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Abstract: Ensemble clustering, a paradigm that deals with combining the results of multiple cluster-
ings into a single solution, has been widely studied in recent years. The goal of this study is to propose
a novel distributed ensemble clustering method that is applicable for use in networked multi-agent
systems. The adopted setting supports both object-distributed and feature-distributed clusterings.
It is not limited to specific types of algorithms used for obtaining local data labels. The method
assumes local processing of local data by the individual agents and neighbor-wise communication
of the processed information between the neighboring agents in the network. Using the proposed
communication scheme, all agents are able to achieve reliable global results in a fully decentralized
way. The network communication design is based on the multi-agent consensus averaging algo-
rithm applied to clustering similarity matrices. It provably results in the fastest convergence to the
desired asymptotic values. Several simulation examples illustrate the performance of the proposed
distributed solution in different scenarios, including diverse datasets, networks, and applications
within the multimedia domain. They show that the obtained performance is very close to that of the
corresponding centralized solution.

Keywords: ensemble clustering; multi-agent systems; decentralized algorithm; consensus communication
scheme; multimedia applications

1. Introduction

Clustering represents a prototypical unsupervised learning task within the fields of
artificial intelligence and machine learning and has numerous and diverse applications. Its
goal is to partition unlabeled data into groups or clusters so that data points in the same
group are similar. This is typically achieved by introducing some measure of similarity,
which is then optimized in a predefined way.

In view of the adopted clustering task, there are many situations where reiterating the
clustering process and combining the obtained individual results is desirable or needed.
Separate clustering iterations can result from different settings, starting from different
initializations that may yield different labelings or from different numbers of target clus-
ters [1,2]. Furthermore, individual clustering results may be obtained using different
clustering algorithms. Moreover, individual clusterings can be associated with different
datasets, e.g., obtained from the original dataset via random sampling with or without
replacement [2,3]. This falls within the category of object-distributed clustering [4], which
also encompasses more general cases when different individual datasets occur naturally as
a consequence of the adopted clustering problem. Another category is feature-distributed
clustering [4], where individual clusterings are based on particular aspects/views of data,
i.e., specific sets of features or attributes for each data point.

Combining individual clustering results into a single solution has the potential to
improve the quality, robustness, and stability of the overall results. The main motivation
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for this approach lies in the known variable nature of the clustering processes; the more
diverse the individual results are, the more benefits of combining them can be expected.
There are even some theoretical results showing that it is not possible to make decisions
regarding the clustering process, which would result in revealing the natural clusterings
in the considered dataset, in advance [5]. Namely, it is provably impossible to design a
clusterer that would be, at the same time, scale-invariant (not sensitive to scale changes
affecting the distances between data points), rich (able to output any possible partitioning
of the dataset), and consistent (able to output the same result when distances between
points inside a cluster get shrunk and distances between points in different clusters get
expanded). Therefore, since it is not possible to find a single optimal clustering solution,
reiterating the clustering process might be the only solution.

1.1. Review of Related Ensemble Clustering Approaches

Reiterating and combining clusterings has been adopted within several similar, albeit
slightly different, paradigms. The authors in [4] refer to an individual clustering algorithm
with a specific view of the data as a clusterer, and define the cluster ensemble task as
combining clusterer results without accessing the original data features, but only cluster
labels. They also point to the fact that combining individual clustering results represents
an inherently more difficult problem than combining classification results, as the label
correspondence problem should be solved. On the other hand, the authors in [3] introduce
the notion of consensus clustering, where the results across multiple runs of a clustering
algorithm, applied to the resampled data of the same original dataset, are combined.
Their focus is on determining the number of clusters and the corresponding confidence
levels. The term consensus is used only to refer to the agreement of the individual results,
and not in the context of consensus algorithms, such as those known in the multi-agent
literature [6,7]. Consensus aggregation represents another similar concept [8], where different
clusterings of the same dataset are combined in a way that minimizes the total number of
induced disagreements between the individual clusterings and the final solution.

Classical clustering solutions perform data collection, preprocessing, and clustering
within a single location. This centralized setting might not be suitable in situations where
data are inherently being acquired and stored in different locations. Furthermore, the
computational and bandwidth costs of centralized schemes might represent an issue. In
today’s world of big data, cloud storage, the Internet of Things, etc., it is clear that obtaining
decentralized/distributed solutions represents an imperative. Distributed methods should
allow for the efficient handling of large volumes of data. If properly designed, they
should also provide means for addressing the critical issues of data security, privacy, access
rights, and access to heterogeneous data. In this way, the corresponding solutions also
fit well within the decentralized federated learning framework, e.g., [9]. The fitting is
naturally achieved when using the cluster ensemble setting [4], as it assumes that data
are processed in situ, and only compressed information is used for obtaining the final
results. Decentralized methods represent fault-tolerant solutions since they do not rely on
a centralized entity, which is a potential focal vulnerability point of the system.

The existing decentralized and other relevant cluster ensemble algorithms typically
adopt specific restrictive assumptions or have a relatively limited scope. Several papers
focus only on the expectation–maximization algorithm; some propose novel consensus-
based distributed schemes [10,11], while [12] proposes a solution based on a majority voting
scheme. The authors in [13] propose a geometric approach where individual clusterers
observe the same set of objects. A scaling solution for very large datasets represented
by a centroid-based ensemble merging algorithm has been proposed in [14]. It relies on
the centralized processing of centroid information. The authors in [15] assume object-
distributed clustering, the communication of prototypes of local clusters, and clustering
validity indices to avoid conflicts.
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1.2. Proposed Solution

In this study, the cluster ensemble formulation [4] is adopted, as it represents the most
general setting, allowing for different algorithms, as well as for both object and feature-
distributed clustering schemes. The goal is to propose a novel distributed and decentralized
ensemble clustering algorithm based on a consensus scheme that belongs to a wider class
of consensus algorithms that are well studied in the multi-agent literature [6,7,16]. This
scheme will serve as a model for the communication protocol, where individual clusterers
exchange their clustering results in a neighbor-wise fashion. The setting will not assume
all-to-all communications [15]. The focus will be on the so-called similarity [4] (also known
as connectivity [3] or co-association [17]) matrices—square matrices with binary entries
equal to 1 if two data points, indexing their rows and columns, fall within the same cluster,
and to 0 otherwise. Specifically, it will be demonstrated how the corresponding cluster
ensemble similarity matrix, representing typically an average (or weighted average) of the
individual similarity matrices, can be obtained in a distributed manner. In some papers,
e.g., [2,3], the cluster ensemble similarity matrix is also called a consensus matrix. Herein,
this denomination will not be used, so as to avoid confusion, since the term consensus
matrix will be used in reference to the communication scheme in the multi-agent network.
In general, in this paper, consensus will be referred to in the context of a communication
scheme between individual clusterers. This is usual within the literature in the field of
multi-agent systems.

The proposed algorithm can serve as a framework for various solutions—it neither
requires a specific clusterer design nor a specific algorithm that yields the final clustering
results. Its only limitation is that it cannot be used in cluster ensembles that combine
local results based on variables other than similarity matrices. The potential scaling prob-
lems with respect to the data size can be alleviated using different strategies, similarly
as in, e.g., [8,17,18]. It should be noted that comparative studies [2] show that the best
approaches for cluster ensembles use similarity matrices for obtaining the final clustering
results. Similarity matrices remain central points of many more recent ensemble clustering
studies [18–20].

Due to its general setting supporting feature-distributed clustering, the proposed
solution is especially important for multimedia applications, with multi-view and multi-
modal data, ubiquitous in the modern world. The corresponding datasets might originate
from video data sources and include speech transcripts and results of image processing,
or from image data sources and include text description features along with the features
obtained by image processing. In this domain, parallel hierarchical architectures based
on divide-and-conquer strategies have been proposed [21]. These solutions yield final
clustering results faster than the original centralized solutions, but not in an inherently
decentralized way.

The structure of this paper is as follows: Section 2 introduces the considered ensem-
ble clustering problem and the used similarity matrices. It also includes an illustrative
example and describes the corresponding centralized solution. In Section 3, the proposed
distributed algorithm is presented, focusing on its structural design and emphasizing the
multi-agent communication scheme and its optimal configuration. The results of the nu-
merical experiments are given in Section 4, with three examples illustrating the properties
of the proposed algorithm and its performance. Section 5 gives concluding remarks and
discusses topics for further research.

2. Problem Formulation
2.1. Ensemble Clustering

Let the clustering problem at hand deal with the dataset corpus of N objects or
data points: X = {x1, x2, . . . , xN}. Its goal is to partition the considered dataset into a
set of clusters, exhaustive and non-overlapping. A partitioning into K clusters can be
represented as a set of K sets of objects: {C1, C2, . . . , CK}, such that ∪K

k=1Ck = X and
Ci ∩ Cj = ∅, for all i and j, such that i 6= j. Alternative notation assumes a label vector
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λ ∈ NN , of which the entries corresponding to data points from the same cluster share
the same value or label. The clustering function Φ represents a mapping of an input set
of objects into an output set of labels: Φ : X → λ. For example, a partitioning of a set
of N = 7 objects X = {x1, x2, x3, x4, x5, x6, x7} into K = 3 clusters may be represented as
{C1 = {x1, x2, x3}, C2 = {x4, x5}, C3 = {x6, x7}}, but also as λ = (1, 1, 1, 2, 2, 3, 3)T . The
cluster labels themselves hold no specific meaning: for example, an equivalent partitioning
to the one given above can be {C1 = {x6, x7}, C2 = {x1, x2, x3}, C3 = {x4, x5}}, or in
alternative notation λ = (2, 2, 2, 3, 3, 1, 1)T .

It is assumed that within the considered ensemble clustering setting, the clustering
process is performed or reiterated M times, i.e., we are dealing with the set of M clusterers
{Φ(1), Φ(2), . . . , Φ(M)}. These M clusterers are dispatched to solve a common clustering
problem at hand, regarding the same observed phenomenon. A general setting, allowing
for both object and feature-distributed clustering, is adopted. More specifically, each
clusterer’s local dataset, denoted as X (m), m = 1, . . . , M, is assumed to represent a subset of
the original dataset X , with a possibly different set of features or attributes. Each clusterer
performs its own clustering algorithm, allowing also for possibly different initial conditions,
as well as a different number of target clusters. Therefore, we are dealing with the set of
M mappings: Φ(m) : X (m) → λ(m), m = 1, . . . , M, where λ(m) denotes a label vector of the
m-th clusterer. The task of ensemble clustering is then to combine or aggregate these M
label vectors onto a single label vector λ in an optimal way, according to some predefined
criterion, which can be defined in different ways [4,8,17].

2.2. Similarity Matrices

A common intermediary step toward combining individual clustering results λ(m),
used in several of the best performing ensemble clustering approaches [2], is to map λ(m)

onto the so-called similarity (or connectivity or co-association) matrices. Then, the aggrega-
tion of these matrices, typically obtained via entry-wise simple or weighted averaging, is
used to infer the final clustering results represented by the label vector λ.

Similarity matrices in this context are usually based on the reasoning that two objects
have a similarity of 1 if they are in the same cluster and a similarity of 0 if they are
in different clusters. Consequently, an N × N similarity matrix can be created for each
clustering. More formally, let the similarity matrix associated with λ(m) be denoted as S(m).
Its entries can be obtained by

S(m)(i, j) =
{

1, if λ(m)(i) = λ(m)(j)
0, otherwise,

(1)

where λ(m)(i) denotes the i-th entry of the label vector λ(m). The straightforward way to
aggregate individual similarity matrices into the resulting ensemble clustering similarity
matrix S is to find their average:

S(i, j) =
1
M

M

∑
m=1

S(m)(i, j). (2)

For missing values, the simplest way is to adopt S(m)(i, j) = 0 for all cases, except for
i = j when the corresponding value is 1. This definition of S has been used in [4].

The simplified way of treating missing values might be problematic, especially when
the number of missing values cannot be neglected. Therefore, a better and more natural
option would be not to take into account the missing values when calculating S. To this
end, auxiliary indicator matrices need to be introduced. For each clusterer m, they are
represented by N × N matrices whose entry at location (i, j) corresponds to the binary
indicator of the presence of both data points xi and xj from the original dataset X in the
clusterer’s local dataset X (m):
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I(m)(i, j) =
{

1, if {xi, xj} ∈ X (m)

0, otherwise.
(3)

Here, the similarity matrix S can be defined as [3]:

S(i, j) = ∑M
m=1 I(m)(i, j)S(m)(i, j)

∑M
m=1 I(m)(i, j)

. (4)

The term I(m)(i, j) is put in the nominator as well as in the denominator in (4) to
make sure that the equation holds regardless of how missing values are treated in the
similarity matrices, i.e., which values are given to the corresponding entries. Furthermore,
the introduction of indicator matrices I(m) in the way it has been introduced in (4) allows
for very important extensions of the algorithm. Namely, instead of binary entries, I(m)

can include continuous scalar values that serve as starting points in the refinements of
the clusterers’ base results. These should be based on the level of confidence that the
observed pair of data points belongs/does not belong to the same cluster, e.g., depending
on the cluster size and dimensions of data points [22]. Other locally weighted schemes,
e.g., aimed at weakening the effects caused by the outlier data points [18], are also possible,
as well as weighted schemes where all entries of I(m) are set in the same way [23]. Finally,
ensemble-driven locally weighted schemes [19], or maybe even schemes based on the
adaptive graph filters [24], can be taken into account, although obtaining their distributed
versions represents an additional research topic.

2.3. Illustrative Example

In order to clarify the existing subtleties and differences in calculating the average
of the individual similarity matrices, reflected in two different approaches defined by (2)
and (4), an appropriate illustrative example is given below, following [4], which would
hopefully serve as a reference point for the subsequent discussion.

Let the dataset X consist of N = 7 objects, and let the following label vectors represent
the clusterings of M = 4 clusterers:

λ(1) =
(
1, 1, 1, 2, 2, 3, 3

)T

λ(2) =
(
2, 2, 2, 3, 3, 1, 1

)T

λ(3) =
(
1, 1, 2, 2, 2, 3, 3

)T

λ(4) =
(
1, 2, ?, 1, 2, ?, ?

)T . (5)

Clusterers 1 to 3 have access to all the objects, i.e., X (i) = X , i = 1, 2, 3, while clusterer
4 has access to X (4) = {x1, x2, x4, x5}. It can be seen that λ(1) and λ(2) are essentially
the same clusterings, just with different label notations; λ(3) is similar but not the same,
while λ(4) is not that similar and has three missing data points (denoted by question
marks). Corresponding similarity matrices are illustrated in Figure 1. It can be seen that
these visualizations align well with the manual inspection of the correspondence between
individual clusterings; they can also be used as a tool for determining the number of
clusters [3]. Figure 1 also shows that similarity matrices are naturally robust to different
label notations used by different clusterers.
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1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 1 1 0 0 0 0

1 1 1 0 0 0 0

1 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 1 1

Clusterer 1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 1 1 0 0 0 0

1 1 1 0 0 0 0

1 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 1 1

Clusterer 2

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 1 0 0 0 0 0

1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 0 0 0 1 1 1

Clusterer 3

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

Clusterer 4

Figure 1. Four similarity matrices corresponding to four label vectors shown in (5). The entries are
highlighted in different shades of blue, with the amount of color proportional to their values.

For label vectors in (5) and similarity matrices in Figure 1, the corresponding ensemble
clustering similarity matrix S when calculated by (2) is illustrated in Figure 2 (left), while
S calculated by (4) is illustrated in Figure 2 (right). Looking at, for example, data points
1 and 3 in Figures 1 and 2 (left), it can be seen that the corresponding entry in S is equal
to 0.5, as these two objects occur in the same cluster for m = 1, 2, in different clusters for
m = 3, while for m = 4, the information is not available, but the objects are treated as
belonging to different clusters. However, looking at Figure 2 (right), it can be seen that, for
the aforementioned data points 1 and 3, the corresponding value is 0.66, since, among the
three clusterers that had observed these two points, two have put them in the same cluster.
This is the main difference between (2) and (4).

In this study, two multi-agent distributed algorithms for calculating (2) and (4) will
be proposed. Using (2) represents a simpler approach, while using (4) is an approach
more appropriate for cases when clusterers have a relatively high number of missing
values with respect to the original data corpus X , which is typical for object-distributed
clustering scenarios.
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1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.75 0.5 0.25 0 0 0

0.75 1 0.5 0 0.25 0 0

0.5 0.5 1 0.25 0 0 0

0.25 0 0.25 1 0.5 0 0

0 0.25 0 0.5 1 0.25 0.25

0 0 0 0 0.25 1 0.75

0 0 0 0 0.25 0.75 1

Combined

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 0.75 0.66 0.25 0 0 0

0.75 1 0.66 0 0.25 0 0

0.66 0.66 1 0.33 0 0 0

0.25 0 0.33 1 0.5 0 0

0 0.25 0 0.5 1 0.33 0.33

0 0 0 0 0.33 1 1

0 0 0 0 0.33 1 1

Combined (weighted)

Figure 2. Aggregated similarity matrices corresponding to Figure 1. The entries are highlighted
in different shades of blue, with the amount of color proportional to their values. (Left): simple
averaging based on (2). (Right): weighted averaging based on (4).

2.4. Centralized Algorithm

Now that the notions of individual clusterers, their label vectors, corresponding
similarity matrices, and their aggregation schemes are introduced, the process of ensemble
clustering can be summarized in an appropriate way. When this whole process is being
performed by a single entity, it represents a centralized algorithm, the flowchart of which is
illustrated in Figure 3.

 data(1) 

global similarity
matrix

 clusterer(1) labels(1)

agent(m)

similarity matrix(1)

global labelspartitioner

 data(2)   clusterer(2) labels(2) similarity matrix(2)

 data(M)   clusterer(M) labels(M) similarity matrix(M)

combiner

centralized entity

Figure 3. Flowchart of the centralized ensemble clustering process.

It can be seen that, within a single entity, a set of M datasets {X (m), . . . ,X (M)} has
been collected and clustered by the corresponding clusterers {Φ(1), . . . , Φ(M)}. The ob-
tained label vectors {λ(1), . . . , λ(M)} are transformed into corresponding similarity matrices
{S(1), . . . , S(M)} using (1). The individual similarity matrices are combined into a single
global similarity matrix S, using either (2) or (4); this combination process is denoted in the
flowchart using the operator Σ. What remains is to obtain final ensemble clustering labels
λ using the now available global similarity matrix S. This task is delegated to a block that
shall be referred to as a partitioner (denoted in the flowchart as Ψ).

There are numerous algorithms documented in the literature for addressing the final
partitioning task. These algorithms differ in the way they use the obtained similarity matrix
S. In [4], within the proposed cluster-based similarity partitioning algorithm (CSPA), S
serves as a basis for the induced similarity graph where objects represent vertices, while
similarity values represent edge weights. This graph is then partitioned using the algorithm
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based on the results from [25]. The authors in [2], in one of their approaches, use 1− S as a
distance matrix associated with the objects, and input it to a single linkage clustering algo-
rithm, the output of which represents the set of final ensemble partitionings. Interestingly,
they obtain the best performance when interpreting the matrix S as a data matrix, with
N objects and N features, i.e., the i-th object’s j-th feature is represented by S(i, j). They
apply several clustering algorithms on S as a data matrix: single linkage, mean linkage,
and k-means [2]. Using similarities as feature values has been demonstrated to perform
well in some other applications as well [26].

3. Distributed Algorithm
3.1. Structural Design

This study proposes a novel algorithm aimed at providing all agents in the considered
multi-agent network, addressing the adopted ensemble clustering problem, with reliable
labels for the whole dataset of interest. These global labels are to be obtained in a completely
decentralized and distributed manner while being quantitatively very close to the result of
a corresponding centralized algorithm.

To this end, each clusterer is associated with an agent within the adopted multi-agent
setting. A flowchart of the proposed distributed ensemble clustering system is shown
in Figure 4. Each agent, in general, represents an entity with its own data, processing,
and communication capabilities. More specifically, the m-th agent, based on its local
dataset X (m), performs clustering by the use of a local clusterer Φ(m), and obtains a local
label vector λ(m), which it then transforms into a local similarity matrix S(m). Based on
a communication scheme incorporating the entries of similarity matrices, which will be
proposed in the following subsection, each agent obtains its own estimate of the global
similarity matrix S (which should be close to the corresponding centralized solution). This
similarity matrix can then be processed locally, using an appropriate partitioner Ψ, to come
to the final label vector λ. In this way, every agent is provided with the global label vector
λ in a fully decentralized way.

 data(m)  global similarity
matrix (estimate) clusterer(m) labels(m)

agent(m)

agent(m)network

similarity matrix(m) global labelspartitioner

Figure 4. Flowchart of the proposed distributed ensemble clustering process.

It should be emphasized that the goal of this study is not to propose a specific ensem-
ble clustering solution with specific choices and designs for the local datasets, clusterers, or
partitioners. Instead, our aim is to propose a general distributed solution, which would,
regardless of the aforementioned specifics, yield a result close to the result of a correspond-
ing centralized algorithm. To the best of the authors’ knowledge, a distributed ensemble
clustering solution of this kind has not yet been proposed in the literature. The higher the
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clustering performance of the centralized solution is, the higher the performance of the
proposed distributed solution can be achieved.

Another point that should be noted, in order to allow for fair evaluations, is that the
proposed solution has the potential limitation in that it is exclusively based on similarity
matrices. However, this fact should not represent a conceptual problem, since the ensemble
clustering methods based on similarity matrices are widely used [18–20], and exhibit the
best performance in comparative studies [2]. Having in mind that the dimensions of
similarity matrices correspond to the dataset size, in the case of extremely large datasets,
potential scaling problems should be circumvented by the use of an appropriate scaling
strategy. For example, only a certain number of nearest neighbors for each data point can
be retained, which would, with the additional implied technicalities, reduce the effective
size of S [17]. Subsampling strategies can also be applied [8]. Additionally, the size of S
can be reduced by taking into account the so-called must-link information between data
points, regarding the object pairs consistently labeled across all clusterers, which can then
be excluded from S [18]. Making the distributed scheme compatible with spectral ensemble
clustering approaches [27], which also enables good scaling properties, represents one of
the tasks for future research.

3.2. Communication Scheme

In order to propose a novel communication scheme in the adopted multi-agent setting,
which represents the core contribution of the paper, some formal notations need to be
introduced. Each agent from the set of M agents mentioned in the previous subsection is as-
sumed to be able to communicate the needed information (e.g., entries of the corresponding
similarity matrix) with neighboring agents via a communication network. This inter-agent
network is represented by a connected graph G = (M, E), whereM = {1, . . . , M} is the
set of nodes and E the set of edges; each edge is an unordered pair of distinct nodes {i, j}.
The set of neighboring nodes of node i is denoted asMi, and Ji is defined asMi ∪ {i}.

The inter-agent communication is modeled by the M×M consensus matrix C, whose
entries represent the communication weights used as multiplicative factors for the ex-
changed quantities between different nodes. The sparsity pattern of C follows the network
graph topology, i.e., C(i, j) = 0 if j /∈ Ji. In order to obtain results that are close to the
corresponding centralized solution, the neighbor-wise communications are to be reiterated
through the network multiple times, which are referred to as consensus steps, the total
number of which is denoted as L.

In the following, two distributed algorithms are proposed, corresponding to dis-
tributed schemes for obtaining (2) and (4), respectively.

3.2.1. Algorithm 1

Obtaining a distributed variant of (2) is straightforward. We deal with S(m)(i, j), which
denotes the i-th row and j-th column entry of the m-th agent’s similarity matrix S(m),
m = 1, . . . , M, and i, j = 1, . . . , N. It is assumed that the agents exchange information on the
entries of similarity matrices in multiple iterations; these iterations of the communication
scheme are denoted by a current consensus step number l, where l = 1, . . . , L. The similarity
matrix obtained after l steps of consensus is denoted as S(m)

l (i, j); the corresponding initial

value is set as S(m)
0 (i, j) = S(m)(i, j). Furthermore, for compact representation, entries of

different agents are concatenated as Sl(i, j) = (S(1)
l (i, j), . . . , S(M)

l (i, j))T . Here, it can be
written as

Sl(i, j) = CSl−1(i, j), (6)

for l = 1, . . . , L. From the single agent point of view, the consensus communication scheme
corresponds to

S(m)
l (i, j) = ∑

m′∈Jm

C(m, m′)S(m′)
l−1 (i, j). (7)
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Namely, all agents exchange information with their neighbors on the entries of their
similarity matrices for a total of L iterations. Obviously, the following asymptotic relation
must be satisfied:

lim
L→∞

S(m)
L (i, j) =

1
M

M

∑
m′=1

S(m′)(i, j), (8)

for all m = 1, . . . , M. Furthermore, the algorithm needs to yield as good results as possible
for a finite, practically acceptable, number of consensus steps L. Coming back to (6), by
reiterating for l = 1, . . . , L, it can be written

SL(i, j) = CLS0(i, j). (9)

Here, it is easy to see that in order to achieve (8), consensus matrices must satisfy

lim
L→∞

CL =
11T

M
, (10)

where 1 denotes a column vector with all entries equal to 1. This equation holds if and only
if [28]:

1TC = 1T , C1 = 1, and ρ(C− 11T/M) < 1, (11)

where ρ(·) denotes the spectral radius of a matrix.
If one is to obtain the fastest convergence to the desired asymptotic values in (10),

the problem of finding such a consensus matrix C that minimizes ρ(C− 11T/M) must be
solved [28]. This represents an optimization problem with many degrees of freedom; the
simplest reduction in the degrees of freedom is to set all non-zero non-diagonal entries
of the consensus matrix equal to a constant scalar α. In this case, it can be shown that the
optimal value of α, which results in the fastest consensus scheme, is given by [28]:

α∗ =
2

σL̃(1) + σL̃(M− 1)
, (12)

where L̃ denotes the Laplacian matrix of the graph G, and σL̃(i) its i-th largest eigenvalue.
The Laplacian matrix L̃ is in the same form as the adjacency matrix, but with non-zero
elements equal to −1, and with diagonal elements set in a way that ensures each row of
L̃ sums to 0. An illustrative example of designing the fastest consensus scheme will be
given in the simulation section. Randomizing the consensus communication scheme and
distributing the optimization process itself represent possible extensions of the proposed
algorithm, in line with the results from [29].

3.2.2. Algorithm 2

The task of obtaining the distributed solution for (4) is slightly more involved. It
is assumed that the agents exchange information based on the entries of similarity and
indicator matrices in multiple iterations. The entry in the agent m’s indicator matrix
obtained after l steps of consensus is denoted as I(m)

l (i, j), starting from I(m)
0 (i, j) = I(m)(i, j).

For compact representation, the entries of different agents are concatenated as Il(i, j) =
(I(1)l (i, j), . . . , I(M)

l (i, j))T . These variables are needed in relation to the denominator of (4).

For the nominator, a novel variable Z(m)
l (i, j) is introduced, which starts from Z(m)

0 (i, j) =

I(m)(i, j)S(m)(i, j), and its entries are concatenated as Zl(i, j) = (Z(1)
l (i, j), . . . , Z(M)

l (i, j))T .
Here, it is possible to write

Il(i, j) = CIl−1(i, j),

Zl(i, j) = CZl−1(i, j), (13)
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for l = 1, . . . , L, which can be reiterated as

IL(i, j) = CLI0(i, j),

ZL(i, j) = CLZ0(i, j). (14)

Consequently, one can obtain

SL(i, j) =
ZL(i, j)
IL(i, j)

, (15)

where the division operates in an element-wise manner. In this algorithm, from the single
agent point of view, the consensus communication scheme corresponds to

S(m)
l (i, j) =

∑m′∈Jm C(m, m′)Z(m′)
l−1 (i, j)

∑m′∈Jm C(m, m′)I(m
′)

l−1 (i, j)
. (16)

It has greater communication requirements than (7), as it assumes that all agents exchange
information with their neighbors on the entries of both the indicator matrices and the
matrices initially obtained by element-wise multiplication of the indicator and similarity
matrices. The algorithm structurally resembles the Two Parallel Passes of the Agreement
Algorithm from [16]. It is based on adaptive consensus-based approaches for distributed
estimation [30,31]. For all elements S(m)

L (i, j) of SL(i, j) to satisfy

lim
L→∞

S(m)
L (i, j) =

∑M
m′=1 I(m

′)(i, j)S(m′)(i, j)

∑M
m′=1 I(m′)(i, j)

, (17)

similar to before, conditions (10) and (11) must be met. For the fastest communication
scheme with all equal communication weights, the weights are to be set based on (12).

4. Experiments

In this section, three sets of numerical experiments are conducted. The first is focused
on illustrating the design principles underlying the proposed communication scheme, the
second is focused on demonstrating the performance of the proposed distributed solution
in both object-distributed and feature-distributed settings, and the third is focused on a
specific application scenario within the multimedia domain.

4.1. Communication Scheme Design

As an appropriate starting point for the analysis of the proposed ensemble clustering
solution based on consensus, some classical results regarding the consensus communication
schemes [28] are revisited. An agent network with M = 10 nodes is assumed, where the
nodes are randomly spatially distributed and connected according to a distance criterion
(corresponding to the so-called random geometric graph topology). Connected nodes
are able to communicate with each other bidirectionally. In this example, the nodes are
distributed within a square area and connected if their distance is less than half of the side
of the square, making sure that the corresponding graph is connected. One example of
such a network is illustrated in Figure 5.
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Figure 5. An example of the used network graph. The nodes are labeled with integers, so that the
correspondence to the Laplacian and consensus matrices can be established (labels correspond to
column and row indices of the respective matrices).

The corresponding Laplacian matrix is:

L̃ =



3 0 −1 −1 0 0 0 0 0 −1
0 6 −1 −1 −1 −1 −1 −1 0 0
−1 −1 5 −1 0 0 −1 0 0 −1
−1 −1 −1 7 −1 0 −1 0 −1 −1
0 −1 0 −1 3 0 0 0 −1 0
0 −1 0 0 0 3 −1 −1 0 0
0 −1 −1 −1 0 −1 4 0 0 0
0 −1 0 0 0 −1 0 2 0 0
0 0 0 −1 −1 0 0 0 2 0
−1 0 −1 −1 0 0 0 0 0 3


. (18)

The set of all eigenvalues of L̃, i.e., the spectrum of L̃, can be calculated as σL̃ =
{8.1, 7.09, 5.92, 4.21, 4, 3.44, 2.77, 1.38, 1.04, 0} (in descending order). Here, the optimal value
of the parameter α can be obtained, according to (12), as α∗ = 2/(8.1 + 1.04) = 0.22.
Subsequently, the entries of the optimal consensus communication matrix, ensuring the
fastest agreement between the nodes, can be calculated. Their values, rounded to two
decimals, are:

C =



0.35 0 0.22 0.22 0 0 0 0 0 0.22
0 −0.31 0.22 0.22 0.22 0.22 0.22 0.22 0 0

0.22 0.22 −0.09 0.22 0 0 0.22 0 0 0.22
0.22 0.22 0.22 −0.52 0.22 0 0.22 0 0.22 0.22

0 0.22 0 0.22 0.35 0 0 0 0.22 0
0 0.22 0 0 0 0.35 0.22 0.22 0 0
0 0.22 0.22 0.22 0 0.22 0.13 0 0 0
0 0.22 0 0 0 0.22 0 0.56 0 0
0 0 0 0.22 0.22 0 0 0 0.56 0

0.22 0 0.22 0.22 0 0 0 0 0 0.35


. (19)

For confirmation, the spectral radius of C− 11T/M, connected to different consensus
matrices C obtained for different values of α, is calculated and illustrated in Figure 6. It
can be seen that the lowest value, ensuring the fastest convergence of the communication
scheme, indeed results from using α∗.
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Figure 6. Spectral radius of the consensus communication matrices for different values of the
parameter α. The optimal value is illustrated with a star, corresponding to the α∗ obtained from (12).

Now that it is demonstrated how the fastest consensus communication scheme can be
designed and obtained, the effect of the network topology and the number of consensus
steps on the performance of the distributed algorithm is further explored. Several network
topologies that arise from different real-world scenarios and practical applications are
considered. Specifically, the performance of ring, star, and mesh topologies, which serve as
prototypical examples of decentralized federated learning schemes, is investigated. Fur-
thermore, the examples of random geometric and Erdős–Rényi networks, which represent
some of the most popular network topologies in the domain of networked multi-agent
systems, are studied. For the described five networks, as shown in the left plots in Figure 7,
the norm of C− 11T/M, as a measure of the disagreement between the nodes, is calculated
with respect to the different numbers of consensus steps. The resulting curves are shown
in the right plots in Figure 7. It can be seen, as expected, that the agreement is achieved
more quickly as the number of communication links (loosely speaking) and the number of
consensus steps increase. This analysis also provides an indicator for the number of commu-
nication interactions between the nodes needed to obtain the wanted level of performance
for a given practical scenario.

4.2. Distributed Ensemble Clustering

The above numerical analysis shows that the proposed distributed algorithms will, for
a sufficient number of consensus steps, achieve performance very close to the performance
of the corresponding centralized solutions. This conclusion holds regardless of the data
splitting scenario (object and feature-wise), and regardless of the specific clusterers and
partitioners used. However, to obtain a more complete picture, the proposed distributed
solutions are tested on the Optical Recognition of Handwritten Digits dataset [32]. This
dataset allows for a clear and simple illustration of the expected performance of the
proposed algorithms in various scenarios. The numerical experiments are conducted using
Python programming language, and its well-known scikit-learn machine learning library [33].
The main task, in addition to the design of the consensus communication scheme, represents
the design of the experimental setup itself, which should provide an assessment of the
performance of multiple algorithms in both object and feature-distributed scenarios.

The considered dataset consists of 1797 objects with 64 features, divided across known
10 classes. The network from Figure 5 and the corresponding consensus matrix from (19)
are used. Each node is associated with its own k-means clusterer with 10 target clusters,
and its own dataset, obtained by random sampling of the original dataset. Both object and
feature-distributed clusterings are taken into account by using a range of sizes obtained
as different fractions of the number of objects and the number of features of the original
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dataset. For the local partitioners, k-means clustering on the similarity matrices used as
data matrices is applied. For better controllability, parameters of all k-means clusterers and
partitioners are uniformly configured.
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Figure 7. (Left): five used network communication topologies. (Right): corresponding levels of
disagreement between the network nodes for a different number of consensus steps. For better
comparison, each plot contains curves for all five networks; the curve corresponding to the network
on the left side of it is shown in deeper blue.

Both centralized and distributed ensemble clustering algorithms are simulated for both
Algorithms 1 and 2. In addition, a representative of ensemble clustering schemes relying
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on the exchange of information on the prototypes of local clusters (i.e., cluster centroids) is
considered. Following [15], it assumes an all-to-all communication scheme and introduces
a suitable centroid similarity function aimed at solving the label correspondence problem.
Herein, a softmax function on the negative distances between the cluster centroids has been
used within the soft centroid-to-centroid assignment scheme. It should be emphasized that
the corresponding solution, named Algorithm 3, utilizes local clusterers, which all have to
deal with the same set of features. This is due to the fact that the communication is based
on cluster centroids, which, therefore, must be embedded within the same feature space.
Notwithstanding its inherent limitations, analyzing Algorithm 3 provides an indicator for
the performance of a whole class of ensemble clustering solutions whose focus is on the
prototypes of local clusters.

Figure 8 illustrates the corresponding performances in terms of the Normalized Mu-
tual Information (NMI) score of the obtained labelings with respect to the available true
labelings. NMI has been one of the standard metrics used in this context [18,19,21]. For
distributed algorithms, average values across all nodes are shown. As expected, it can
be seen that the performances are better for higher number of objects and higher number
of features each clusterer has access to. Both Algorithms 1 and 2 behave similarly when
the relative numbers of objects that are available from the original dataset are high; for
lower relative numbers, Algorithm 2 is obviously a better option. It can be seen that
the proposed distributed solutions achieve performance very close to that of their cen-
tralized counterparts. Algorithm 3 underperforms the proposed Algorithms 1 and 2 in
all cases except in the case of a low number of objects available to local clusterers. This
indicates the potential of Algorithm 3 to serve as a basis for analogous consensus-based
object-distributed approaches with a low number of objects if its inherent limitations do
not represent an obstacle.

4.3. Multi-Modal Example

To examine the potential of using the proposed algorithm in the domain of multimedia
tools and applications, it is tested on the well-known multi-modal Corel 5k dataset [34],
which has been extensively used in this field, e.g., [21,35]. The dataset consists of a collection
of 5000 images from 50 classes, with 100 images each. There are two modalities of features
for each image. The first modality is visual, where segments of the images are preprocessed
and clustered according to their features so that each image is associated with up to 10 blobs
(centroids of clustered segments). The total number of blobs is 500, which can be thought of
as a set of 500 binary features for each image (with a maximum of 10 of them equal to one).
The second modality is the image caption, represented by a set of up to five words. The total
number of words is 375, which can be thought of as a set of additional 375 binary features
for each image (with a maximum of 5 of them equal to one). This example deals with
demonstrating a particular practical use of the proposed algorithm, as feature distributions
arise naturally from the multi-modal character of the dataset, and may be dispersed across
multiple distinct entities. Furthermore, individual clusterers can adopt different feature
space designs [21], e.g., they can perform dimensionality reduction algorithms, which is
also the subject of analysis.

Half of the agents are associated with visual features and half with text features. Prin-
cipal Component Analysis (PCA) on the resulting feature sets is performed and different
numbers of principal components are kept for each agent. Since all objects in the individual
datasets are considered, Algorithms 1 and 2 will behave the same. Figure 9 plots the
performance metrics of both centralized and the proposed distributed ensemble clustering
solutions, based on the PCA features of unimodal datasets, together with the centralized
algorithm based on all features from both data modalities. It can be seen, as before, that
the proposed distributed algorithm achieves performance close to that of its centralized
unimodal counterpart. As the number of the used PCA features increases, this performance
aligns relatively well with the performance of the centralized algorithm having access
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to both data modalities (with a total of 875 features), confirming the effectiveness of the
distributed unimodal ensemble clustering approach.
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Figure 8. The obtained Normalized Mutual Information (NMI) scores versus the number of consensus
steps for different ensemble clustering algorithms—object and feature-distributed examples. Each
plot assumes that the individual clusterers have access to different numbers of objects and their
features, which is indicated by the plot title. Algorithms 1 and 2 utilize different feature sets, and
Algorithm 3 the same feature set, for different clusterers.

0 2 4 6 8 10 12 14 16 18 20
Number of consensus steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

NM
I

15 PCA features / modality

Centralized bimodal
Centralized unimodal 
+ ensemble
Distributed unimodal 
+ ensemble

0 2 4 6 8 10 12 14 16 18 20
Number of consensus steps

30 PCA features / modality

0 2 4 6 8 10 12 14 16 18 20
Number of consensus steps

45 PCA features / modality

0 2 4 6 8 10 12 14 16 18 20
Number of consensus steps

60 PCA features / modality

Figure 9. The obtained Normalized Mutual Information (NMI) scores versus the number of consensus
steps for different ensemble clustering algorithms—multimodal example. The individual unimodal
clusterers have access to different numbers of principal components of the unimodal features; these
are indicated by the titles of the respective plots.
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5. Conclusions

In this study, a novel distributed ensemble clustering scheme for networked multi-
agent systems is proposed. It supports various choices and designs for the local datasets,
clusterers, and partitioners. The individual datasets can be both object-distributed and
feature-distributed, and clusterers can be of any kind. The proposed communication
scheme, inherently decentralized, is based on the exchange of information on the local simi-
larity matrices between the neighboring agents. It results in solutions whose performance
closely aligns with that of the analogous centralized solutions, in a provably fastest way.
The proposed distributed scheme can serve as a basis or framework for obtaining decen-
tralized algorithms in diverse application scenarios, encompassing various combinations
of local datasets, clusterers, and partitioners.

The presented results open up several directions for further research. In the case of
large (object-wise) datasets, the available scaling techniques [8,17,18] should be tested and
compared in order to come to an even more practically efficient solution. Furthermore,
the potential of the proposed distributed scheme (namely, Algorithm 2) to be used in
conjunction with the algorithms that refine the individual clusterers’ base results, such
as [18,19,22–24], is worth investigating. Additionally, exploring the possible relationships
of the proposed distributed solutions with the spectral ensemble clustering approach [27],
or with the approaches reducing the granularity of the exchanged information between the
nodes [14,15], represents very interesting field for future endeavors.
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