +φ

2 f
0 (t)

(40)

where φ′
2(t) = φ2(t)/τ1τ2. The filtering quantities τ2 f (t), Y2,1(t), Y2,2(t), Y1,1(t), Y1,2(t)

and φ
2 f
0 (t) can be estimated by numerically integrating the following matrix differential

equations:
..
τ

2 f
(t) = −ν3

.
τ

2 f
(t)− 1

τ1τ2
τ2 f (t) + 1

τ1τ2
τ(t),

.
Y2,1(t) = − 1

τ2
Y2,1(t)− ν2

τ1τ2
φ2(t),..

Y2,2(t) = −ν3
.
Y2,2(t)− 1

τ1τ2
Y2,2(t) + 1

τ1τ2τ2
1
φ2(t),

.
Y1,1(t) = − 1

τ2
Y1,1(t) + 1

τ1τ2
φ1(t),..

Y1,2(t) = −ν3
.
Y1,2(t)− 1

τ1τ2
Y1,2(t)− 1

τ1τ2τ1
φ1(t),

..
φ

2 f
0 (t) = −ν3

.
φ

2 f
0 (t)− 1

τ1τ2
φ

2 f
0 (t) + 1

τ1τ2
φ0(t)

(41)

Among (41), ν3 = 1/τ1 + 1/τ2 and the initial conditions are

τ2 f (0) =
.
τ

2 f
(0) = 0,

Y2,1(0) = − 1
τ1τ2

φ2(0),
Y2,2(0) = 0,
.
Y2,2(0) = 1

τ1τ2

(
1
τ1

φ2(0)−
.

φ2(0)
)

,
Y1,1(0) = 0,
Y1,2(0) = 0,
.
Y1,2(0) = − 1

τ1τ2
φ1(0),

φ
2 f
0 (0) =

.
φ

2 f
0 (0) = 0

(42)

Similar to (16) and (24), and considering the regression model (39), the LS equation
can now be modified by the filtered normal equation Y2 f = Φ2 fX, where

Y2 f =


τ2 f (T)

τ2 f (2T)
...

τ2 f (NT)


2N×1

, Φ2 f =


φ2 f (T)

φ2 f (2T)
...

φ2 f (NT)


2N×7

(43)

Hence, the least‑square solution tominimize the residual error is given by
^
X = Φ†

2 fY2 f ,
where Φ†

2 f is the pseudo‑inverse of the filtering operator‑based observation matrix. Com‑
pared to the original LS method, the proposed filtering method only contains the output
measurable position and filtered velocity measurements. In short, the filtering method
avoids the direct use of noisy acceleration measurements through numerical differentia‑
tion estimation and thereby provides a more accurate parameter estimation.

Further, owing to the introduction of the filtering factors τ1 and τ2, the regression
model can suppress the influence of initial condition and the measurement quantization
and Gaussian errors. A guidance of the selection of the filtering factors, which plays a
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significant role in enhancing the accuracy of parameter identification results, has been ad‑
dressed and proven in [21].

Regarding the realization of the filtering method presented in this section, firstly, the
output filtering method is built upon the output filtering‑based regression model (39) and
involves arranging the time histories to formulate the least squares equation for optimal
parameter estimation. The computational process of the entire method is not overly com‑
plex. The filtering quantities at each time point, t = T, 2T, . . . , NT, as indicated in (39), can
be estimated through numerical integration of the matrix differential equation provided
in (41). We have transformed (41) under the assumption of zero‑order hold to a discrete
equation for numerical iteration. Further details regarding the numerical integration can
be found in the Appendix A of reference [24]. Moreover, for the computation of the op‑
timal solution using the least‑squares method, a significant amount of memory may be
required to allocate measurement matrices Φ2 f . Considering the constraints of memory
in embedded systems, it is not feasible to store all time data within the microprocessor.
Therefore, to achieve real‑time parameter identification, an iterative approach is necessary
for the solution of the least squares method. The relevant methodology can be found in
reference [21].

4. Numerical Simulation of the Filtering Method
The following simulation is performed in MATLAB/Simulink with the solver Runge‑

Kutta 4, where the time‑step T = 0.001 s is applied. Since the wheel‑driven pendulum
cart is unstable, to meet the real situation when conducting SPI, a simple proportional–
integral–derivative (PID) controller is implemented based on the linearizedmodel applied
to stabilize the cart’s attitude. The control gains are adjusted as follows: the proportional
(P) gain, the integral (I) gain and the derivative (D) gain are set to be −168, −800, and
−8.8, respectively. Note that the negative sign of the PID gains is from the definition of
the tracking error.

The exact parameters are listed as follows: m = 4.6 kg, L = 1.8 m, M = 110 kg,
R = 0.2413 m, ε = 14, fm = 0.3, Kb = 0.722 Vs/rad, Kt = 0.833 Nm/A, Rm = 0.141 Ω,
Jw = 0.1339 kgm2, and Jb = 87.89 kgm2. The nominal parameters which are used for the
PID control design are set to be around 90% of the exact parameters. The corresponding
reference equivalent parameters are displayed in Table 1.

Table 1. Simple command based on differentiation versus filtering.

Reference
Parameter.

Differentiation‑Based Filter‑Based

Est. Para. Error (%) Est. Para. Error (%)

X1 = 0.0436 0.004628 89.38 0.02921 33.04
X2 = 0.0178 ‑0.006094 134.24 0.03071 72.52
X3 = 0.1149 ‑0.003984 103.47 0.06709 41.60
X4 = 0.8719 0.008320 99.05 0.51477 40.96
X5 = 4.6701 3.43352 26.48 2.85297 38.91
X6 = 0.7268 0.75595 4.012 0.72685 0.0073
X7 = 0.7256 −2.12978 393.52 0.72526 0.0474

In regard to wheel encoder quantization, the resolution 60,000 counts per revolution
is made. Thus, the resulting measurement quantization error is 2π/60, 000 rad/count. On
the other hand, the standard deviation of the noise for pitch angle and its angular velocity
are 0.5 degrees and 0.5 degrees/s, respectively.

The following are the comparison of simulation results between the true parameters
and the identified parameters under the condition: time constants τ1 = 2.25 and τ2 = 6.5,
the initial conditions

[
θw = 0 θp = 0

.
θw = 0

.
θp = 0

]
are applied for all the following

simulations.
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Table 1 summarizes the performance comparison of the SPI between the direct numer‑
ical differentiation method and the proposed output filtering method. The results clearly
illustrate that the proposed SPI method is able to provide a better accuracy as expected.

Moreover, as analyzed in [21], different excitation of the input commands has a sig‑
nificant impact on the observation matrix Φ−1

2 f Φ2 f . The simpler the command is, the
more likely that the condition number of Φ−1

2 f Φ2 f would become bigger. In other words,
Φ−1

2 f Φ2 f is likely to be ill‑conditioned. On the contrary, themore active the input command
is, the more probable that the matrix Φ−1

2 f Φ2 f is well‑conditioned. Therefore, in this paper,
a simple as well as an aggressive command are applied. To note, the simple command
input is a sinewave while the aggressive command is the combination of several sine and
cosine waves with different frequencies and amplitude. To put it clearly, the simple com‑
mand is designed as Rsimple(t) = 20 sin(t), and the aggressive command is designed as
Raggressive(t) = 3 sin(7t) + 6(cos(4t)− sin(t)) + 10 cos(3t) sin2(5t).

For the system identification of unstable systems, it is it is essential to begin by de‑
signing a controller and performing preliminary parameter tuning to ensure the stability
of the closed‑loop system. However, overly simplistic reference commands may not fully
excite all aspects of the system’s behavior. By employing an aggressive command as a ref‑
erence command to excite the system’s response, the controlled loop generates a control
input signal to achieve the desired dynamic response of the system as close as possible.
Subsequently, system parameter identification is conducted utilizing the closed‑loop con‑
trol input signal and historical data of system outputs. Figure 2 illustrates the input signals
used for closed‑loop parameter identification under aggressive command excitation, while
Figure 3 displays the corresponding system output responses. Apparently, due to the im‑
perfection of the sensors, the input/output signals are contaminated bymeasurement noise.
Therefore, the filter‑based method becomes very important for noise suppression during
the SPI, which has been highlighted in Table 1.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 18 
 

 

Table 1. Simple command based on differentiation versus filtering. 

Reference Parameter. 
Differentiation-Based Filter-Based 

Est. Para. Error (%) Est. Para. Error (%) 
1 0.0436X  0.004628 89.38 0.02921 33.04 

2 0.0178X  -0.006094 134.24 0.03071 72.52 

3 0.1149X  -0.003984 103.47 0.06709 41.60 

4 0.8719X  0.008320 99.05 0.51477 40.96 

5 4.6701X  3.43352 26.48 2.85297 38.91 

6 0.7268X  0.75595 4.012 0.72685 0.0073 

7 0.7256X  −2.12978 393.52 0.72526 0.0474 

For the system identification of unstable systems, it is it is essential to begin by de-
signing a controller and performing preliminary parameter tuning to ensure the stability 
of the closed-loop system. However, overly simplistic reference commands may not fully 
excite all aspects of the system’s behavior. By employing an aggressive command as a 
reference command to excite the system’s response, the controlled loop generates a control 
input signal to achieve the desired dynamic response of the system as close as possible. 
Subsequently, system parameter identification is conducted utilizing the closed-loop con-
trol input signal and historical data of system outputs. Figure 2 illustrates the input signals 
used for closed-loop parameter identification under aggressive command excitation, 
while Figure 3 displays the corresponding system output responses. Apparently, due to 
the imperfection of the sensors, the input/output signals are contaminated by measure-
ment noise. Therefore, the filter-based method becomes very important for noise suppres-
sion during the SPI, which has been highlighted in Table 1. 

 
Figure 2. Input data for system identification. 

  
(a) (b) 

0 4 8 12 16 20
time (s)

-100

-50

0

50

Figure 2. Input data for system identification.

According to Table 2, it is obvious that the parameters identified through the aggres‑
sive command aremore accurate than the simple command. The results verify the assump‑
tion asmentioned before. In other words, an active command can excite wheel‑driven pen‑
dulum cart’s dynamic responsemore obviously than just a simple command. Note that the
selection of the filter time constants should not filter out the original system’s dynamic re‑
sponse, but should be able to suppress the measurement noise.
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Table 2. Parameter identification results with different excitation command input.

Reference
Parameter

Simple Command Aggressive Command

Est. Para. Error (%) Est. Para. Error (%)

X1 = 0.0436 0.02921 33.04 0.04991 14.46
X2 = 0.0178 0.03071 72.52 0.01276 28.26
X3 = 0.1149 0.06709 41.60 0.10695 6.914
X4 = 0.8719 0.51477 40.96 0.83680 4.027
X5 = 4.6701 2.85297 38.91 4.67882 0.1025
X6 = 0.7268 0.72685 0.0073 0.72695 0.0212
X7 = 0.7256 0.72526 0.0474 0.70581 2.7282
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Based on the identified parameters, Figure 4 demonstrate the association output pre‑
dictions. The red line represents the exact output response from true parameters. As for the
blue and green line, the former stands for the prediction of parameters identified through
simple command, while the latter is the prediction of parameters identified through ag‑
gressive command. One can observe that, from Figure 5, the RMSE (Root Mean Square
Error) of the output prediction based on applying the identified parameters is very small.
According to the simulation results, the RMSE for wheel angle output prediction is 0.3260
for the aggressive command and 0.2423 for the simple command, respectively. Besides,
the RMSE for pitch angle output prediction is 6.8181e‑04 for the aggressive command and
0.0016 for the simple command. Also, the RMSE for wheel angular rate output predic‑
tion is 0.1585 for the aggressive command and 0.1267 for the simple command. Lastly, the
RMSE for pitch angular rate output prediction is 0.0064 for the aggressive command and
0.0201 for the simple command.

It is evident that states related to pitch, including pitch angle and pitch angular rate,
exhibit lower output prediction errors when excited through an aggressive command com‑
pared to those excited by a simple command. In contrast, states associated with the wheel,
although not showing significantly lower output prediction errors when excited through
an aggressive command than when excited through a simple command, display very sim‑
ilar errors between the two cases.

This phenomenon can be attributed to the fact that the response of parameters identi‑
fied through an aggressive command is superior to that of parameters identified through a
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simple command. The rationale behind this lies in the active command input’s capability
to reduce the condition number of the observation matrix for the wheel‑driven pendulum
system. This reduction prevents the system from becoming ill‑conditioned and thereby
enhances the accuracy of parameter identification.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18 
 

 

through an aggressive command than when excited through a simple command, display 
very similar errors between the two cases. 

This phenomenon can be attributed to the fact that the response of parameters iden-
tified through an aggressive command is superior to that of parameters identified through 
a simple command. The rationale behind this lies in the active command input’s capability 
to reduce the condition number of the observation matrix for the wheel-driven pendulum 
system. This reduction prevents the system from becoming ill-conditioned and thereby 
enhances the accuracy of parameter identification. 

 
(a) 

 
(b) 

 
(c) 

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18 
 

 

 
(d) 

Figure 4. Outputs response predictions of the closed-loop model for the wheel-driven pendulum 
system. (a) Wheel angle. (b) Pitch angle. (c) Wheel angular speed. (d) Pitch angular speed. 

  
(a) (b) 

  
(a) (b) 

Figure 5. Outputs prediction errors of the closed-loop model. (a) Wheel angle. (b) Pitch angle. (c) 
Wheel angular speed. (d) Pitch angular speed. 

In the context of closed-loop system identification, the performance of system iden-
tification can be evaluated not only through the prediction of output responses but also 
by calculating the corresponding control inputs using the controller, thereby enabling 
control input predictions. Based on the results of closed-loop system identification, Figure 
6 presents predictions of control inputs, comparing these predictions with both the meas-
ured and exact control inputs. 

Figure 4. Outputs response predictions of the closed‑loop model for the wheel‑driven pendulum
system. (a) Wheel angle. (b) Pitch angle. (c) Wheel angular speed. (d) Pitch angular speed.



Electronics 2023, 12, 4569 13 of 17

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18 
 

 

 
(d) 

Figure 4. Outputs response predictions of the closed-loop model for the wheel-driven pendulum 
system. (a) Wheel angle. (b) Pitch angle. (c) Wheel angular speed. (d) Pitch angular speed. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Outputs prediction errors of the closed-loop model. (a) Wheel angle. (b) Pitch angle. (c) 
Wheel angular speed. (d) Pitch angular speed. 

In the context of closed-loop system identification, the performance of system iden-
tification can be evaluated not only through the prediction of output responses but also 
by calculating the corresponding control inputs using the controller, thereby enabling 
control input predictions. Based on the results of closed-loop system identification, Figure 
6 presents predictions of control inputs, comparing these predictions with both the meas-
ured and exact control inputs. 

Figure 5. Outputs prediction errors of the closed‑loop model. (a) Wheel angle. (b) Pitch angle.
(c) Wheel angular speed. (d) Pitch angular speed.

In the context of closed‑loop system identification, the performance of system iden‑
tification can be evaluated not only through the prediction of output responses but also
by calculating the corresponding control inputs using the controller, thereby enabling con‑
trol input predictions. Based on the results of closed‑loop system identification, Figure 6
presents predictions of control inputs, comparing these predictions with both the mea‑
sured and exact control inputs.
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In Figure 6, the gray line represents the control input signal of the actual system with
outputmeasurement noise, the red line corresponds to the exact control input signal, while
the green and blue lines represent the predicted control inputs obtained through the exci‑
tation of an simple command and an aggressive command, respectively. It is evident from
the graph that the accuracy of control input prediction is influenced by the accuracy of pitch
angle prediction, as control inputs are derived from the error between the reference com‑
mand and the pitch angle. Consequently, the predictions generated through aggressive
command excitation exhibit higher accuracy compared to those obtained through simple
command excitation when compared to the exact control inputs.

When applying an output filtering method, it is necessary to perform numerical inte‑
gration for specific system states as shown in (41), where the associated initial values for
the integration is provided by (42). Consequently, any uncertainty in the initial value lead‑
ing to bias results in the accumulation of errors in the system state over time, affecting the
accuracy of the system state integration solution and, consequently, reducing the precision
of parameter identification. Based on (42), it is evident that increasing the values of the fil‑
ter parameters τ1 and τ2 can mitigate the impact of initial value uncertainty on numerical
integration. To validate this statement, extra simulations are conducted to evaluate the ac‑
curacy of parameter identification under different cases. In order to clearly point out how
the selection of the parameters τ1 and τ2 can affect the precision of the SPI, the following
numerical cases are applied in the absence of output measurement noise. The results are
summarized in Table 3.

Table 3. The impact of various filter parameters on parameter identification results with initial value
deviation.

Ref. Para.

Correct Initial Value Initial Value with Uncertainty (θp Deviation Is +0.5 Degrees)

Case A. τ1 = τ2 = 0.014 Case B. τ1 = τ2 = 0.014 Case C. τ1 = τ2 = 0.14 Case D. τ1 = τ2 = 4.2

Est. Para. Error (%) Est. Para. Error (%) Est. Para. Error (%) Est. Para. Error (%)

X1 = 0.0436 0.04355 0.1074 0.00590 86.458 0.04033 7.4825 0.05016 15.053
X2 = 0.0178 0.01781 0.0764 0.03485 95.787 0.01959 10.059 0.01248 29.844
X3 = 0.1149 0.11475 0.1239 ‑0.00727 1.0633 0.10586 7.8629 0.12766 11.106
X4 = 0.8719 0.87128 0.0707 ‑0.01024 1.0117 0.80374 7.8169 0.97554 11.886
X5 = 4.6701 4.66554 0.0974 0.65966 85.874 4.34846 6.8870 5.24997 12.416
X6 = 0.7268 0.72684 0.0061 0.72719 0.0546 0.72684 0.0064 0.72686 0.0084
X7 = 0.7256 0.72516 0.0600 0.72203 0.4914 0.72592 0.0442 0.71614 1.3031

In this simulation comparison study, the controller parameters and initial system set‑
tings remain consistent with the previous simulations. As mentioned previously, the max‑
imum system frequency of unstable systems is typically challenging to estimate before‑
hand. Therefore, the easiest way for the design of the filter parameters (τ1, τ2) is based on
the system’s reference commands, see [10,11,18]. In Case A, serving as the ground truth,
there is no initial value bias. Considering a cutoff frequency of the output filter that is
10 times the maximum reference command frequency, the filter parameters are designed
with τ1 = τ2 = 0.014. In Case B, using the same filter parameters, the initial value uncer‑
tainty introduced by the IMU‑based estimation of pitch angle is accounted for. Here, the
initial value of the pitch angle bias is set to bewith positive 0.5 degrees. Furthermore, tomit‑
igate the effects of initial value uncertainty and assess the impact of increased filter param‑
eters, we further conduct Case C, where filter parameters are adjusted to τ1 = τ2 = 0.14.
To further discuss an inadequate selection of the parameters degrade the SPI precision,
the Case D, where filter parameters are increased to τ1 = τ2 = 4.2, is demonstrated while
keeping the same level of initial value uncertainty bias.

From Table 3, it can be observed that, as the ground truth in Case A, since there is no
noise interference or initial value uncertainty, the filter‑based SPI results in very low pa‑
rameter estimation errors. However, under the influence of initial value bias in Case B, the
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accuracy of parameter identification is indeed affected, with some parameter estimation
errors reaching up to 95%. To address the SPI error caused by initial value uncertainty,
as shown in Case C, appropriately increasing the filter parameter values can effectively
mitigate the impact of initial value uncertainty and reduce parameter estimation errors.
Nevertheless, it should be emphasized that the filter parameter values cannot be infinitely
increased, as previously discussed in the article. The concept of output filtering is based
on the removal of noise from output data, and the physical significance of filter parameters
is the cutoff frequency of the filter. Therefore, excessive increases in filter parameters may
suppress the system’s dominant frequency response, making the original system behavior
unobservable, which in turn decreases the accuracy of parameter estimation, as demon‑
strated in Case D.

In summary, whenusing the output filteringmethods, the selection of the filter param‑
eters carries significant implications. For unstable systems, under the condition of meeting
basic tracking requirements, filter parameter design can be based on the maximum fre‑
quency of reference commands in the closed‑loop control. The adjustment of filter param‑
eters should not solely focus on noise removal, but should also consider the suppression
of uncertainties in system initial value measurements.

Based on the above simulations, we can firmly conclude that the use of filtering‑based
system parameter identification can be applied to the nonlinear and unstable wheel‑driven
pendulum system successfully; the second‑order output filtering method does not require
the use of noisy acceleration signals, thus enabling more accurate parameter estimation;
the filtering method is able to suppress the effects of Gaussian noise and quantization
noise effectively; incorporation of aggressive command input can enhance the precision
of parameter estimation.

Remark 1. In the process of system identification, unstable systems may lead to adverse experimen‑
tal outcomes or even pose safety hazards. Therefore, utilizing closed‑loop system identification not
only ensures the stability during the SPI but also effectively estimates the parameters of unstable
systems, subsequently reducing system uncertainties in later stages of control design. Furthermore,
employing unstable systems for closed‑loop model estimation as an application of digital twins holds
significant value. Given the unique physical characteristics of unstable systems, arbitrary adjust‑
ments to system controller parameters may result in system divergence, or even more severe con‑
sequences such as system damage. Leveraging the concept of a digital twin, designers can perform
preliminary assessments of physical systems within a virtual model and proceed with controller
design. Through simulations, they can evaluate the expected performance of the controller, thus
verifying the feasibility and effectiveness of the controller design. Ultimately, these designs can be
applied to real‑world systems, ensuring a safer and more reliable development of controllers prior
to implementation and optimization.

5. Conclusions
This paper introduces an output filteringmethod to identify the system parameters of

a nonlinear unstable wheel‑driven pendulum cart. The detailed equations of motions and
the associated measurement equations for the parameter identification are derived. Con‑
sidering the real scenario, the measurement quantization as well as the Gaussian noises,
which have a considerable impact on parameter estimations, are both taken into account.
According to the presented filtering method, it cannot only suppress noisy acceleration,
but preserve the dominant frequencies of the system’s response aswell. Simulations firmly
demonstrate that the presented output filtering method is superior to the direct numerical
differentiation method. Furthermore, to excite the special dynamic response of the pen‑
dulum cart, a simple command and an aggressive command are applied to the system,
respectively. Associated results show that the more active the reference command is, the
more accurate the estimation results could be. In conclusion, precise system parameters
can be obtained by applying the presented output filtering algorithm even in the presence
of the measurement quantization effect as well as the measurement noise. Simulations are
carried out to verify the feasibility of the purposed method.
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