
Citation: Vrbaski, V.; Josic, S.;

Vranjkovic, V.; Teodorovic, P.;

Struharik, R. Puppis: Hardware

Accelerator of Single-Shot Multibox

Detectors for Edge-Based

Applications. Electronics 2023, 12,

4557. https://doi.org/10.3390/

electronics12224557

Academic Editor: Palden Lama

Received: 7 August 2023

Revised: 12 September 2023

Accepted: 21 September 2023

Published: 7 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Puppis: Hardware Accelerator of Single-Shot Multibox
Detectors for Edge-Based Applications
Vladimir Vrbaski 1, Slobodan Josic 2, Vuk Vranjkovic 3 , Predrag Teodorovic 3,* and Rastislav Struharik 3

1 Methods2Business, Mite Ruzica 1, 21000 Novi Sad, Serbia
2 Syrmia, Industrijska 3b, 21000 Novi Sad, Serbia
3 Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia
* Correspondence: t_pedja@uns.ac.rs; Tel.: +381-6310-28-109

Abstract: Object detection is a popular image-processing technique, widely used in numerous ap-
plications for detecting and locating objects in images or videos. While being one of the fastest
algorithms for object detection, Single-shot Multibox Detection (SSD) networks are also computa-
tionally very demanding, which limits their usage in real-time edge applications. Even though the
SSD post-processing algorithm is not the most-complex segment of the overall SSD object-detection
network, it is still computationally demanding and can become a bottleneck with respect to process-
ing latency and power consumption, especially in edge applications with limited resources. When
using hardware accelerators to accelerate backbone CNN processing, the SSD post-processing step
implemented in software can become the bottleneck for high-end applications where high frame rates
are required, as this paper shows. To overcome this problem, we propose Puppis, an architecture
for the hardware acceleration of the SSD post-processing algorithm. As the experiments showed,
our solution led to an average SSD post-processing speedup of 33.34-times when compared with a
software implementation. Furthermore, the execution of the complete SSD network was on aver-
age 36.45-times faster than the software implementation when the proposed Puppis SSD hardware
accelerator was used together with some existing CNN accelerators.

Keywords: hardware acceleration; convolutional neural networks; single-shot multibox detector

1. Introduction

Object detection is a computer vision and image-processing technique, widely used in
many applications, such as face detection, video surveillance, image annotation, activity
recognition, autonomous driving, quality inspection, etc. [1]. Among several object-
detection algorithms, the most-popular and fastest algorithm is the Single-shot Multibox
Detector (SSD) algorithm [2]. The SSD is used for detecting objects from a predefined set of
detection classes in images and videos, by a single deep neural network. The main idea
of the proposed object detector is to discretize the output space of the so-called bounding
boxes into a set of default ones, using different scales and aspect ratios. During the inference,
the SSD network outputs the probability that each detection class is detected within each of
the default bounding boxes, but also outputs the coordinate adjustments with respect to the
coordinates of the default boxes to better “match” the detected objects. By combining the
predictions from feature maps of different resolutions, the proposed object detector leads to
the accurate detection of both large and small objects from a detection class set. As shown
in [2], the SSD architecture is significantly faster than multi-stage object detectors, such as
Faster R-CNN [3], while having significantly better accuracy compared to other single-shot
object detectors, such as Yolo [4]. Even though the SSD post-processing algorithm is not the
most-complex segment of the overall object-detection network, it is very computationally
demanding and can be a bottleneck with respect to the processing latency and power
consumption, especially in edge applications with limited resources. Motivated by this,

Electronics 2023, 12, 4557. https://doi.org/10.3390/electronics12224557 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12224557
https://doi.org/10.3390/electronics12224557
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4419-8189
https://doi.org/10.3390/electronics12224557
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12224557?type=check_update&version=1

Electronics 2023, 12, 4557 2 of 19

in this paper, we propose Puppis, an architecture for the SSD hardware accelerator, which
reduces the duration of the software-implemented SSD post-processing by 97%, on average,
as we show in the section presenting the experimental results.

Despite the evolution of the original object detectors [5–7], deep networks for detect-
ing objects based on the SSD are still among the most-widely used, while the scientific
community has proposed many improvements to the original SSD algorithm during the
years that have followed, besides the proposals for SSD algorithm speedup through GPU
acceleration, as in [8]. The authors in [9] proposed a slightly slower, but more-accurate
object detector based on an enhanced SSD with a feature fusion module, while the authors
in [10] additionally optimized their SSD-based network for small object detection. In [11],
the classification accuracy of the SSD architecture was improved by the introduction of
an Inception block, which replaced the extra layers in the original SSD approach, as well
as an improved non-maximum suppression method. An attention single-shot multibox
detector was proposed in [12], where irrelevant information within the feature maps was
suppressed in favor of the useful feature map regions. There are also multiple real-time
system proposals based on the single-shot multibox detector algorithm, where either mod-
ified convolutional layers are used, as in [13], a complete backbone CNN is simplified,
as in [14], or a multistage bidirectional feature fusion network based on the single-shot
multibox detector is used for object detection, as in [15].

While there are numerous proposals for algorithmic improvements of the original SSD
algorithm available, despite existing proposals for the hardware acceleration of other object
detection architectures [16–19], there are not many proposals for the hardware acceleration
of a single-shot multibox detector algorithm in the available literature. The authors are
aware of only two previously published papers [20,21], who presented the acceleration
of the convolutional blocks within the SSD network, without focusing on the SSD post-
processing part of the network. In this paper, we propose a system for the hardware
acceleration of a complete single-shot multibox detector algorithm and show how it can
be integrated with a slightly modified backbone classifier (MobileNetV1) to obtain a fast
and accurate object detector architecture, when implemented in an FPGA. When using
hardware accelerators for the implementation of the backbone CNN in low-end, low-frame-
rate applications, SSD post-processing implemented in software is acceptable since the
introduced latency is significantly shorter than the latency of the backbone CNN processing.
Hence, it can be either neglected or even hidden by pipelining to increase the throughput,
even though the latency remains the same. Our work was motivated by the fact that SSD
post-processing becomes a bottleneck for high-end applications where high frame rates are
required. The results from the experimental section will show how our proposal resulted
in an average SSD post-processing speedup greater than 33-times and an average complete
CNN network processing speedup greater than 36-times, compared with the pure software
implementation, when the MobileNetV1 SSD network was used for object detection. The
rest of the paper is structured as follows: After the introductory section, in Section 2, we
elaborate on the general structure of the SSD network and the purpose of accelerating the
SSD post-processing algorithm. In Section 3, we show which algorithms from the SSD
post-processing step are accelerated and how, while the accelerator architecture is presented
in Section 4. The experimental results are shown in Section 5, while the conclusion is given
in the last section.

2. Overview of Proposed System for Hardware Accelerator of Complete SSD Network
2.1. General Structure of SSD Network

Figure 1 shows the general structure of the SSD network. The backbone network is
the first component of the SSD network and employs a standard CNN such as VGG, Mo-
bileNet, ResNet, Inception, or EfficientNet. The backbone network’s objective is to extract
features from the input image automatically, enabling the system to identify bounding
boxes accurately.

Electronics 2023, 12, 4557 3 of 19��������������	
 �����������

���������������������������������� !"����������������� !"����������������� !"��#��$%#�&����'����������������� ���

�%#�� �������������� ���(#�)(���������) *+*, ����%#$���� �����������#�&�� �-
+��#��� ��'�.((�$��#���

���%#�������((�$%��������#��/��(�$�� �#���((�$�� '��������((�$������/��#����%#$�((�$��+������+/���
&���(�$�0��������1++0�2�#�3
���4+*, ���

Figure 1. SSD calculation flow.

The second part of the SSD network is the single-shot multibox detector, the SSD Head
for short. The purpose of the SSD Head is to calculate the bounding boxes for every class
from the results computed by the backbone part of the network. The SSD Head consists of
additional convolutional layers and four other functions: softmax calculation, bounding
box calculation, the Non-Maximum Suppression (NMS) function, and top-K sorting.

In the SSD Head, there are always paired convolutional layers. One layer determines
the confidence values, marked as the Confidence SSD Convolutional Layer (CSCL), while
the other calculates the bounding box modifiers, referred to as the Bounding Box SSD
Convolutional Layer (BSCL). Additionally, there is a third layer that calculates the anchor
boxes. These boxes are trainable parameters of the network, but they remain constant for
every SSD network once trained.

2.2. System for HW Acceleration of Complete SSD Architecture

The overall system for the hardware acceleration of the complete SSD network, in-
cluding Puppis, is shown in Figure 2. The Puppis accelerator must be coupled with a
CNN accelerator to enable complete SSD network acceleration in hardware. The CNN
accelerator will speed up both the backbone CNN network and the additional convolu-
tional layers in the SSD Head. This paper used a modified version of the CoNNa CNN
HW accelerator, proposed in [22] for this purpose. In contrast, the Puppis HW accelerator
will accelerate the remaining calculating functions from the SSD Head: softmax, bounding
box, non-maximum suppression, and top-K sorting. By working together, CoNNa and
Puppis enable the hardware acceleration of the complete SSD network.�����������	��
� �����������������

�������������������������������� 	!"#��������������� 	!"#��������������� 	!"#�����$�%��&����'����������������������� ���

�%��� ��� ���(��)(���������) *+*,*�--� ����%�$���������������&�� -�+������ ��'�.((�$������

���%��������((�$%����������/��(�$�� �����((�$�� '������((�$������/�������%�$�((�$��
&''��
���0+*,

Figure 2. Accelerator in SSD calculation flow.

Electronics 2023, 12, 4557 4 of 19

The Puppis uses two handshake interfaces, enabling an easy and generic way of
connecting to the selected CNN accelerator. Please notice that, if the CNN accelerator does
not already have this handshake interface, it must be adapted to support it. However,
due to the simplicity of the handshake interface used, this poses no significant problem.
Figure 3 shows the proposed interfaces between the two accelerators. These two interfaces
will be called the SSD-CNN handshake.�����������	��
� ����������������

�������������������������������	� !��������������	� !��������������	� !�����"�#��$���%���������������������� ���

&''���
$%%�����(�����(��)��(�(�������)
Figure 3. Handshake connection of CNN accelerator and Puppis accelerator.

Both interfaces contain only two signals. In Figure 3, the first one consists of the
cnn_done and ssd_ack signals. When the CNN accelerator finishes processing the backbone
network with the current input image, it asserts cnn_done. The Puppis asserts ssd_ack to
acknowledge that and starts executing its part of the complete SSD algorithm using the
feature maps provided by the CNN accelerator, computed using the last input image.

The second interface includes the ssd_done and cnn_ack signals. Here, Puppis asserts
ssd_done when processing is complete, and cnn_ack is triggered when the CNN accelerator
acknowledges it and switches to process the following input feature map.

As can be seen from the previous explanation, these two interfaces enable the synchro-
nization and reliable transfer of data between the selected CNN accelerator and Puppis SSD
Head accelerator. Feature maps computed by the CNN accelerator are transferred to the
Puppis using a shared memory buffer. The information presented in Figure 4 demonstrates
using buffer cnn-buf-1 as the input buffer for the SSD network’s image processing. After
processing the first layer, the buffer cnn-buf-2 stores the result. That buffer is then input
for the next layer, and so on.�����������		�
� ���������

���������������������������������	� !����������������	� !����������������	� !��"��#$%"�����&��������������� ���

'(("����
&&��
%"���%�%��)��������������������������(��*�������*����������*�����

Figure 4. Shared buffer connection of CNN accelerator and Puppis accelerator.

Electronics 2023, 12, 4557 5 of 19

The results of processing the final layers from the CSCL and BSCL are stored in couple
of last cnn-buf buffers, depending on the number of these final layers. For example, if there
are k final layers, then cnn-buf-N-k up to cnn-buf-N buffers would be used to store their
output values. These buffers are actually the input buffers for the Puppis HW accelerator.
During its operation, Puppis uses additional memory buffers: ssd-buf-1 up to ssd-buf-M.
These buffers are used to store intermediate results, computed as the Puppis HW accelerator
operates on the input data. The final results are stored in the output buffer ssd-buf-M.
From this buffer, the software can read the final results of the SSD network processing,
containing the detected objects’ bounding box information.

Please notice that the described setup enables the implementation of a coarse-grained
pipelining technique during the processing of a complete SSD network by the proposed
system. While the Puppis HW accelerator processes CNN-generated information for the
input image i, the CNN HW accelerator can already start processing input image i+1.
This setup can significantly increase the processing throughput of the complete system,
although the processing latency will remain unchanged. In applications where achieving a
high frame rate is of interest, this could prove highly beneficial.

In order to be able to process the selected SSD network, both the CNN and Puppis HW
accelerators require that the SSD network be represented in an accelerator-specific binary
format, as shown in Figure 5. During the development of Puppis, such a tool for translating
the high-level model of the SSD network (developed, for example, using Keras, PyTorch, or
some other framework) into this accelerator-specific binary model was also developed.�����������	
��� ������������

��������������������������������	�
���������������	�
���������������	�
����!"#��$����%����������������� ���

&��'���&&(#�)�� �������� *��)'���&&(#�)��
Figure 5. Translator tool.

In the process of SSD model translation, the translator tool also determines the optimal
fixed-point number format that will be used to store various SSD-model-related data during
the SSD network processing. Then, it translates the model parameters to this number format
and stores them in buffers, which are located in the main memory of the SSD accelerator.
For the anchor boxes, it prepares special buffers for Puppis, so that it can just load those
values from the memory system, without any calculation. In short, this tool prepares the
model to be successfully processed by the CoNNa and Puppis accelerators.

3. Accelerated SSD Head Computation Algorithms

The part of the single-shot multibox detector algorithm that is implemented by the
Puppis HW accelerator contains four main computational steps:

1. Softmax calculation;
2. Bounding box calculation;
3. NMS calculation;
4. Top-K sorting.

The first three steps are more computationally complex, and the following sections
contain detailed descriptions. The last part of the calculation, top-K sorting, determines
the best K bounding boxes within the results calculated in the non-maximum suppression
block using a simple bubble-sort algorithm.

3.1. The Softmax Calculation

The softmax calculation is the first step executed by the Puppis accelerator. The
inputs for the softmax calculation are the confidence values of the SSD convolutional layers

Electronics 2023, 12, 4557 6 of 19

and Exponential Confidence Look-Up Tables (ECLUTs), while the outputs are the score
predictions for all boxes. The confidence values are the outputs from the backbone network
and the CSCL, and in our setup of the complete SSD network hardware accelerator, the
modified CoNNa CNN accelerator will provide these as its output. The ECLUT is an array
of samples of exponential functions in the floating-point format, which is calculated by the
translator and stored in the main memory.

Equation (1) represents the softmax formula, which determines the normalized values.

nk =
eSk

∑i=N
i=1 eSi

(1)

Subscript k is an index of the current class (k ∈ {1, . . . , N}); S is the input from the
confidence layers; N is the number of classes; nk are the normalized confidence scores.

The hardware accelerator implementation mainly uses two number formats: fixed-
point or floating-point. The simpler or energy-efficient hardware accelerators use the
fixed-point format, while applications requiring a wide dynamic range utilize the floating-
point format. We used a hybrid approach in this architecture, which a later section will
describe. Softmax calculation uses an exponential function over a wide range of values.
Therefore, if the architecture uses only the fixed-point format, it will require many bits to
cover the number range. Using only the floating-point hardware would be too expensive
because the floating-point calculation uses too many hardware resources. Therefore, the
optimal solution requires a mix of floating-point and fixed-point numbers. In that way,
we keep the hardware utilization close to the fixed-point representation and still cover the
required range of values, as if the solution uses the floating-point number representation.

Inside the calculation logic, there are hardware blocks that determine the format
used for representing the fixed-point numbers. The pseudocode of the algorithm for the
calculation of Equation (1), with some hardware-related details, is shown below.

The parameter SCN is the current number of SSD convolutional layer pairs that the
network uses and is a configurable runtime parameter. The variable confs is an input array
that contains the confidence values. The confs array is stored in the main memory of the
system, while the variable box_cnt counts all boxes requiring the score prediction values.

The algorithm iterates through the output feature maps generated by each CSCL
shown in Figure 1. For each output point of any CSCL and for all boxes correspond-
ing to that layer, the list of confidence values for each class (conf_box = conf[i][j][k])
is read from memory. The algorithm also reads the corresponding floating-point value
from the ECLUT memory and calculates the maximum value. The comparison between
exp_vals[cls] and exp_val_max is a floating-point comparison. According to the com-
parison result, the algorithm determines the fixed-point representation used later in the
calculation. The ECLUT contains samples of exponential functions for each class used
in the network: each class has 4096 samples within the ECLUT, while the translator cre-
ates the table that contains the required samples, which are represented as 16 bit-wide
fixed-point numbers. The exp_sum_reduce variable stores the computed format. This
number determines how much the values are shifted during the calculation, representing
the number of bits after the fixed-point. The architecture uses the 32 bit IEEE 754 standard
when interpreting the floating-point numbers.

The function getFormatFromFloat determines the format according to the value of the
exp_val_max variable. The following loop in the code calculates the sum of all exponential
function values, computing the value of the denominator from Equation (1), which is
needed to determine the softmax score box predictions. If there is an overflow during a
sum calculation, the fixed-point is shifted one position to the left, exp_sum_reduce += 1,
and the sum is divided by 2 to be correctly interpreted by a new fixed-point format.

Finally, the new normalized score predictions, nk, are calculated for all classes. A
computed denominator value divides the confidence value for every class, and a score
prediction array stores the result. This array’s location is in the main system memory.

Electronics 2023, 12, 4557 7 of 19

3.2. The Bounding Box Calculation

The bounding box calculation is the next step in the accelerator calculation flow. For
every output point in the convolutional layer that calculates the bounding box modifiers
and for every anchor box, the accelerator calculates one resulting bounding box. The
following formulas express the bounding box calculation procedure.

Cxb = XpXvWa + Cxa (2)

Cyb = YpYvHa + Cya (3)

Wb = eWpWv Ha (4)

Hb = eHp HvWa (5)

Xmin = Cxb −Wb (6)

Xmax = Cxb + Wb (7)

Ymin = Cyb − Hb (8)

Ymax = Cyb + Hb (9)

Cxb and Cyb are the predicted center of the bounding box. Xp, Yp, Wp, and Hp are
four predicted input values from the convolutional layers. Xv and Yv are the so-called
variance values, which are trainable parameters of the SSD network, stored within a binary
description of a network by the translator. The values Wa and Ha are the width and heights
of the current anchor box, and the values Cxa and Cya specify the center of the current
anchor box. The values Wb and Hb are the output values of the convolutional layer used to
calculate the width and height of the bounding box. The values Wv and Wv are the variance
values determined during the training. Finally, the values Xmin and Ymin specify the upper
left corner of the predicted bounding box, while (Xmax, Ymax) specify the lower right corner
of the computed bounding box.

Puppis uses the 16 bit fixed-point number representation for all calculations (2)–(9),
while the translator determines the exact position of the decimal point. Opposite the
calculation of an exponential function as a part of a softmax calculation, the exponential
functions in Equations (4) and (5) are calculated using look-up tables.

3.3. Non-Maximum Suppression Calculation

Once the bounding box calculation is complete, the third step is to perform the NMS
calculation. This is an important algorithm that helps to remove overlapping boxes that
have been placed around the same object with high confidence. The goal is to have only one
bounding box around one object, so the NMS calculation removes any boxes that overlap
enough (the algorithm parameter). This step ensures that there is only one bounding box
around each object, even if there were originally several boxes before this step.

The pseudo-code for this algorithm is listed below. The inputs for this algorithm
are the confidence values after the softmax calculation, calculated in Step 1, and the
bounding box locations calculated in the second step. These inputs are represented as the
in_confs variable for the confidences and in_bboxes for the bounding boxes. confs is a
2D array because it holds the normalized confidence values for all the classes and all the
bounding boxes.

Electronics 2023, 12, 4557 8 of 19

The algorithm iterates over all classes, where the variable cnt_class represents the
current class. The variable box_ind represents the indices of the confidence values more
significant than the input threshold TVAL. The variable confs is all the confidence values
greater than TVAL, and the variable bboxes is the corresponding bounding boxes. If no such
values exist, the algorithm iterates to the next class. The variable areas represents areas
of all bboxes, while the variable sort_ind is a sorted version of box_ind, and the indices
are sorted based on their corresponding confidence values. The value gt_ind represents
the index of the bounding box with the maximum confidence value for the current class.
The outputs of the algorithm are the bounding boxes for which the confidence value is
greater than a user-defined parameter TOVER. Each of these bounding boxes is accompanied
with its class membership information. The algorithm calculates the overlap between the
current best bounding box and all other bounding boxes, so the subsequent while loop
iteration only processes indices with overlaps less than a threshold value of TOVER. The
while loop terminates if no such indices exist (the sort_ind list is empty), and the algorithm
outputs all possible bounding boxes for each class with a confidence value above the TVAL
parameter, for which it holds that the overlap with the best confidence box that is lower
than TOVER.

Function calc_overlap calculates the overlap between two boxes, after receiving
two rectangles as inputs. The first rectangle is defined by two points, (Xmin1, Ymin1) and
(Xmax1, Ymax1), and the second by (Xmin2, Ymin2) and (Xmax2, Ymax2). The function calculates
the overlap value according to the following formulas:

Xmin = max(Xmin1, Xmin2) (10)

Ymin = max(Ymin1, Ymin2) (11)

Xmax = min(Xmax1, Xmax2) (12)

Ymax = min(Ymax1, Ymax2) (13)

Ai = (Xmax − Xmin)(Ymax −Ymin) (14)

Au = A1 + A2 − Ai (15)

O =
Ai
Au

(16)

where the points (Xmin, Ymin) and (Xmax, Ymax) define an overlapping rectangle. The over-
lapping area is Ai; Au is a non-overlapping area, while the values A1 and A2 represent the
areas of the two bounding boxes, for which the calculation is performed. The value A1
is always the area of the bounding box with the greatest confidence value for the current
class, while the output of the function O represents a ratio between Ai and Au.

4. Puppis HW Accelerator Architecture

Figure 6 provides an overview of the architecture of the Puppis hardware accelerator. It
shows the interfaces and central building blocks at the highest abstraction level. Puppis uses
three interfaces to connect to surrounding modules: the configuration and status AXI-Lite
interface, the data transfer AXI-Full interface, and the SSD-CNN handshake explained
earlier in Section 2.2.

The AXI-Lite interface configures and checks the accelerator status, while the AXI-Full
interface transfers data to and from the accelerator. The Arbiter module is responsible for

Electronics 2023, 12, 4557 9 of 19

routing data throughout the accelerator. Additionally, the SSD-CNN handshake interface
enables the calculation of the entire SSD CNN without needing processor intervention.

At the top level, Puppis has multiple modules. Among them is the Regs module,
which comprises the accelerator’s configuration registers. Additionally, Puppis has status
registers accessible through the AXI-Lite interface. The configuration settings impact the
functionality of the central controller module, represented as Control in Figure 6.�����������	
��� ������������

�������������������������������� 	!
"��������������� 	!
"��������������� 	!
"����#�$�%����&������������������ ���

'������'��������(��%���������)*+�����,����������)*+��%�� (����'�$&)*+��%��'������ ��-�����$.���������$)�/���� (���$#0�#��(���,���-�� ��$��1�! ��$��1���%��2��� 3�(((,�'33��-��4�
Figure 6. Accelerator architecture overview.

The Control module coordinates the other modules’ operations to calculate the SSD
Head output. Depending on the configuration and calculation state, this module controls
the routing and timing of data transfers through the accelerator’s calculation modules and
their internal pipeline stages. Although it has connections to all other modules, Figure 6
does not show these connections for clarity. The following section will provide a more-
detailed description of this module.

The Arbiter module serves as the primary data-routing unit in Puppis. Its interconnect
architecture allows for seamless data transfer from its source to its destination, making
it an integral part of the Puppis accelerator. The main Control module is responsible for
controlling the Arbiter module’s operations.

The main calculation modules of Puppis are Softmax, Boxes, and NMS. The Softmax
module calculates the softmax function, given by Equation (1) and Listing 1. The Boxes
module calculates the bounding boxes, Equations (2)–(9). The NMS module calculates the
NMS function of the SSD calculation; see Listing 2. The following sections will describe
these modules in more detail.

Listing 1. Softmax pseudocode.

box_cnt = 0
f o r c i in (0 to SCN) :

conf = confs [c i]
f o r i in (0 to Heights [c i]) :

f o r j in (0 to Widths [c i]) :
f o r k in (0 to Box [c i]) :

conf_box = conf [i] [j] [k]
exp_val_max = 0
f o r c l s in (0 to ClassN) :

exp_in_val = conf_box [c l s] >> 4
exp_vals [c l s] = ECLUT[c i] [exp_in_val]
i f (exp_vals [c l s] > exp_val_max) :

exp_val_max = exp_vals [c l s]

exp_fmt = getFormatFromFloat (exp_val_max)
exp_sum = 0
exp_sum_reduce = 0
f o r c l s in (0 to ClassN) :

exp_vals_sum [c l s] =

Electronics 2023, 12, 4557 10 of 19

f loatToFixedConv (exp_vals [c l s] , exp_fmt)
exp_sum += exp_vals_sum [c l s]
i f (overflow (exp_sum)) :

exp_sum /= 2
exp_sum_reduce += 1

f o r c l s in (0 to ClassN) :
exp_val = exp_vals_sum [c l s] >> exp_sum_reduce
s c o r e s _ p r e d i c t i o n s [c l s] [box_cnt] = exp_val / exp_sum
box_cnt += 1

Listing 2. NMS pseudocode.

for_each c n t _ c l a s s in c l a s s e s
box_ind = i n d i c e s _ g r e a t e r _ t h a n _ v a l u e (c n t _ c l s , in_confs , TVAL)
confs = values_from_indices (in_confs , box_ind)
bboxes = values_from_indices (in_bboxes , box_ind)

i f confs empty go to next c l a s s

for_each box in bboxes
areas = area_of (box)

sor t_ ind = s o r t _ i n d i c e s _ b y _ c o n f (box_ind , confs)
while s o r t _ i n t not empty

gt_ind = sor t_ ind [0]
resut l s_add (bboxed [gt_ind] , c n t _ c l a s s , confs [gt_ind])
for_each ind in sor t_ ind except gt_ind

put ca lc_ove lap (bboxed [gt_ind] , bboxed [ind]) i n t o overs
sor t_ ind = get_ indices_ for_which_over lap_ less_ than (

sort_ ind , overs , TOVER)

The other helper calculation modules of Puppis are: Divider, Muls, and Sort. Specifi-
cally, the Divider module implements the division operation of two fixed-point numbers,
used in the Softmax and NMS computational steps of the SSD algorithm. It uses a pipelined
architecture to achieve a similar operating frequency as the other modules. The Muls mod-
ule calculates the multiplication of two fixed-point numbers represented with the same
number of bits. This module is pipelined and has four lanes to calculate four multiplications
simultaneously. The Sort module sorts values and is used during the NMS calculation and
for selecting the final top K results.

Puppis uses two internal caching memories: Memories 0 and 1. They store the config-
uration parameters and intermediate results during the SSD calculation. The memories
are configurable and have several purposes during the SSD calculation process, which the
following sections will describe in more detail.

The Arbiter module enables communication between the calculation modules and
the memories. Additionally, some communication lines connect the calculation modules
directly: Divider to NMS, NMS to Muls, and finally, Muls to Boxes. These lines stream
intermediate results, without buffering, between modules.

An AXI-Full interface enables communication to the external main memory. The
AXI-Full Control module implements the AXI-Full protocol. This module receives two
AXI-Stream data streams, a read stream and a write stream, and combines them into a
single AXI-Full interface.

The Serial Comp module connects to the Arbiter and the AXI-Full Control module’s
read interface. The module reads the confidence predictions from the main memory and
passes only those predictions greater than the predefined threshold to the Arbiter module.
Furthermore, the Serial Comp module can transfer other data types without discrimination.

Electronics 2023, 12, 4557 11 of 19

The forthcoming sections will concisely explain the most-essential modules’ opera-
tional principles. The descriptions will omit specific details to offer a broad overview of
each modules’ functioning and facilitate comprehension.

4.1. Control Module

The Control module sends control signals to all the other modules in the architecture.
It implements a Finite-State Machine (FSM), which sequentially processes the input through
several steps of the SSD Head computation algorithm explained earlier. Figure 7 shows the
simplified FSM.

Figure 7. The control FSM.

In the READY state, Puppis is ready to receive the subsequent input. In this state, the
module AXI-Lite can change configuration to prepare calculation blocks to process the
input. In the next state, Softmax, the Control module sends control signals to read the
input confidence values from memory, calculate the softmax algorithm with those inputs,
and write the normalized values into the main memory. In the Boxes state, Puppis reads
the bounding box modifiers from the main memory and anchor boxes, then calculates the
bounding boxes. Internal memory modules store the resulting bounding boxes. In the NMS
state, the Control unit sends control signals to receive the normalized confidence values
from the main memory and the bounding boxes from the internal memory. Then, the NMS
algorithm processes those inputs, and the internal memory stores the resulting output.
Finally, in the Sort state, the inputs from the NMS step are read from the internal memory,
and the best calculated K results are stored in the main memory as the final result of the
input processing. Then, the Puppis accelerator switches to the READY state, being ready to
receive the next input.

4.2. Softmax Module

Figure 8 shows the top-level block diagram of the Softmax module. The block diagram
presents a model of the Softmax module close to the Register Transfer Level (RTL), but
some details are abstracted. In this way, the model is easier to explain. For example, the
model does not show the control signals from the Control module. We call this model the
abstracted RTL model. The Softmax module contains three pipeline stages.�����������	��
� ���������������

������������������������������ !	"#$������������� !	"#$������������� !	"#$����������%����&��������������������� ���

����&���&�������������� ����������������� �����%��������'' ((������������%� ����������)���%�)����� �����%����%��%����%����
���������%�

Figure 8. The abstract schematic of the Softmax module.

The module receives confidence values from the main memory in the first pipeline
processing stage. The module determines the maximum value of the floating-point expo-
nent by utilizing samples of a floating-point function stored in the ECLUT memory. This
value is stored in the output register flexp_cmp and serves as the input for the second
pipeline stage.

Based on the format determined in the first phase, the module converts all floating-
point values eSk from the Formula (1) into the fixed-point format in the second phase of

Electronics 2023, 12, 4557 12 of 19

the pipeline processing. The internal memory receives the numbers in the new number
format through the fix_mem_out port. Additionally, this module computes the sum from
the Formula (1). If overflow occurs, the module adjusts the number format accordingly.

The module divides the fixed-point values eSk in the third phase by the computed
sum. During this calculation, the module utilizes the Divider module. The final result,
representing normalized values from the Formula (1), is stored in internal memory with
the score_out port, making it available for other modules for further processing.

4.3. Bounding Box Module

Figure 9 shows the abstracted RTL model for the Bounding box module. The module
uses several registers to store intermediate calculation results for Equations (2)–(9). The
top of Figure 9 shows the multiplexer, which the Control module uses to select which
arguments to send to the Muls module.�����������	
��� �����������

����������������������������� �	!"
#$������������ �	!"
#$������������ �	!"
#$�������%��&����'����������������� ���

(����������&�����������)� ������
%&����&� %&���������)����

��������� ��'�&���&������ �&��&����
*+

������ (������
Figure 9. The abstract schematic of the Bounding box module.

This module encompasses numerous registers designed to store intermediate compu-
tation results. Over several clock cycles, the center coordinates of the bounding box are
computed and stored in the center register, while the register, denoted as WH, holds the
calculated width and height values. The module computes the resulting rectangle, utilizing
these center coordinates and dimensions, and forwards it to the internal memories through
the port rect_out, making it available for other modules.

4.4. NMS Module

The Control module guides the NMS module through Listing 2. The core of that
algorithm is Equations (10)–(16). Figure 10 shows an abstract RTL schematic of the NMS
module. The following is a description of how the module calculates these equations.

In the initial step, this module calculates the areas of the bounding boxes based on the
results computed by the Bounding box module. During its operation, for all multiplication
operations, this module utilizes the Muls block. For all boxes, except the first one, the
module calculates O from Equation (16). The Divider block is employed when division is
required, and the module obtains the O value through the dib_in port. Subsequently, O is
compared to a threshold parameter to determine whether the module retains the bounding
box. The keep register holds this information. Along with this information, the module
sends the confidence and computed bounding box values (res register) needed for final
result sorting.

4.5. Sort Module

The computation’s last step is the top-K sorting procedure, which identifies the top-K
bounding boxes from the results obtained through the non-maximum suppression block.
The implemented sorting procedure is a simple bubble-sort algorithm. Since this step does
not require much computation, a simple sequential architecture is used for this module.

Electronics 2023, 12, 4557 13 of 19�����������	
��� �����������

������������������������������	 !
"#�������������	 !
"#�������������	 !
"#�����$���%����&����������������� ���

�%����%� '��
��%� '����(��%����������������%����) ������������ �������� �%����
'���'�����%� *��&��%�

��� �����%����������'�$��
+������,����������-��*.�%'���,�$�&%�� '��
 *��&

Figure 10. The abstract schematic of the NMS module.

5. Experimental Results

To assess the performance of Puppis and compare it with the MobileNetV1 SSD
network’s software implementation, we conducted experiments on the Zynq Ultrascale+
MPSoC ZCU102 Evaluation Board [23]. The timings presented in this section are the mea-
sured results obtained from the experimental setup, not simulated values. As was already
stated in the Introduction, to the best of the authors’ knowledge, there are no previously
proposed solutions for the HW acceleration of the SSD Head part of the SSD network.
Therefore, a direct comparison of Puppis with previously proposed HW accelerators was
not possible.

5.1. Hardware Setup

In order to assess the effectiveness of the proposed architecture, we utilized an FPGA
development platform to implement the entire SSD network hardware acceleration system,
presented in Figure 2. For the design and implementation, we relied on the Xilinx Vivado
Design Suite [24]. The hardware platform we used for conducting the experiments was the
Zynq Ultrascale+ MPSoC ZCU102 Evaluation Board [23]. We utilized the default synthesis
and implementation settings in the implementation tools during the implementation.
Figure 11 displays the Vivado IP Integrator top-level block diagram of the system we
developed for the experiments.

Figure 11. Vivado’s IP Integrator view of the complete system.

The central parts of the system are Zynq’s processing system and the CoNNa and
Puppis HW accelerators. After the implementation, the achieved maximum operating

Electronics 2023, 12, 4557 14 of 19

frequency of the complete system was 180 MHz. The resource utilization is shown in
Table 1.

Table 1. FPGA implementation results.

Component LUT BRAM DSP

Puppis 4055 17.5 4
System 103766 326.5 446

As can be seen from Table 1, the Puppis accelerator uses only a fraction of the consumed
hardware resources required to implement a complete SSD network accelerating system.
It uses a mix of all FPGA resources, which is a desirable feature. Compared to the whole
system, the utilization of LUTs was 3.91%, BRAM was 5.36%, and DSP was below 1%. The
CoNNa accelerator uses most hardware resources. Puppis’s hardware consumption will be
negligible even if another CNN accelerator is used instead of CoNNa. Incorporating the
Puppis SSD Head HW accelerator will not significantly increase the overall HW resource
consumption, which could otherwise hinder the successful implementation of the system
for most existing AI systems that already use hardware CNN acceleration. However, as
the next section will demonstrate, including the Puppis HW accelerator in the system can
significantly enhance the processing speed of SSD networks.

Table 2 presents Vivado’s power consumption estimation for the entire SSD accelera-
tion system. As can be observed, the Puppis accelerator consumed 0.088 W, constituting
only 1.487% of the system’s total power consumption. The CNN accelerator accounted
for 50.076% of the power consumption, while the system’s processor consumed a similar
amount of power, accounting for 46.579%. Based on these numbers, it is reasonable to
conclude that the power consumption of the Puppis accelerator is negligible compared to
the rest of the system. However, the speed improvement is significant, as demonstrated in
the subsequent section.

Table 2. Power consumption.

Component Absolute Power (W) Power Percentage

System 5.919 100
Zynq PS 2.757 46.579
CoNNa 2.964 50.076
Puppis 0.088 1.487

5.2. Software Comparison

In order to evaluate Puppis, a comparison with software SSD network processing
was performed. Additionally, to obtain relevant results, the software was run on the
Ultrascale+ MPSoC ZCU102 evaluation board [23] running the Ubuntu 20.04 Operating
System. The SSD network chosen for the comparison was the MobileNetV1 SSD network,
trained on the Pascal VOC dataset [25]. The MobileNetV1 SSD network model was built
using the Tensorflow framework [26], but split into the backbone CNN part, accelerated
by the CoNNa CNN accelerator, and the part of the network that will be run using the
Puppis accelerator. This split was performed to accurately evaluate the performance of
each submodule. During the evaluation, images from the Pascal VOC dataset were used,
both for the inference in the software and hardware accelerator.

At the beginning, the goal was to prove that the hardware acceleration of the SSD Head
will not reduce the accuracy of the software model. Table 3 shows that the performance
of an object detector was not degraded after quantization and migration to a fixed-point
number representation. The accuracy of the software implementation and the Puppis HW
accelerator, presented in the table, is expressed in terms of the mean Average Precision
(mAP), a standard object-detection metric. From Table 3, it can be seen that switching
from the software implementation of the SSD Head based on a floating-point number

Electronics 2023, 12, 4557 15 of 19

representation to the Puppis HW accelerator, which uses fixed-point number arithmetics,
led only to a minor mAP drop, less than 0.3% in the absolute value.

Table 3. mAP calculated on the images from the Pascal VOC dataset.

Dataset mAP SSD Head SW mAP Puppis

Pascal VOC 2007 62.28% 61.9%

In order to explore the impact of different test instances on the processing latency,
images from the Pascal VOC dataset [25] were used for the processing latency histograms
shown in Figures 12 and 13.

Figure 12. Histogram of processing latency when SSD Head is implemented in software.

Figure 12 shows that, when executing the SSD Head in the software, the latency
duration for more than 99% of the test instances ranged from 17 ms to 20 ms. Similarly,
from Figure 13, around 90% of the test instances resulted in a latency duration between 528
and 536 µs, when the SSD Head ran on the Puppis HW accelerator. On rare occasions, the
input images have a significantly larger number of objects within the image, which led to a
slightly longer processing latency: up to 25 ms for the software implementation and up to
556 µs for the SSD Head running on the Puppis HW accelerator.

Figure 13. Histogram of processing latency when the SSD Head runs on Puppis.

The processing latencies while detecting objects in the image using hardware accelera-
tors CoNNa and Puppis are shown in the table below.

Electronics 2023, 12, 4557 16 of 19

As can be seen from Table 4, the processing latencies for both CoNNa and Puppis had
a minimum deviation and were executed in almost constant time, independent of the
image being processed or the number of detected objects within the image. This feature
represents the additional benefit of using hardware accelerators for CNN processing, since
the constant processing time is highly appreciated in most applications. Table 5 presents
the processing latencies for the backbone CNN network and single-shot multibox detector
when both of them were executed by the embedded ARM processor, present in the Zynq
MPSoC system. As in the case of the hardware measurements, the MobileNetV1 SSD
network was used.

Table 4. Mean value and standard deviation of the processing latency when detecting objects from
the Pascal VOC [25] images by CoNNa and Puppis.

Dataset CoNNa Latency (ms) Puppis Latency (ms)

Pascal VOC 2007 16.61 ± 0.0054 0.5325 ± 0.0035

Table 5. Mean value and standard deviation of the processing latency when detecting objects from
the Pascal VOC [25] images by the software implementation of the MobileNetV1 SSD network.

Dataset Backbone CNN SSD Head
Latency SW (ms) Latency SW (ms)

Pascal VOC 2007 607.005 ± 67.017 17.754 ± 0.4833

It can be seen from Table 5 that the execution of the SSD network using an embedded
processor, as expected, took significantly more time, when compared to the hardware-
accelerated processing of the same set of images.

Tables 6–8 show different processing latency reductions and processing speedups,
calculated as:

latency_reduction = (t1 − t2)/t1 × 100 (17)

speedup = t1/t2 (18)

First, when calculating Equations (17) and (18), we used the software-implemented
SSD Head processing duration for t1 (Column 3 of Table 5) and the SSD Head processing
duration of Puppis for t2 (Column 3 of Table 4). The Latency reduction and speedup were
calculated for each image from the dataset, and Table 6 shows the mean value and the
standard deviation of these per-image calculations.

Table 6. Single-shot multibox detector processing latency reduction and speedup when using the
Puppis HW accelerator.

Dataset SSD Head Latency Reduction (%) SSD Head Speedup

Pascal VOC 2007 96.998 ± 0.079 33.34 ± 0.921

The goal of our second test was to evaluate the performance improvement obtained
after the complete MobileNetV1 SSD network running in software was substituted with a
hardware-accelerated SSD network (comprising the CoNNa CNN accelerator and the Pup-
pis single-shot multibox detector accelerator). Again, the latency reduction and speedup
were calculated using Equations (17) and (18), for each image from the dataset, and
their mean value and standard deviation are presented in Table 7. When calculating
Equations (17) and (18) for each image, t1 is obtained as the sum of the software implemen-
tation execution durations, both for the backbone CNN and the SSD Head (statistically
represented by Columns 2 and 3 of Table 5). Similarly, t2 is calculated as the sum of the

Electronics 2023, 12, 4557 17 of 19

CoNNa and Puppis processing durations, whose mean values and standard deviations are
given in Columns 2 and 3 of Table 4).

Table 7. MobileNetV1 SSD latency reduction and processing speedup when using both CoNNa
and Puppis.

Dataset MobileNetV1 SSD Network MobileNetV1 SSD
Latency Reduction (%) Network Speedup

Pascal VOC 2007 97.234 ± 0.2127 36.45 ± 3.915

Finally, as a result of our last test, Table 8 statistically presents the latency reduction
and speedup in a setup where the backbone network processing was executed by the
CoNNa hardware accelerator, while the SSD Head post-processing was executed by the
SW in the first scenario and executed by Puppis in the second scenario. Hence, t1 from
Equations (17) and (18) is calculated as the sum of the CoNNa execution latency (Column 2
of Table 4) and the software-implemented SSD Head processing latency (Column 3 of
Table 5). Similarly, for each image, t2 is calculated as the sum of the CoNNa execution
latency and the Puppis execution latency (Column 3 of Table 4), while the mean value and
the standard deviation of the latency reductions and speedups are shown in Table 8.

Table 8. MobileNetV1 SSD latency reduction and processing speedup when using Puppis instead of
the SW SSD Head implementation.

Dataset MobileNetV1 SSD Network MobileNetV1 SSD
Latency Reduction (%) Network Speedup

Pascal VOC 2007 50.11 ± 0.684 2.005 ± 0.0282

From Table 6, it can be seen that using Puppis for the acceleration of the SSD Head
reduced the time by 97% on average and led to an average speedup of 33.34-times, when
compared with the SW implementation executed using the embedded ARM processor.
Table 7 shows that the average MobileNetV1 SSD execution duration reduction was 97.234%
when the hardware accelerators CoNNa and Puppis were used for running the backbone
network and SSD post-processing, compared to the software implementation, while the
average speedup was 36.45-times in this scenario. Finally, the performance improvement
due to using Puppis to execute the SSD Head, instead of the software, can be observed from
Table 8. This table shows that the average MobileNetV1 SSD network execution duration
reduction was 50.11%, with an average speedup of 2-times, when Puppis was used for SSD
post-processing instead of the software implementation, while the backbone network was
running on CoNNa in both cases.

6. Conclusions

This paper presented Puppis, a hardware accelerator for the single-shot multibox
detector, a popular network architecture for object detection. Our research was motivated by
the fact that the software implementation of the single-shot multibox detector algorithm has
become a bottleneck for both throughput and latency, after the backbone CNN processing
latency has been shortened significantly recently, by using dedicated CNN hardware
accelerators. Hence, to overcome this issue, the target for the proposed hardware accelerator
was to shorten the execution of all processing blocks within the SSD Head algorithm:
Softmax, Bounding box, and Non-maximum suppression calculation, as well as top-K
sorting. Even though the proposed solution can be integrated with any classifier backbone
CNN, during our experiments, we used the MobileNetV1 SSD network. By performing
tests on images from the Pascal VOC dataset [25], the results showed that the hardware-
accelerated single-shot multibox detector part of the complete SSD network reduced the SSD
Head execution time by 97% on average, resulting in an average speedup of 33.34-times,

Electronics 2023, 12, 4557 18 of 19

when compared to the software implementation. The performance improvement was even
higher when the complete MobileNetV1 SSD network was running on the CoNNa and
Puppis hardware accelerators, instead of the software: the processing latency was reduced
by 97.234% on average, leading to an average speedup of 36.45-times.

Author Contributions: Conceptualization, V.V. (Vladimir Vrbaski), V.V. (Vuk Vranjkovic) and R.S.;
Methodology, R.S.; Software, S.J. and P.T.; Validation, V.V. (Vuk Vranjkovic) and P.T.; Investigation,
V.V. (Vuk Vranjkovic); Writing—original draft, V.V. (Vuk Vranjkovic), P.T. and R.S.; Supervision, R.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work received partial funding from the European Union’s Horizon 2020 research and
innovation program under Grant Agreement Number 856967 and was supported by the Ministry of
Education, Science and Technological Development through Project No. 451-03-47/2023-01/200156
“Innovative scientific and artistic research from the FTS (activity) domain”.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: http://host.robots.ox.ac.uk/pascal/VOC, accessed on 20 September 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [CrossRef]
2. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the Computer Vision—ECCV, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
3. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]
4. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
5. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
6. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
7. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In

Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229.
8. Wang, C.; Endo, T.; Hirofuchi, T.; Ikegami, T. Speed-up Single Shot Detector on GPU with CUDA. In Proceedings of the

International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing,
Virtual, 7–9 December 2022; pp. 89–106.

9. Li, Z.; Zhou, F. FSSD: Feature fusion single shot multibox detector. arXiv 2017, arXiv:1712.00960.
10. Jiang, D.; Sun, B.; Su, S.; Zuo, Z.; Wu, P.; Tan, X. FASSD: A feature fusion and spatial attention-based single shot detector for small

object detection. Electronics 2020, 9, 1536. [CrossRef]
11. Ning, C.; Zhou, H.; Song, Y.; Tang, J. Inception single shot multibox detector for object detection. In Proceedings of the 2017 IEEE

International Conference on Multimedia and Expo Workshops (ICMEW), Hong Kong, China, 10–14 July 2017; pp. 549–554.
12. Yi, J.; Wu, P.; Metaxas, D.N. ASSD: Attentive single shot multibox detector. Comput. Vis. Image Underst. 2019, 189, 102827

[CrossRef]
13. Kumar, A.; Zhang, Z.J.; Lyu, H. Object detection in real time based on improved single shot multi-box detector algorithm.

EURASIP J. Wirel. Commun. Netw. 2020, 2020, 204. [CrossRef]
14. Kanimozhi, S.; Gayathri, G.; Mala, T. Multiple Real-time object identification using Single shot Multi-Box detection. In Proceedings

of the 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), Las Vegas, NV, USA, 5–7 December
2019; pp. 1–5.

15. Wu, S.; Wang, X.; Guo, C. Application of Feature Pyramid Network and Feature Fusion Single Shot Multibox Detector for
Real-Time Prostate Capsule Detection. Electronics 2023, 12, 1060 [CrossRef]

16. Wang, L.; Zhou, H.; Bian, C.; Jiang, K.; Cheng, X. Hardware Acceleration and Implementation of YOLOX-s for On-Orbit FPGA.
Electronics 2023, 11, 3473. [CrossRef]

17. Zhang, J.; Cheng, L.; Li, C.; Li, Y.; He, G.; Xu, N.; Lian, Y. A low-latency FPGA implementation for real-time object detection. In
Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May
2021; pp. 1–5.

18. Bi, F.; Yang, J. Target detection system design and FPGA implementation based on YOLO v2 algorithm. In Proceedings of the 2019
3rd International Conference on Imaging, Signal Processing and Communication (ICISPC), Singapore, 27–29 July 2019; pp. 10–14.

19. Nguyen, D.T.; Nguyen, T.N.; Kim, H.; Lee, H.J. A high-throughput and power-efficient FPGA implementation of YOLO CNN for
object detection. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019 27, 1861–1873. [CrossRef]

http://host.robots.ox.ac.uk/pascal/VOC
http://doi.org/10.1109/JPROC.2023.3238524
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.3390/electronics9091536
http://dx.doi.org/10.1016/j.cviu.2019.102827
http://dx.doi.org/10.1186/s13638-020-01826-x
http://dx.doi.org/10.3390/electronics12041060
http://dx.doi.org/10.3390/electronics11213473
http://dx.doi.org/10.1109/TVLSI.2019.2905242

Electronics 2023, 12, 4557 19 of 19

20. Ma, Y.; Zheng, T.; Cao, Y.; Vrudhula, S.; Seo, J.S. Algorithm-Hardware Co-Design of Single Shot Detector for Fast Object Detection
on FPGAs. In Proceedings of the 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego,
CA, USA, 5–8 November 2018; pp. 1–8.

21. Cai, L.; Dong, F.; Chen, K.; Yu, K.; Qu, W.; Jiang, J. An FPGA Based Heterogeneous Accelerator for Single Shot MultiBox Detector
(SSD). In Proceedings of the 2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT),
Kunming, China, 3–6 November 2020; pp. 1–3.

22. Struharik, R.J.; Vukobratović, B.Z.; Erdeljan, A.M.; Rakanović, D.M. CoNNa–Hardware accelerator for compressed convolutional
neural networks. Microprocess. Microsyst. 2020, 73, 102991. [CrossRef]

23. Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. Available online: https://www.xilinx.com/products/boards-and-kits/ek-u1
-zcu102-g.html (accessed on 27 July 2023).

24. Xilinx Vivado Design Suite. Available online: https://www.xilinx.com/developer/products/vivado.html (accessed on 27
July 2023).

25. The PASCAL Visual Object Classes Homepage. Available online: http://host.robots.ox.ac.uk/pascal/VOC (accessed on 27
July 2023).

26. Tensorflow. Available online: http://www.tensorflow.org (accessed on 27 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.micpro.2020.102991
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/developer/products/vivado.html
http://host.robots.ox.ac.uk/pascal/VOC
http://www.tensorflow.org

	Introduction
	Overview of Proposed System for Hardware Accelerator of Complete SSD Network
	General Structure of SSD Network
	System for HW Acceleration of Complete SSD Architecture

	Accelerated SSD Head Computation Algorithms
	The Softmax Calculation
	The Bounding Box Calculation
	Non-Maximum Suppression Calculation

	Puppis HW Accelerator Architecture
	Control Module
	Softmax Module
	Bounding Box Module
	NMS Module
	Sort Module

	Experimental Results
	Hardware Setup
	Software Comparison

	Conclusions
	References

