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Abstract: In realistic scenarios, existing object detection models still face challenges in resisting
interference and detecting small objects due to complex environmental factors such as light and
noise. For this reason, a novel scheme termed BFE-Net based on bidirectional feature enhancement
is proposed. Firstly, a new multi-scale feature extraction module is constructed, which uses a self-
attention mechanism to simulate human visual perception. It is used to capture global information
and long-range dependencies between pixels, thereby optimizing the extraction of multi-scale features
from input images. Secondly, a feature enhancement and denoising module is designed, based on
bidirectional information flow. In the top-down, the impact of noise on the feature map is weakened to
further enhance the feature extraction. In the bottom-up, multi-scale features are fused to improve the
accuracy of small object feature extraction. Lastly, a generalized intersection over union regression loss
function is employed to optimize the movement direction of predicted bounding boxes, improving
the efficiency and accuracy of object localization. Experimental results using the public dataset
PASCAL VOC2007test show that our scheme achieves a mean average precision (mAP) of 85% for
object detection, which is 2.3% to 8.6% higher than classical methods such as RetinaNet and YOLOv5.
Particularly, the anti-interference capability and the performance in detecting small objects show a
significant enhancement.

Keywords: object detection; bidirectional feature enhancement; anti-interference; small object detection

1. Introduction

Object detection, as a research hotspot in computer vision, holds extensive applications
in domains including autonomous driving [1] and remote sensing monitoring [2]. Nev-
ertheless, object detection faces persistent challenges arising from complex environments
and the diversity of object characteristics, encompassing scale variations, background
interference, and noise.

Presently, object detection predominantly leverages deep learning methodologies,
which are categorized into two-stage and one-stage detection algorithms. Two-stage object
detection algorithms involve the generation of candidate regions, which are subsequently
classified and localized. Among them, Girshick et al. [3] proposed Fast R-CNN, which
employs ROI pooling to extract features from regions of interest (ROI). However, its
dependency on Selective Search for candidate box generation leads to slower detection
speeds. In the same year, Ren et al. [4] proposed Faster R-CNN, which enhances the
efficiency and detection performance of candidate box generation by introducing the
Region Proposal Network (RPN) for automatic ROI generation. However, in scenarios
involving small objects, RPN may produce fewer candidate regions, potentially leading
to omissions in small object detection. To address this concern, Hu et al. [5] proposed
SFGNet, which leverages the integration of high-resolution fine-grained features with
low-resolution high-level semantic features to obtain spatially refined features. These
features are incorporated into an enhanced RPN to enhance the detection performance for
small objects. Nonetheless, this algorithm demonstrates limited robustness when faced
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with complex scenes, variations in lighting, noise, and other forms of interference. Overall,
two-stage object detection algorithms are plagued by redundant computations and slower
detection speeds. Additionally, their detection performance may degrade in scenarios
involving small objects and complex scenes.

To tackle these challenges, one-stage object detection algorithms that abandon candi-
date boxes are proposed. Instead, they rely on predicting key points to obtain bounding
boxes, which has the advantages of fewer network parameters and fast detection. Notable
algorithms in this category include YOLO [6], SSD [7], and CenterNet [8]. YOLO [6] di-
vides the image into grids for detection, which can increase speed. However, its detection
accuracy is low, due to the single-scale approach. To address this, YOLOv3 [9] introduced
multi-scale prediction, which not only enhances detection accuracy but also handles objects
of different scales more effectively. YOLOv5, the improvement of YOLOv3, adopts Feature
Pyramid Network (FPN) [10] to enhance the detection accuracy of large objects through
fully utilizing low-level features with high resolution and high-level features with semantic
information. However, there are still challenges relating to small objects. Zhang et al. [11]
proposed an object detection method that combines MobileNet v2, YOLOv4, and attention
mechanisms, effectively enhancing the speed and accuracy of underwater object detection.
However, it does not fully address issues like noise and blurriness in underwater images.

SSD [7] achieved better detection speed via the Anchor mechanism and multi-scale
detection method. The Anchor mechanism, as a vital component of SDD, proficiently
identifies objects of varying sizes and proportions by means of predefined rectangular
boxes distributed at various positions and dimensions within the input image. However,
the underlying feature mapping in SSD lacks semantic information, resulting in suboptimal
detection performance. In response, RetinaNet [12] leverages FPN to combine low-level
features with detail information and high-level features with semantic information, im-
proving the detection capability for objects of different scales. Deng et al. [13] introduced
FPN into SSD and modified the structure of effective feature layers, enriching the seman-
tic information in shallow feature mappings. Nonetheless, it may still be susceptible to
information loss during FPN propagation, potentially compromising the preservation of
detailed information and the detection performance for small objects.

The core idea of CenterNet is to redefine object detection as the task of locating object
center points [8]. While CenterNet has certain advantages in object detection, it still has
limitations in terms of detecting small objects and handling interferences. On the one hand,
centroid localization may be affected by pixel-level errors in small objects, resulting in
inaccurate detection frames. On the other hand, centroid localization is also affected by
complex backgrounds, leading to inaccurate detection. As an improvement upon Center-
Net, DC-CenterNet [14] is designed to improve convergence speed, stability, and prediction
accuracy by regressing the diagonal half-length and the central angle. And it still relies on
center point prediction, which results in weaker anti-interference ability. Hence, one-stage
algorithms are afflicted by insufficient feature extraction capabilities, constrained receptive
fields, and suboptimal feature fusion, ultimately resulting in diminished performance in
the detection of small and noisy objects.

To improve the detection accuracy for small objects and the ability to handle in-
terferences, a novel scheme termed BFE-Net is proposed based on bidirectional feature
enhancement. Firstly, in terms of feature extraction, a self-attention mechanism is intro-
duced to optimize the extraction of multi-scale features by increasing the receptive field,
thereby improving overall detection performance. Secondly, in terms of information propa-
gation, a bidirectional feature pyramid structure is constructed to preserve fine-grained
details in the top-down and fully utilize features at different levels and scales in the bottom-
up, thus improving the detection performance for small objects. Furthermore, in feature
fusion, the diversity of features is increased through multi-scale feature fusion, enhancing
the detection capability for objects of different scales. Lastly, a generalized intersection
over union (GIoU) regression loss function [15] is employed to optimize the position loss,
improving both the accuracy of object localization and convergence speed. Moreover, to
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enhance the anti-interference capability in the top-down, bicubic interpolation is used to
perform up-sampling on feature maps, preserving image details and smoothness while
mitigating the influence of noise to some extent. Our contributions are in these aspects:

(1) In order to effectively improve the detection capability for small objects and anti-
interference, we propose an object detection algorithm named BFE-Net based on
bidirectional feature enhancement, which consists of a perceptually optimized multi-
scale feature extraction module, feature enhancement and denoising module with
bidirectional information flow, and a classification regression network.

(2) To enhance multi-scale feature extraction and improve the overall performance of
BFE-Net, the perceptually optimized multi-scale feature extraction module utilizes a
pyramid hierarchical self-attention mechanism, which can capture global information
and long-range dependencies between pixels, thereby facilitating the optimization
and extraction of multi-scale features from the input image.

(3) To mitigate the influence of noise on various objects, particularly small objects, we
design a feature pyramid structure with bidirectional information flow and gradually
obtain high-resolution images through bicubic interpolation up-sampling, which
maintains the details and smoothness of the images. This approach is beneficial to
reduce the impact of noise on the feature extraction across different-scale objects,
thereby enhancing the detection capability, especially for small-scale objects.

2. BFE-Net

The proposed algorithm BFE-Net, depicted in Figure 1, consists of three main com-
ponents: a perceptually optimized multi-scale feature extraction module, a feature en-
hancement and denoising module with bidirectional information flow, and a classification
regression network. To begin with, the feature extraction module uses a pyramid hierarchi-
cal approach to reorganize the input image chunks and calculate self-attention mechanisms,
which optimize the extraction of multi-scale features. Next, the feature enhancement and
denoising module applies bicubic interpolation up-sampling, weighted feature fusion, and
cross-scale connections to reduce noise interference and improve feature completeness.
Lastly, the classification regression network fuses the multi-scale features and utilizes the
GIoU regression loss function to optimize the movement direction of predicted bounding
boxes, which enhances the classification and localization accuracy for small objects.
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Figure 1. Overall architecture of BFE-Net.

2.1. Perceptually Optimized Multi-Scale Feature Extraction

The traditional FPN in computer vision typically builds upon different levels of
feature maps extracted by a bottom-up network. Each level contains information with
varying resolutions and semantics. However, due to the limited local receptive field of the
network, the bottom-level feature maps can only capture local details of the image, making
it difficult to obtain global contextual information, thus impacting the final detection results.
The Swin Transformer [16], serving as an enhancement of the conventional Transformer
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architecture [17], boasts significant advantages in the realm of image data manipulation.
It amplifies its capability to handle high-resolution images and capture local details by
incorporating techniques such as chunking, window-based attention, and hierarchical
attention. Consequently, it has emerged as a pivotal instrument within the domain of
computer vision. Therefore, BFE-Net draws inspiration from the Swin Transformer and
employs self-attention mechanisms to simulate human visual perception and then captures
global information and long-range dependencies between pixels, optimizing the extraction
of multi-scale features.

In the perceptually optimized multiscale feature extraction module, an improved
version of the Swin Transformer serves as the bottom-up component of the feature pyramid,
extracting features at different scales. Specifically, the correlation between features is
modelled by the Swin Transformer’s self-attention mechanism to obtain both local details
and global context, thereby improving feature expressiveness and detection performance,
especially for small objects. To apply the pyramid structure to the output features of the
bottom-up component, these are divided into five stages, representing different scales of
feature outputs. Stage 1 corresponds to the lowest level, emphasizing fine details, while
Stage 5 represents the highest level, emphasizing semantic information. By leveraging
the improved Swin Transformer, BFE-Net can enhance perception and comprehension
across different scales, contributing to an overall performance boost. Figure 2 illustrates the
extraction of multi-scale features.
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Initially, the input raw image undergoes patch partitioning and linear embedding.
Subsequently, in Stage 1, the Self-attention Calculation Module computes attention weights
between patches, effectively downsizing the output feature map to 1/4 of the input. Mov-
ing to Stage 2, Patch Merging combines patches post self-attention calculations into an
overarching feature representation. This representation then goes through a two-layer
Self-attention Calculation Module to determine attention weights for this stage, further
reducing the output feature map to 1/8 of the input. Stages 3, 4, and 5 replicate the opera-
tions of Stage 2, progressively yielding feature map sizes of 1/16, 1/32, and 1/64 of the
input, respectively. These output feature maps from the five stages are used in the feature
pyramid structure, allowing for a comprehensive and rich representation of multi-scale
features, as well as global and local contextual awareness. This improves the understand-
ing and analysis of different regions and objects in the image. Notably, the Self-attention
Calculation Module employs a windowed self-attention mechanism, effectively reducing
computational complexity and enhancing the efficiency and speed.

As depicted in Figure 3, the Self-attention Calculation Module employs a window-
based approach for computation [16]. Specifically, W-MSA stands for multi-head self-
attention module with regular windowing configuration, confining attention calculations
within a fixed-size window. On the other hand, SW-MSA stands for shifted window
multi-head self-attention module, which moves the window through translation operation
to enhance the interaction of feature information at different locations. This approach
not only reduces computational complexity but also captures long-range dependencies
within the image. Apart from W-MSA and SW-MSA, the Self-attention Calculation Module
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also contains Layer Normalization (LN), Residual Connection, and Multi-layer Perceptron
(MLP). The formula for the Self-attention Calculation Module is provided below.

ẑm = W −MSA(LN(zm−1)) + zm−1 (1)

zm = MLP(LN(ẑm)) + ẑm (2)

ẑm+1 = SW −MSA(LN(zm)) + zm (3)

zm+1 = MLP(LN(ẑm+1)) + ẑm+1 (4)

where zm−1, zm, and zm+1, respectively, denote the input of the previous layer, the output
of the current layer, and the output of the next layer within the Self-attention Calculation
Module of each stage. LN contributes to regularization and model training optimization,
ultimately enhancing performance and stability. Residual connections are utilized to
address the issues of gradient vanishing and information loss. MLP enhances the expressive
power of the network through nonlinear transformation.
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By employing the perceptually optimized multi-scale feature extraction module, BFE-
Net enhances the semantic representation and multi-scale information of low-level features,
which proves advantageous in improving the performance of object detection tasks, partic-
ularly for small objects and scenes with complex backgrounds. Subsequently, the feature
representations of different scales are outputted to the next module.

2.2. Feature Enhancement and Denoising with Bidirectional Information Flow

Although the perceptually optimized multi-scale feature extraction module enhances
multi-scale feature extraction using the self-attention mechanism, there are still factors that
negatively affect the accuracy of object detection in feature extraction. On the one hand,
the resolution of the feature map gradually decreases, resulting in subtle edges, textures
and local features not being preserved completely. On the other hand, in the low-resolution
region of the feature map, noise is amplified, which adversely affects the detection effect.
Noise may come from sensor noise of image acquisition devices, artifacts caused by image
compression, and error propagation during feature extraction.

Figure 4 shows the object detection results of RetinaNet and YOLOv5 before and
after Gaussian noise processing. Both algorithms have reduced detection accuracy for
dogs, as large objects, after introducing noise. For small objects, RetinaNet fails to detect
the airplane, while YOLOv5 mistakenly detects the airplane as a bird. In summary, the
noise adversely affects the accuracy and robustness of object detection, especially for small
objects. Therefore, it is crucial to address the problem of feature loss and noise, improving
the performance and reliability of the algorithms.
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To overcome these challenges, an improved feature pyramid structure (Figure 5) has
been devised. This structure establishes bidirectional information flow through both a
top-down and bottom-up, enabling the network to maximize the utilization of input data
and create stronger connections across different layers. In the top-down, to weaken the
noise present in the input data, the interpolation method is used, which draws on the
idea of filters to amplify the feature maps, maintaining the detail and smoothness of the
image and weakening the effect of noise to a certain extent. In the bottom-up, to further
enhance the feature extraction, features from different layers and scales are fully utilized
through skip connections, cross-scale connections, and weighted feature fusion. This can
improve the perception and expression ability of the network, which in turn improves the
performance of small object detection. The specific operation of the feature pyramid with
bidirectional information flow is as follows.
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In Figure 5, p1, p2, p3, and p4 denote the features of different-scale output from
Stage 2~5 in the perceptually optimized multi-scale feature extraction module. Firstly,
p1~p4 are the initial input features, which are uniformly convolved with 1 × 1 and Swish
activation function to obtain the corresponding input feature maps: p1

in, p2
in, p3

in, p4
in.

Then, p5
in is obtained from p4

in through 1 × 1 convolution and 3 × 3 maximum pooling
with a step size of 2. Finally, p1

in ∼ p5
in are regarded as the final features that are inputted

into the feature pyramid structure with bidirectional information flow.
In the top-down, we employ bicubic interpolation as a smooth and accurate interpo-

lation method, which has been widely used by researchers [18,19]. Therefore, we employ
bicubic interpolation to perform quadruple up-sampling, leveraging the continuity and
connectivity between pixels to enhance image resolution and mitigate the impact of noise.
Specifically, bicubic interpolation calculates interpolation weights based on the distance
between the interpolation point and its 16 neighboring pixels, reflecting the contribution
of these nearby pixels to the interpolation point. By taking a weighted average of the
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neighboring pixels, an estimated value for the interpolation point can be obtained, thus
achieving image up-sampling. Through the gradual restoration of image details and clarity
via quadruple up-sampling, BFE-Net generates higher-quality, high-resolution images.
Specifically, we up-sample p5

in through bicubic interpolation, and then splice it with p4
in

in the channel dimension to obtain p4
−, which is a richer feature representation. Next, we

up-sample p4
− through bicubic interpolation, and then splice it with p3

in in the channel
dimension to obtain p3

−. Similarly, we can obtain p2
− and p1

− in turn. In the above
process, BFE-Net realizes feature fusion, which fuses higher-level with lower-level features
to improve perception and anti-interference capability.

In the bottom-up, skip connections are added to the paths where p1, p2, p3 and p4 are
located to avoid the feature extraction network missing information of the small objects
through multiple-feature propagation, so as to enhance the feature extraction at different
resolutions and then enhance the feature expression ability of the small objects. Moreover,
cross-scale connections are used in the bottom-up to realize the feature propagation from
shallow to deep and fuse features at different levels, thus obtaining a more comprehensive
and enriched feature representation. To be more specific, p1 is spliced with p1

− in the
channel dimension to obtain p1

out through skip connection. Next, p1
out is maximum-pooled

by 3 × 3 with a step size of 2 and then spliced with p2 and p2
− in the channel dimension to

obtain p2
out. Similarly, we can obtain p3

out and p4
out in turn. Finally, p5

out is obtained by
splicing p5

in with p4
out in the channel dimension via a cross-scale connection. Taking p4

−

and p4
out as examples, the specific calculations are expressed in Formulas (5) and (6).

P−4 = conv[
w1 · pin

4 + w2 · BI(pin
5 )

w1 + w2 + β
] (5)

pout
4 = conv[

w1
′ · p4 + w2

′ · p−4 + w3
′ · Resize(pout

3 )

w1
′ + w2′ + w3′ + β

] (6)

where pi and pin
i represent the initial and final input features, respectively, for the feature

enhancement and denoising module with bidirectional information flow. p−i denotes
the fusion features in the top-down, and pout

i represents the output features. w1 and
w2 represent the learnable weights of the top-down, while w1

′, w2
′, and w3

′ represent
the learnable weights of the bottom-up. β is a value significantly smaller than 1. The up-
sampling operation, represented by the function BI, is performed using bicubic interpolation
to enlarge the feature maps while preserving image details and smoothness, thereby
reducing the impact of noise. The function Resize denotes 3 × 3 max pooling with a step
size of 2, which adjusts the size of the feature maps to achieve consistent dimensions across
different hierarchical levels, thus facilitating the fusion of features.

2.3. Classification Regression Network

The classification regression network, as an important component of BFE-Net, is used
to fuse multi-scale feature maps and perform object classification and regression prediction.
For the diverse-scale feature maps, pout

i , output from previous modules, a multi-scale
feature fusion is initially conducted. Subsequently, the fused feature maps are fed into
the classification prediction branch and the regression prediction branch, enabling the
classification regression network to differentiate between different objects and predict
their locations.

Within the classification prediction branch, the fused feature maps are initially pro-
cessed through four 3 × 3 convolutional layers, and nonlinearities are introduced using
the ReLU activation function to extract features and map them to the classes of the object.
Then, an additional 3× 3 convolutional layer is used to map the features to the scores corre-
sponding to the object classes, facilitating the classification prediction of objects. Similarly,
within the regression prediction branch, object location is performed through regression
prediction of the bounding box. To optimize the movement direction of the bounding box
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and then enhance the accuracy of object localization, the GIoU regression loss function
(LGIoU) is employed to train the regression branch.

In contrast to the conventional intersection over union regression loss function (LIoU),
the LGIoU demonstrates greater sensitivity to change in the size of predicted bounding
boxes. Specifically, LIoU only considers the area of the intersection and union during
loss computation. In contrast, LGIoU introduces the concept of Minimum Bounding Box
(MBB), which accounts for both the relative position and size of predicted and ground truth
bounding boxes, thereby providing more accurate location for both small and large objects.

For LGIoU , we start by calculating the areas of the intersection and union regions be-
tween the predicted bounding boxes and the ground truth boxes. Afterwards, we compute
the area of MBB. Finally, we calculate the value of LGIoU using the following formula.

LGIoU = 1− IoU +
(MBB− A ∪ B)

MBB
(7)

where IoU represents the calculation result of the intersection over union, that is, the area
of the intersection region divided by the area of the union region. A and B represent the
area of the ground truth box and predicted bounding box, respectively. A ∪ B represents
the area of the union region between A and B. The value of LGIoU falls within the range of
[−1, 1]. When the predicted bounding box perfectly overlaps with the ground truth box,
IoU is 1, and as LGIoU approaches 0, it indicates the best localization accuracy. Conversely,
when the predicted bounding box has no overlap with the ground truth box, IoU is 0, and
as LGIoU approaches 1, it represents the worst localization accuracy.

LGIoU not only focuses on the overlapping region but also considers other non-
overlapping areas, providing a better reflection of the intersection between the predicted
and ground truth boxes within MBB. Moreover, LGIoU helps optimize the movement di-
rection of the predicted box and provides more accurate localization information, thereby
improving the performance of the object detection.

3. Results and Analysis
3.1. Experimental Datasets and Environment Settings

To validate the effectiveness of BFE-Net, we trained and tested on the PASCAL
VOC2007+2012 dataset [20], which comprises 20 common object classes, including boat,
bird, people, etc. During the model training, we set the input image size to 640 × 640, the
epoch to 18,000, the batch size to 15, and the initial learning rate to 0.0001, and chose Adam,
a stochastic gradient descent method, as the optimization algorithm.

The Ubuntu 16.04 operating system was used as the hardware platform for the ex-
periment. The GPU part of the experiment used three NVIDIA TITAN RTX, each GPU’s
memory size was 24 G, and the processor used an Intel Xeon(R) Silver 4214 CPU. In terms
of software, we utilized PyTorch (1.10.1) as the deep learning framework. The versions of
torchvision, torchaudio, and cudatoolkit were 0.11.2, 0.10.1, and 10.2, respectively.

3.2. Comparison of Experimental Results
3.2.1. Overall Performance Analysis

To evaluate the performance of BFE-Net in object detection, we applied the trained
model weights to the PASCAL VOC2007test dataset and calculated the average precision
(AP) for each object class, then computed mean average precision (mAP). In addition, we
compared BFE-Net to other leading object detection algorithms, presenting the results
in Table 1. This table shows the detection accuracy of different algorithms for 20 object
categories in the PASCAL VOC2007test dataset in detail. Comparing the results below, the
effectiveness and superiority of BFE-Net in object detection are proven.

As shown in Table 1, BFE-Net exhibits a high level of detection accuracy for most
object classes in the PASCAL VOC2007test dataset, with mAP reaching 85%. Compared
to the typical algorithms RetinaNet and YOLOv5, BFE-Net demonstrates 4.2% and 2.3%
increases in mAP, respectively. When compared to the latest algorithms SFGNet and DC-
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CenterNet, the mAP of BFE-Net is an improvement by 3.7% and 3.4%, respectively. For a
visual representation of BFE-Net’s object detection capability, we randomly selected several
images from the PASCAL VOC2007test dataset and conducted a comparative analysis with
RetinaNet and YOLOv5 to highlight the differences in detection, as illustrated in Figure 6.

Table 1. Object detection results for PASCAL VOC2007test dataset (%).

Methods mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow

Faster R-CNN [4] 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8
SSD [7] 77.3 78.8 85.3 75.7 71.5 49.1 85.7 86.4 87.8 60.6 82.7

YOLOv3 [9] 78.3 79.0 85.6 77.2 72.3 55.6 86.8 87.3 88.0 62.3 84.2
CenterNet [8] 80.3 82.1 89.8 80.6 66.7 58.7 90.5 91.2 90.7 65.0 83.8
RetinaNet [12] 80.8 87.4 85.4 83.4 71.3 72.5 86.4 88.6 87.8 65.9 85.4
SLMS-SSD [21] 81.2 88.5 87.1 83.2 76.4 59.2 88.3 88.4 89.0 66.6 86.9

SFGNet [5] 81.3 82.2 83.9 80.3 71.5 78.2 89.6 86.9 90.0 65.7 87.9
Zhang et al. [11] 81.6 88.5 87.5 83.1 75.2 67.1 85.3 90.2 88.9 60.9 89.7

DC-CenterNet [14] 81.6 84.8 90.9 83.5 70.6 64.9 90.8 91.3 91.3 64.9 80.6
YOLOv5 82.7 95.2 85.6 65.7 50.5 89.0 65.4 92.6 92.0 82.3 78.6
BFE-Net 85.0 89.6 89.0 86.6 80.0 78.5 88.8 89.6 89.0 73.5 88.6

Methods mAP Table Dog Horse Mbike Person Plant Sheep Sofa Train TV

Faster R-CNN [4] 76.4 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
SSD [7] 77.3 76.5 84.9 86.7 84.0 79.2 51.3 77.5 78.7 86.7 76.3

YOLOv3 [9] 78.3 76.4 85.0 87.2 84.3 80.3 51.9 77.2 78.9 86.7 78.9
CenterNet [8] 80.3 75.1 88.5 89.9 89.9 86.5 42.0 82.0 80.2 89.4 83.8
RetinaNet [12] 80.8 75.5 86.6 87.0 86.0 85.3 57.0 82.8 75.7 85.7 80.6
SLMS-SSD [21] 81.2 74.6 87.3 88.6 86.5 82.2 54.8 85.5 80.9 87.9 81.0

SFGNet [5] 81.3 72.4 90.3 89.9 83.5 82.5 67.8 79.0 81.6 86.7 75.7
Zhang et al. [11] 81.6 78.4 89.5 89.5 84.9 84.8 55.1 86.9 74.3 90.8 82.0

DC-CenterNet [14] 81.6 73.8 87.5 90.6 90.8 86.4 53.3 82.9 79.0 87.7 85.6
YOLOv5 82.7 81.7 88.2 66.3 99.5 91.9 83.8 87.5 89.8 99.5 68.3
BFE-Net 85.0 81.0 89.0 90.0 89.4 87.1 66.6 88.6 80.5 88.3 87.1
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As can be seen from Figure 6, the detection accuracy of BFE-Net for bicycle, bird,
bus, and boat is significantly better than that of the comparison algorithms, RetinaNet and
YOLOv5. In terms of overall network, compared with other algorithms, BFE-Net draws on
the idea of the Swin Transformer in feature extraction, which effectively captures the global
and local information in the image through the window self-attention mechanism, thus
improving the object detection performance. Additionally, BFE-Net constructs a feature
pyramid with bidirectional information flow, facilitating the fusion of multi-scale features
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and further boosting detection accuracy. Lastly, LGIoU is used in the classification regression
network to optimize the movement direction of predicted bounding boxes, leading to
improved localization accuracy. In summary, during object detection visualization, BFE-
Net consistently outperforms typical algorithms, proving its effectiveness in delivering
superior accuracy and efficiency in a wide range of object detection tasks.

3.2.2. Performance Analysis of Small Object Detection

Many algorithms have poor detection accuracy for small objects, and small objects
may even be missed and wrongly detected due to the small-sized object samples in the
PASCAL VOC2017+2012 dataset, such as bird, boat, bottle, and television. To address this,
BFE-Net improves its algorithmic structure to enhance the detection accuracy of small
objects. For feature extraction, BFE-Net uses a window-based self-attention mechanism
that adaptively focuses on important regions in the image, especially the local regions
where small objects are located, improving the perception of small objects. For feature
fusion, the bidirectional information flow within the feature pyramid structure allows the
fusion of features from different levels, enabling the network to better capture the feature
information of multi-scale objects. This helps BFE-Net handle small objects and improve the
detection accuracy. Moreover, the adoption of LGIoU optimizes the movement directions of
predicted boxes, ultimately enhancing the detection performance for small objects. BFE-Net
specifically considers bird, boat, bottle, and television as small object categories, and the
mAP is 83.1%, surpassing other comparative algorithms. This demonstrates BFE-Net’s
effectiveness in detecting small objects and addressing the challenges presented by their
presence in the dataset. As a result, BFE-Net is a reliable choice for object detection tasks
where small object detection is of critical importance. This performance is illustrated in
Figure 7 (created using Origin 2018).
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Furthermore, we have visualized the detection results for small objects in Figure 8,
showing the performance of BFE-Net compared to the typical algorithms, RetinaNet
and YOLOv5. BFE-Net shows superior detection performance for small objects in the
four categories of bird, boat, bottle, and television. In scenes 1 and 2, BFE-Net detects
small objects such as bird and boat effectively. In scene 3, where the background is more
complex, the comparative algorithms miss some small objects, while BFE-Net can detect
the bottles better. In scene 4, RetinaNet detects a false object, while BFE-Net achieves
a high detection accuracy of 99% for the television. Through the comparison of mAP
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and visual analysis, these confirm the performance of BFE-Net in small object detection,
highlighting its effectiveness and reliability in tackling the challenges posed by small objects
in various scenarios.
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3.2.3. Analysis of Anti-Interference Performance

In complex real scenarios, object detection algorithms are always plagued by noise,
light, and so on. To mitigate the impact of various interfering factors on object detection, a
bicubic interpolation for noise filtering is employed by BFE-Net. This approach effectively
preserves image details and smoothness while mitigating the impact of noise to a certain
extent. Simultaneously, through a quadruple up-sampling, image details and clarity are
progressively restored by BFE-Net, yielding higher-quality, high-resolution images and
further enhancing the extraction of fine-grained features.

Next, to verify the anti-interference performance of BFE-Net, we experimented with
four different kinds of common interferences using the PASCAL VOC2007test dataset:
Gaussian noise (GN), Gaussian blur (GB), motion blur (MB), and encoding distortion (ED).
Specifically, the four interference datasets were tested separately using the original training
weights to obtain the mAP, as shown in Table 2. As can be seen from Table 2, on the four
interference datasets, the detection accuracy of BFE-Net is higher than that of the typical
RetinaNet and YOLOv5. To further evaluate the anti-interference performance of BFE-Net,
we randomly selected one image, respectively, from four interference datasets for visual
comparison. The result is shown in Figure 9.

Table 2. Comparison of mAP for PASCAL VOC2007test and four interference datasets (%).

Methods
mAP

VOC2007test +GN +GB +MB +ED

RetinaNet 80.80 71.89 78.25 74.39 75.55
YOLOv5 82.70 71.50 78.30 76.20 77.30
BFE-Net 85.00 80.24 83.88 82.06 82.35

Figure 9 shows that the visual detection results of BFE-Net for the four interfer-
ence datasets are significantly better than the comparative algorithms. In the PASCAL
VOC2007test dataset with GN introduced, for scenario 1, RetinaNet failed to detect the
plane and YOLOv5 incorrectly detected the plane as a bird, while BFE-Net could detect
the plane with a high accuracy of 95%. In the PASCAL VOC2007test dataset with GB
introduced, for scenario 2, RetinaNet mistakenly detected two cats instead of one, while
BFE-Net avoided this. In the PASCAL VOC2007test dataset with MB and ED introduced,
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for scenes 3 and 4, RetinaNet and YOLOv5 showed object omission and low accuracy, while
BFE-Net could detect interference object with high accuracy. These tests and visualization
effect comparison confirm that BFE-Net can effectively reduce the noise interference and
has a certain anti-interference ability.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 15 
 

 

effectively preserves image details and smoothness while mitigating the impact of noise 
to a certain extent. Simultaneously, through a quadruple up-sampling, image details and 
clarity are progressively restored by BFE-Net, yielding higher-quality, high-resolution im-
ages and further enhancing the extraction of fine-grained features. 

Next, to verify the anti-interference performance of BFE-Net, we experimented with 
four different kinds of common interferences using the PASCAL VOC2007test dataset: 
Gaussian noise (GN), Gaussian blur (GB), motion blur (MB), and encoding distortion 
(ED). Specifically, the four interference datasets were tested separately using the original 
training weights to obtain the mAP, as shown in Table 2. As can be seen from Table 2, on 
the four interference datasets, the detection accuracy of BFE-Net is higher than that of the 
typical RetinaNet and YOLOv5. To further evaluate the anti-interference performance of 
BFE-Net, we randomly selected one image, respectively, from four interference datasets 
for visual comparison. The result is shown in Figure 9. 

Table 2. Comparison of mAP for PASCAL VOC2007test and four interference datasets (%). 

Methods 
mAP 

VOC2007test +GN +GB +MB +ED 
RetinaNet 80.80 71.89 78.25 74.39 75.55 
YOLOv5 82.70 71.50 78.30 76.20 77.30 
BFE-Net 85.00 80.24 83.88 82.06 82.35 

 
Figure 9. Visual results of different algorithms for interference datasets. 

Figure 9 shows that the visual detection results of BFE-Net for the four interference 
datasets are significantly better than the comparative algorithms. In the PASCAL 
VOC2007test dataset with GN introduced, for scenario 1, RetinaNet failed to detect the 
plane and YOLOv5 incorrectly detected the plane as a bird, while BFE-Net could detect 
the plane with a high accuracy of 95%. In the PASCAL VOC2007test dataset with GB in-
troduced, for scenario 2, RetinaNet mistakenly detected two cats instead of one, while 
BFE-Net avoided this. In the PASCAL VOC2007test dataset with MB and ED introduced, 
for scenes 3 and 4, RetinaNet and YOLOv5 showed object omission and low accuracy, 
while BFE-Net could detect interference object with high accuracy. These tests and visu-
alization effect comparison confirm that BFE-Net can effectively reduce the noise interfer-
ence and has a certain anti-interference ability. 

  

Figure 9. Visual results of different algorithms for interference datasets.

3.2.4. Analysis of Regression Loss Function

In classification regression networks, the performance can be improved by utilizing
LGIoU to optimize the predicted bounding box locations. This loss function provides more
accurate positioning information. As shown in Figure 10, compared to RetinaNet, the
optimized regression loss function of BFE-Net converges faster and has smaller oscillations.
This indicates the effectiveness of LGIoU , which enhances the efficiency and accuracy of
object localization, resulting in better detection performance and a higher level of precision
in predicting bounding box locations for objects in various scenarios.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 15 
 

 

3.2.4. Analysis of Regression Loss Function 
In classification regression networks, the performance can be improved by utilizing 

GIoUL  to optimize the predicted bounding box locations. This loss function provides more 
accurate positioning information. As shown in Figure 10, compared to RetinaNet, the op-
timized regression loss function of BFE-Net converges faster and has smaller oscillations. 
This indicates the effectiveness of GIoUL , which enhances the efficiency and accuracy of 
object localization, resulting in better detection performance and a higher level of preci-
sion in predicting bounding box locations for objects in various scenarios. 

 
Figure 10. Comparison of regression loss between RetinaNet and BFE-Net. (a,b) illustrate the re-
gression loss functions of RetinaNet and BFE-Net, respectively. 

3.3. Ablation Experiment 
This paper validated the impact of different modules on the detection performance 

using the PASCAL VOC2007+2012 dataset. The experimental results are detailed in Table 
3.  

Experiment 1 presents the original RetinaNet algorithm with ResNet-50 as the back-
bone feature extraction network and FPN for constructing the feature pyramid. The mAP 
achieved is 80.8%.  

Experiment 2 replaces the backbone feature extraction network of RetinaNet with the 
perceptually optimized multi-scale feature extraction module, which uses the improved 
Swin Transformer as the bottom-up part of the backbone network to obtain multi-scale 
feature representations. This improvement leads to a 1.5% mAP increase.  

Experiment 3 replaces the original FPN in Experiment 1 with a bidirectional feature 
enhancement and denoising module based on bidirectional information flow, which es-
tablishes two paths, top-down and bottom-up, for bidirectional information flow. It im-
proves the detailed feature extraction and reduces the noise influence. The mAP is in-
creased by 2.8% compared to Experiment 1.  

Experiment 4 combines the improvements of Experiments 2 and 3, which involves 
feeding the multi-scale feature maps extracted by the perceptually optimized multi-scale 
feature extraction module into the bidirectional feature enhancement and denoising mod-
ule. It mitigates the noise interference in feature extraction and enhances the feature com-
pleteness through bicubic interpolation up-sampling, weighted feature fusion, and cross-
scale connections. It achieves a mAP of 84.5%.  

Finally, in Experiment 5, the positional loss function is improved by using GIoUL  to 
optimize the predicted bounding box locations, which enhances the object localization ac-
curacy, resulting in the best mAP of the network. 

  

Figure 10. Comparison of regression loss between RetinaNet and BFE-Net. (a,b) illustrate the
regression loss functions of RetinaNet and BFE-Net, respectively.

3.3. Ablation Experiment

This paper validated the impact of different modules on the detection performance
using the PASCAL VOC2007+2012 dataset. The experimental results are detailed in Table 3.

Experiment 1 presents the original RetinaNet algorithm with ResNet-50 as the back-
bone feature extraction network and FPN for constructing the feature pyramid. The mAP
achieved is 80.8%.

Experiment 2 replaces the backbone feature extraction network of RetinaNet with the
perceptually optimized multi-scale feature extraction module, which uses the improved



Electronics 2023, 12, 4531 13 of 14

Swin Transformer as the bottom-up part of the backbone network to obtain multi-scale
feature representations. This improvement leads to a 1.5% mAP increase.

Table 3. Effect of different modules on detection performance.

/ ResNet-50 FPN Perceptually Optimized
Multi-Scale Feature Extraction

Feature Enhancement and Denoising with
Bidirectional Information Flow LGIoU mAP

1
√ √

× × × 80.8
2 ×

√ √
× × 82.3

3
√

× ×
√

× 83.6
4 × ×

√ √
× 84.5

5 × ×
√ √ √

85.0

Experiment 3 replaces the original FPN in Experiment 1 with a bidirectional feature
enhancement and denoising module based on bidirectional information flow, which estab-
lishes two paths, top-down and bottom-up, for bidirectional information flow. It improves
the detailed feature extraction and reduces the noise influence. The mAP is increased by
2.8% compared to Experiment 1.

Experiment 4 combines the improvements of Experiments 2 and 3, which involves
feeding the multi-scale feature maps extracted by the perceptually optimized multi-scale
feature extraction module into the bidirectional feature enhancement and denoising module.
It mitigates the noise interference in feature extraction and enhances the feature complete-
ness through bicubic interpolation up-sampling, weighted feature fusion, and cross-scale
connections. It achieves a mAP of 84.5%.

Finally, in Experiment 5, the positional loss function is improved by using LGIoU to
optimize the predicted bounding box locations, which enhances the object localization
accuracy, resulting in the best mAP of the network.

4. Conclusions

In this paper, we propose a one-stage object detection algorithm based on bidirectional
feature enhancement. It consists of a self-attention mechanism module, which effectively
captures the long-range dependencies and global information between objects, enhancing
the overall performance. To further address the challenges of detecting small objects
and missing detections, we employ a novel interpolation up-sampling method, which
reduces the impact of noise. Additionally, we introduce skip connections and cross-scale
connections to enhance feature fusion across various scales. Moreover, the position loss
function is optimized to address inaccurate localization that leads to missed detections and
false alarms. The experimental results show that the proposed algorithm can effectively
enhance the detection accuracy of different-scale objects, especially small objects. It also
maintains good detection ability in complex and noisy real environments.

However, a single technique for object detection is not enough to accurately identify
objects. In the next research work, the semantic information of the object can be employed
in the object detection pipeline to adjust the accuracy of the detection frame, which is
potentially advantageous for small object detection and anti-interference.
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