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Abstract: According to the premise that the first step to try to solve a problem is to deepen our
knowledge of it as much as possible, this work is mainly aimed at diving into and understanding
crypto-ransomware, a very present and true-world digital pandemic, from several perspectives. With
this aim, this work contributes the following: (a) a review of the fundamentals of this security threat,
typologies and families, attack model and involved actors, as well as lifecycle stages; (b) an analysis of
the evolution of ransomware in the past years, and the main milestones regarding the development of
new variants and real cases that have occurred; (c) a study of the most relevant and current proposals
that have appeared to fight against this scourge, as organized in the usual defence lines (prevention,
detection, response and recovery); and (d) a discussion of the current trends in ransomware infection
and development as well as the main challenges that necessarily need to be dealt with to reduce the
impact of crypto-ransomware. All of this will help to better understand the situation and, based
on this, will help to develop more adequate defence procedures and effective solutions and tools to
defeat attacks.

Keywords: ransomware; prevention; detection; response

1. Introduction

Ransomware has become a digital pandemic in recent years, and it is expected to
remain so in the coming ones [1,2]. Although there are a number of typologies and, thus,
the associated tactics, techniques and procedures (TTPs) can differ, all of them (as the name
indicates) are aimed at kidnapping the target’s device resources and then extorting the
victim to recover them. Although the very origin of the term ‘ransomware’ is not clear [3],
it is mainly used for marketing purposes since the term crypto-virus would have been
more accurate.

Ransomware causes not only extortion but also data breaches, intellectual and in-
dustrial property theft, loss of reputation and other harmful effects [4]. Cheating, spying
and disrupting operations are examples of motivations in the current geopolitical game.
In such a case, no ransom payment mechanisms are considered. Recently, before and during
Russia’s war against Ukraine, some ransomware attacks have been triggered by both sides.
In particular, NotPetya disrupted the operation of several Ukrainian companies, as did the
recent WhisperGate attack [5]. Among the most relevant cybersecurity threats at present [6],
ransomware appears as the second cause for concern in relation to the possible types of
attacks [7]. In fact, it has evolved in the last few years to select organizations and enterprises
as its main objectives, since the balance between benefits and attack cost is higher than in
other cases. The report by Deloitte [8] indicates that around 4000 ransomware attacks occur
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daily; on average, 191 days pass until an attack breach is identified, and the average number
of exfiltrating and dropping ransomware cases has increased 8.7% from the first quarter of
2021. From an economic perspective, ransom payments reached 350 million dollars in 2020
with an increase of about 109% compared to 2019. In fact, around 42% of companies with
cyber-insurance against ransomware have not recovered the losses suffered. To present
some more figures, on average, system shutdown lasts 19 days; 92% of companies that
paid the ransom did not recover the data; 53% of them claim that the attacks damaged the
trademark; and 26% of companies had to temporarily close.

In the above general context, this work is aimed at knowing more in detail about this
damaging cyber-attack typology, the procedures and countermeasures developed to fight
against it (based on the Cyber Kill Chain and MITRE ATT&CK frameworks), as well as the
defence methods deployed according to the specific attack stage: prevention (prior to the
attack), detection (when the attack is triggered) and response/recovery (after the attack).
Moreover, current trends and new challenges in the field are discussed. All of this is clearly
exposed and organized for the reader’s understanding. This way, a better comprehension
of the problem can result in the development of more effective defence schemes.

To perform the present study, an exhaustive search for works related to ransomware
or crypto-ransomware was carried out, from which a total of almost 600 bibliographic
references were obtained. The sources included articles from magazines and conferences,
as well as technical reports and publications in specialized newspapers that provide char-
acteristics of the way crypto-ransomware samples usually operate. In order to reduce
that number and focus on the study, a filtering process was carried out based on three
main criteria: (a) the introduction of a specific defence proposal (prevention, detection
and recovery) or approach (technical or regulatory) to the problem; (b) the quality of the
proposal determined by a proper description of it and some associated experimentation;
and (c) the appearance date of the proposal after 2017. Around 250 out of the 315 works
finally included in the ’References’ section correspond to magazines or conferences and
the rest to technical reports, specialized journals or data sources that allow for under-
standing the characteristics of recent crypto-ransomware samples or specific aspects of
their development.

There are very good reviews of the state of the art and taxonomies of ransomware
included in the present work. Aimed at unifying all of them, we introduce here a new tax-
onomy that covers all the phases to tackle the ransomware problem (prevention, detection
and recovery), unlike similar previous works that usually focus on some specific stages,
generally detection, or techniques, such as Machine Learning. In this regard, the present
review covers all known/documented techniques in each of the problem stages, while the
topic is addressed not only from a technical point of view but also from a regulatory and
legal perspective.

With all of that in mind, the rest of the document is organized as follows. Section 2 is
devoted to describing ransom concepts, the RaaS model (Ransomware-as-a-Service). The
implemented attack model is described in Section 3. In Section 4, the families appeared
over time and their associated attack methodologies are presented. Afterwards, Section 5
introduces the primary defence proposals in the literature to combat this attack, from the
perspectives of preventing, detecting, responding and recovering. For extension purposes,
the bibliography review is mainly focused on works developed in the last five years.
In Section 6, current trends in ransomware attacks and new challenges in preventing
this pandemic are presented. Finally, the main conclusions of the work are highlighted
in Section 7.

2. Ransomware-as-a-Service Ecosystems, Crypto-Coins and Extortion

There are a variety of ransomware typologies. In terms of attack severity, we can
discern among the following ones [9–11]:

• Device locker. It is aimed at locking the victim’s device functions, such as the screen or
keyboard. W32.Rasith or Android.LockDroid.H are some examples of this typology.
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• Crypto-ransomware. Contrary to the previous type, this focuses on encrypting the
victim’s data. The victim should pay a ransom to obtain the key for deciphering the
affected files and recovering them.

• Victim intimidation (scareware). This kind of ransomware just scares the victim through
specific messages indicating that their files are blocked or ciphered, although that is
not true.

• Data exfiltration (leakware or doxware). Sensitive information is exfiltrated from the
victim’s device. Different from crypto-ransomware, the victim can still access the files.

Among the previous types, the most prevalent one at present is that of crypto-
ransomware. In this work we focus on crypto-ransomware, but we will use the terms
ransomware or crypto-ransomware indistinctly from now on for the sake of simplicity.
Crypto-ransomware is mainly motivated by its inherent properties of persistence and
reversibility. In other words, the attacker keeps the control over the hijacked files even if
the malware is removed, while she is also able to reverse the ciphering process if required.

Traditionally, people who developed the ransomware samples and people who per-
formed the attack were the same. Instead, the RaaS exploitation model has recently ap-
peared, which inherits the SaaS (Software-as-a-Service) approach but with its own features.

It proposes a specialization of the work performed by attackers [12,13]. Thus, there are
operators who include an organized group of people to build the malware, create a panel
of command and control to manage the attack, enable a data leak site, recruit affiliates,
negotiate with the victims or carry out money laundering.

Affiliates are people who pay for tools to carry out the attacks without having special
technical skills for that because they can receive guidelines and support from the operator
to attack by just using ransomware samples. They can participate in the business by paying
a tax or a percentage of the benefits to the operators. They are responsible for running the
ransomware and requesting the ransom. In recent attacks, when the victim refuses to pay,
the so-called negotiator role appears, which consists of convincing the victim to pay for the
extortion by making an economic balance of the losses derived from the affected systems
in respect to the ransom amount demanded.

Figure 1 shows a functional diagram of the RaaS model, where the stages inside the
dashed red line are the steps followed by non-specific RaaS-based attacks. The diagram
is simplified for a more general vision, while we can find more specific models in works
like reference [14], for Evil Corp. The overall process is as follows: (1) the ransomware
developer creates a specific exploit to be afterwards licensed/shared with an affiliate; (2)
the affiliate updates the exploit code to the hosting site and (3) selects the target victim as
well as the attack vector to deliver the exploitation (email, web, etc.); (4) the victim bites
the trap so that (5) the ransomware is downloaded and installed; (6) the ransomware will
communicate with the command and control (C&C) server to get the ciphering key and,
apart from ciphering the victim’s files, (7) it can perform lateral movements to identify other
potential targets, make itself persistent, delete file backups and hide its presence; (8) the
extortion message is shown to the victim, as is the way to pay; (9) another malicious agent
is potentially in charge of money laundering such that it would be difficult to identify both
the ransomware developer and affiliate; (10) the affiliate can decide to send the ciphering
key to the victim or not in order to get additional payments.

Beyond the economic profit itself, the RaaS approach makes the identification of the de-
veloper even more difficult. Together with the existence of ransomware, generation toolkits,
like Thanos [15] or Chaos Ransomware Builder [16], boost the creation, use and promotion
of RaaS not only by their own developers but also by other actors like individuals, compa-
nies or governments. An example of the business model could be found in reference [17]
for the case of the Conti group.

An increasing trend in benefits can be observed for ransomware, with profits raising
up to USD 602 million in crypto-coins in 2021, a 2500% increase in comparison with 2016.
In particular, Conti has been the most profitable RaaS model until now, with a total of USD
180 million raised [18].
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Figure 1. Stages involved in the RaaS model.

3. Crypto-Ransomware Attack Model

With the aim of understanding how crypto-ransomware attacks work, we introduce
here a taxonomy based on the CKC (Cyber Kill Chain) defence model [10,19,20] where all
the life cycle attack steps and phases are described. A different approach is proposed in
reference [21], where a ransomware process model is used to identify the chain processes
associated with ransom-related behaviors.

The CKC model extends a previous one named IKC (Intrusion Kill Chain) [22] to
provide fine-grain information for each attack phase. This model has been successfully
tested before to characterize intrusion attacks in industrial environments and, in general
terms, to obtain the tactics, techniques and procedures attackers can carry out.

The CKC model defines seven steps that an attacker must follow to effectively execute
the attack. They are as follows:

1. Reconnaissance. In this phase, the attacker gathers as much data as possible about
potential targets from, e.g., email lists, social networks, system and service vulnerabil-
ities, among other sources of information. Such information will help the attacker to
perform a targeted, more robust attack [23].

2. Weaponization. The malicious payload is prepared to be delivered to the target in
this stage.

3. Delivery. In this phase, the attacker searches for a valid way to deliver the malicious
payload to the targets. For instance, by sending a compromised email to them.

4. Exploitation. This comprises methods and techniques for exploiting vulnerabilities on
the target computer and allowing attackers to execute the malicious payload.
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5. Installation. The methods through which attackers are able to access and compromise
nearby nodes and install administrative tools like Remote Access Trojans (RAT) or
backdoors [24] are involved in this phase.

6. Command & Control. The attacker builds dedicated communication channels to manage
the compromised system.

7. Actions. In this phase, the attacker carries out actions on the compromised system
according to the main attack objective. For instance, file ciphering, data exfiltration or
data erasing.

Figure 2 graphically summarizes and extends the CKC taxonomy proposed in refer-
ence [19] and shows the relation with the MITRE ATT&CK framework [25]. In the following,
each of the previous attack stages is described a bit more in detail.

Figure 2. CKC-based crypto-ransomware taxonomy (extended from reference [19]).
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3.1. Reconnaissance Stage

In fact, this phase is seen generally in attacks and is not specific to ransomware. In this
stage, information about the target is gathered (in an active or passive way) in order to
decide the attack method and tools to be used.

In previous decades, attackers usually sought easy targets for ransomware attacks.
In order to do this, publicly available tools like Shodan were used. Instead, targeted attacks
against specific or preselected organizations are more common at present, with the objective
of minimizing effort while maximizing benefits.

In the MITRE TTP&CK framework, this stage corresponds with the Reconnaissance
and Resources Development phases, where Discovery (named TA007), Priority Defini-
tion Planning (TA0012), Priority Definition Direction (TA0013), Target Selection (TA0014),
Technical Information Gathering (TA0015), People Information Gathering (TA0016), Organi-
zation Information Gathering (TA0017), Technical Weakness Identification (TA0018), People
Weakness Identification (TA0020), and Organization Weakness Identification (TA0020)
are included.

In the Weaponization Stage, there are different techniques for a ransomware attack to
carry out: script-based, diversification or evasion techniques.

Script-based ransomware encrypts files by following commands in a script. Such
scripts are removed after the malware operation. This way, the malware code is only found
in memory, thus making it a fileless sample that is more robust against security defences.

Diversification techniques are intended to evade security mechanisms. For instance,
a payload diversified into different apparently benign files is commonly used in this kind of
attack to hide them. Another example of diversification is the typology of malware access
to the target files. Moreover, attackers can also diversify the ciphering methods to be used.
In this case, the two main categories are as follows: standard and customized. The first ones
are well-known ciphering algorithms (e.g., symmetric, asymmetric or hybrid) that make
use of system native encryption APIs (Application Programming Interfaces). They usually
require administration permissions and the API access can be easily blocked. Conversely,
the customized techniques make use of their own ciphering suite, making them more
robust against crypto-API defence techniques [26].

Regarding evasion mechanisms, we can discern four categories [27–29]:

• Time-based evasion techniques schedule the attack execution or measure how long the
attack execution was. They, in turn, can be split into two: delayed and event-based
execution. The first ones delay the ciphering procedure, while the second ones wait
for a specific system event to start the ciphering process (e.g., a system reboot).

• Data-based evasion schemes are focused on removing all the attack evidence, making
them difficult to detect and identify. As an example, anti-memory-dumping techniques
make reverse engineering difficult in the case of applying digital forensic analysis.
To do that, removing executable file headers or moving them to different memory
locations can be implemented. One more example is ADS (Alternate Data Streams) [30],
which consists of adding extra attributes to the file containing the malware.

• Code-based evasion techniques have four variants. The first typology is called the de-
bugger evasion technique and it tries to detect if the code is being debugged. In that case,
the malware stops its execution or tries to kill the debugger. Some other techniques
add useless pieces of code/data to obfuscate it; the reverse engineering process thus
becomes more difficult and the antivirus detection performance is reduced [31]. They
are also known as anti-disassembling evasion techniques. Anti-sandboxing code evasion
techniques are devised to detect and avoid running a malware sample in a virtualized
environment or sandbox, which is usually employed by security analysts to safely
characterize the malware behavior. Finally, polymorphism and metamorphism techniques
add little modifications to malware samples so that they can evade signature-based
detection techniques.
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• Network-based evasion techniques are applied to network communications with the
main aim of fooling IDS/IPS (Intrusion Detection Systems/Intrusion Prevention Systems).
Network traffic ciphering or anonymizing, domain shadowing and fast flux are some
examples of such kind of techniques. Thus, ciphering C&C communications prevent
external analysis. Network traffic anonymization, using darknets, for instance, does
not only cipher but also prevents the disclosing of the source of the communication.
Attackers also use domain shadowing, which consists of first stealing a legitimate
domain to be subsequently used for building sub-domains. Then, such sub-domains
are periodically rotated to point to malicious servers. Finally, fast flux techniques
prevent the attacker’s IP from belonging to black lists. For that, the associated IP is
periodically changed according to a predefined list.

In the MITRE ATT&CK framework this stage corresponds with the Initial access, Exe-
cution and Persistence phases, where Adversary OPSEC (OPerational SECurity, TA0021), Es-
tablish & Main Infrastructure (TA0022), Build Capability (TA0023), Test Capability (TA0024)
and Stage Capability (TA0025) are included.

Delivery Stage Delivering the malicious payload to the target victim requires spe-
cific techniques that usually include people as one of the weakest links in the security
chain. Thus, this kind of technique is mainly based on social engineering and mislead-
ing advertising techniques [32,33]. For that, phishing [34] and social engineering [35] are
widely utilized. In general, phishing techniques are aimed at gathering sensitive victim
data like credentials or credit card information. For instance, attackers send malicious
emails (spam) that mimic legitimate ones from well-known companies, send an SMS (Short
Message Service) or just make a phone call. Sometimes, they encourage the victim to visit a
compromised website or to download an infected file.

Through misleading advertising, attackers promote advertising campaigns where
legitimate websites are in charge of redirecting the victim to malicious websites from
where the malware is finally downloaded. Instead of malware being delivered by directly
accessing malicious sites, attackers can pay for a traffic distribution service that redirects
users to malicious websites [33].

Table 1 summarizes the most predominant delivery methods [36] and protocols [37] at
present. As shown, they are not exclusive, since, for instance, an SMS or a spam email may
also contain a link to a downloader. As could be expected, spam campaigns are still the
most relevant and useful way to effectively deliver malware. However, they are closely
followed by remote access procedures that may be motivated by the COVID-19 pandemic,
when companies and workers operated remotely.

Table 1. Percentage of non-exclusive delivery methods (two left columns) and protocols (two right
columns) used by crypto-ransomware.

Delivery Method Usage % Protocol Usage %

Spam email 60 SMTP 45
Remote Desktop 21 IMAP 26.5

Trojan 20 Web-browsing 22.3
Vulnerability exploitation 15 POP3 3.8

Botnet/Downloader 11 FTP 2.3
Malicious advertising 8 Other 3.3

Endpoint 7
External server 7

Removable media 6
Social media 5

Insider 3
Unfair administration 2

SMS 1
Affiliate scheme 1
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Apart from the previously mentioned mechanisms to deliver ransomware, the fol-
lowing five are the most important delivery artifacts in the last two years: Emotet, Zbot,
Dridex, Gozi and Danabot [38]. Recently, ransomware actors have been using infostealer
to get credentials and evade defense mechanisms. Another aspect that we will have to
observe the evolution of is the use of AI to improve the methods used in phishing.

In the MITRE ATT&CK framework, this stage corresponds with the Privilege escala-
tion and Defense evasion phases, where Initial Access (TA001), Defense Evasion (TA005)
and Discovery (TA007) are included.

3.2. Exploitation Stage

After delivering the malware, the attacker will need to effectively execute it. For that,
two main methods can be distinguished: EK-based (Exploitation Kits) or targeted exploita-
tion. An EK comprises a hacking toolkit to, firstly, perform a vulnerability scan and,
secondly, to exploit one or more of the vulnerabilities found by executing the malicious
program [39,40]. To do that, attackers will redirect users to malicious domains where they
are able to scan and exploit vulnerabilities. Nowadays, malicious agents offer that as an
exploit-as-a-service.

Among others, the following EK can be remarked: Fallout used by Gandcrab and
Maze [41]; Ring used by Sodinokibi, CrySys and Cerber ransomware; Spelenko also used
by Maze [42]; and GrandSoft Exploit Kit to deliver GandCrab 3.0 [43].

According to the 2021 CyberSecurityWorks report [44], 35 new vulnerabilities have
become associated with ransomware (13 in the last quarter), making a total of 323 vulner-
abilities related to ransomware. That means an increase of 466% since 2019. Moreover,
11 vulnerabilities were labeled as critical, even though scanners like Nessus, Nexpose
or Qualys could not detect them. The S21sec company summarizes in reference [45] the
most exploited vulnerabilities by ransomware creators up to 2021.

While EKs are devised to be massively applied, the targeted exploitation methods are
oriented to specific hosts or network devices. In this case, attackers are searching for the
senior management people staff of a company (e.g., CEOs (Chief Executive Officers)) that
control and have access to sensitive information and systems.

The last ransomware report, released by VirusTotal in 2021 [38], shows that just
5% of the found ransomware samples include or are associated with exploits. This fact is
supported by the CKC model, where the exploitation stage is needed before the ransomware
can take place.

In the MITRE ATT&CK framework, this stage corresponds with the Credential Ac-
cess and Discovery phases, where Initial Access (TA001), Execution (TA002) and Defense
Evasion (TA005) are included.

3.3. Installation Stage

During the installation stage, the malicious payload is installed on the target system.
Then, it is spread over the network the system belongs to. Indeed, the installation stage can
be split into two steps: host and network installation.

During host installation, the deployed executable tries to encrypt all the possible local
files and backups (local or cloud-based). After that, network installation takes place to
infect other nodes by performing lateral movements. Some tools used by the attacker to
perform network installation are, among others, Mimikatz or Cobalstrike [38]. In terms of
services and protocols, three of these are the most exploited ones in this phase: RDP (Remote
Desktop Protocol) [46], SMB (Server Message Block) [47] and VPN (Virtual Private Network) [48].

In the MITRE ATT&CK framework, this stage corresponds with the Lateral Move-
ment and Collection phases, where Persistence (TA003) and Defense Evasion (TA005)
are included.
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3.4. C&C Stage

Once the ransomware has been successfully installed on the target, communications
to/from the C&C server are crucial for both asking and receiving the ciphering keys and for
managing the ransom payment. In the MITRE ATT&CK framework, this stage corresponds
with the same phase that corresponds with Command&Control (TA001).

How the ransomware knows the C&C server’s IP (Internet Protocol) address is com-
monly faced using three methods: a code-embedded IP address, domain generation algo-
rithms or botnets. The two first techniques will be described in detail in Section 5.2, while
the last one consists of the use of botnets to perform different malicious activities: data
ex-filtration, phishing campaigns or malware spreading [49], among others.

3.5. Action Stage

After ciphering files, ransomware will show a message on the victim’s computer
informing its user of the type of attack and the form to recover the affected files, usually
through some kind of payment method. In this line, several levels of extortion can be used:
from simple data ex-filtration to publicly publishing them if the user declines the payment.

In the beginning, attackers considered classical payment methods (e.g., Paypal), but the
use of crypto-currencies is the most widely accepted method at present. To push the victim
for the payment, some ransomware families like Jigsaw both increment exponentially the
cost of the ransom and delete files over time. For instance, FrenchLocker deletes a file every
few minutes.

In the MITRE ATT&CK framework, this stage corresponds with the Exfiltration and
Impact phases, where Privilege Escalation (TA004), Credential Access (TA006), Lateral
Movement (TA008), Collection (TA009), Exfiltration (TA0010) and Impact (TA0040) are
included.

Figure 3 graphically depicts the typical life cycle of a ransomware incident according
to the previous CKC stages. Moreover, Table 2 shows, for different ransomware families,
the stages and techniques involved to provide a complete overview of how ransomware
attacks work to devise novel security solutions against this type of malware.

Figure 3. Ransomware incident life cycle.
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Table 2. Ransomware families and their attack techniques.

Family Cyber Kill Chain Stage

Weaponization Delivery Exploit Installation C&C Action
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Avaddon
[50,51] X 3

9 X X X X X I

BlackByte
[52,53] X 1 X X X X X I

BlackCat
[54,55] X X 1 X X X X X X X o

Cerber
[56–58] X X 7

8 X X X X X X X X X

Diavol
[59,60] X X 8 X X X X X X E

Ekans
[61,62] X 3

9 X X X X X X I

Entropy
[63,64] X X 7 X X X X X X X

Hive
[65] X X 8 X X X X X

Khonsari
[66] X X 2

4 X X X

Locky [27]
[67–69] X X X 21

5 X X X X X X X X X X

Megacortex
[70] X X

23
10
11

X X X X X X

REvil
[71] X 7 X X X X X E

Ruyk
[72,73] 1 X X X X X X E

Sabbath
[74] X X 1 X X X X X X E

Sodinokibi
[75] X X

1
6

11
X X X X X X X X Z

TFLower
[76,77] X 8 X X X X X X X

WannaCry
[78,79] X 1

8 X X X X I

Abbreviations: AD: Access denial; BE: Backup encryption; BMS: Block Message Server; C: Code; D: Data; DG:
Domain Generation; E: Data Ex-filtration; FAP: File Access Pattern; I: Inhibit system recovery; N: Network;
o: Denial of Service; RD: Remote Desktop; P: Phishing; S: Spear phishing; T: Time-based; TDS: Traffic distribution
system; Z: Inhibit system recovery and data ex-filtration. 1: AES; 2: AES-128; 3: AES-256; 4: CBC; 5: CTR-EBC;
6: ECDB; 7: RC4; 8: RSA; 9: RSA-2048; 10: RSA-4096; 11: Salsa20.

4. Crypto-Ransomware Evolution

This section presents the ransomware’s historical evolution, from the appearance of
the first sample until the present day. This historical description is focused on attacks
directed to generic targets, individuals or business teams of all types of organizations.

There are numerous works where the evolution of ransomware is studied [80–82].
An overview of the abovementioned evolution is shown in Figure 4, showing in blue text
the most relevant milestones that have given ransomware its current damaging power.
The most notable moments are as follows: 1989, considered the origins; 2005, when modern
ransomware incorporating asymmetric encryption appeared; 2013, where crypto-currencies
payment was incorporated; 2015, considered the explosion year of this threat; 2016, ran-
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somware’s focus on organizations; 2017, with government-sponsored ransomware (e.g., the
work [83] documents the relationship between ransomware groups and states); 2019,
with the addition of new extortion tactics (in the double extortion case, the operator threat-
ens the victim by publishing the data if the ransom is not payed; in the triple extortion
case, the target’s customer and partners are notified about sensitive data related to them
that would also be disclosed if the victim does not pay the ransom; and in the quadruple
extortion case, ransom note includes a threat to bring down the target’s public-facing
servers with a distributed denial-of-service (DDoS) attack if it refuses to pay the ransom);
2021, beginning of the attacks on critical infrastructures and supply chains. The figure
also includes (in blue boxes) examples of the most relevant families by appearance date.
It is worth highlighting the growing number, complexity and impact of new ransomware
samples, as discussed in the following. In addition, it should be noted that the problem is
far from disappearing in the short-medium term.

Figure 4. Evolution and families of ransomware.

4.1. The Origins

With the development of the Internet, in late 2004 and earlier 2005, GP-Coder infected
different systems by using a personalized encryption algorithm. It requested a ransom
payment of USD 200 through Western Union or premium SMS. Fortunately, the encryption
key was weak and easy to break. With Archiveus in 2006, ransomware’s authors realized
the importance of using strong encryption by only encrypting the ’My Documents’ folder.
Although it was the first time that a 2014-bit RSA encryption code was used, the authors’
failure was not to use different keys to lock down the target systems. Once this error was
discovered, the malware fell into disuse.

Until now, one of the major limitations of ransomware attacks was the traceability of
payments. Therefore, the following families started to use gift cards to pay the ransom.
This medium allowed the victims to pay the ransom simply by going to a store, video game
vendor, or credit card company. This is what Locker did, since 2009 in Russia and since
2010 in the rest of the countries, and WinLock as well. In particular, Locker was installed
by visiting a malicious or compromised website and was usually written in JavaScript. Its
objective was to block access to device functionality with a popup that indicated how to
pay the ransom through a gift card or wallet. This variant also spread to mobile phones
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by downloading applications outside official sources. This has been seen again in the
COVID-19 pandemic, where cybercriminals used an infection tracker that turned into a
device blocking a sample [84]. These attacks pretended to look like some state security
body and indicated to the victim that they had committed an illegality for which they had
to pay a penalty. This technique had little success as the victim’s files were not affected and,
thus, it was possible to bypass the lock screen.

4.2. Use of Cryptocurrencies

Combining device blocking and crypto-currencies gave rise to Reveton in 2012, which
was the first to use the RaaS business model and Bitcoin payment. With it, the ability
to massively infect victims began. Reveton also showed a fraudulent message posing as
some state security body and force depending on the country and accusing the victims
of committing a criminal act for which they could be imprisoned if they did not pay the
extortion. In this regard, the emergence of crypto-currencies in 2009 revolutionized the
ransomware business by enabling easy and anonymous payments

Up until the mid-2010s, ransomware was more focused on PCs, given the popularity
of the Microsoft market that offered a high number of victims. Despite that, an expansion
of the target platforms began: mobile, Linux and Mac. Specifically, in 2012, SimpleLocker
became the first ransomware to encrypt files on Android device’s SD cards, thus opening a
new niche of victims and attacks.

Another important milestone was in 2013, with the appearance of CryptoLocker. This
had the double form of payment through Bitcoin or wallet cards. Also, it used a 2048-bit
RSA key. It spread as an apparently normal email with an attachment. One of the variants
managed to raise a significant amount of money (USD 27 million in two months) and
it is estimated that it affected around 234,000 victims. The fight against this attack was
an example of collaboration between security forces and private security companies that
culminated in the identification of the responsible person, who was never arrested.

In 2015, LockerPin, which also targeted Android devices, aimed to completely block
user access by changing the device PIN (Personal Identification Number), instead of
encrypting files. This year, Linux.Encoder.1, the first ransomware for Linux, was released.

From the defence point of view against this threat, in 2015 the source code of Hidden
Tear was published by a group of Turkish researchers, with the intention that security teams
knew how it worked [85]. Unfortunately, this also allowed attackers to make improvements
and launch new attacks. In 2020, some new ransomware variants contained traces of this
code, such as Chaos Ransomware Builders [86], a software with a graphical interface to create
ransomware according to certain options. For example, these similarities appear in its
V3 version, both in the code to generate the keys and in the AES encryption, which are
practically identical. Something similar happens with Bagli.

The change in evolution culminated with variants capable of attacking Windows,
Linux and Mac systems without differentiated codes for each platform. Ransom32, which
appeared in 2016, is a variant of the RaaS model developed in JavaScript, and allows it to
operate on most platforms.

4.3. Crypto-Ransomware Explosion

In the next stage, the sophistication of attack techniques increased, in addition to
expanding globally. In 2016, Petya was the first variant to overwrite the MBR (Master
Boot Record) instead of encrypting individual files, blocking disk access faster than other
techniques. This same year, Locky appeared, sending up to 500,000 phishing emails per
day for its propagation [3]. Other families that also appeared that year were TeslaCrypt,
Jigsaw and Cerber. All of them have in common that they were used for automated attacks,
delivered via phishing emails, exploit kits or malicious advertisements located on websites,
against a single machine. There were so many variants that 2016 was designated as the
’year of ransomware’, even though it was only the beginning of its rise.
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Another of these families was SamSam (named after a village in northwestern Iran)
which, instead of using exploit kits or phishing, exploited vulnerabilities in JBoss (Open
Java Application Server) and looked for exposed RDP (Remote Desktop Protocol) servers to
launch password brute force attacks to obtain access to them. Instead of installing itself on
one machine, as today’s families do, it spreads through the target network with different
tools and exploits by installing itself on as many machines as possible. It was operational
until 2018 when the United States Department of Justice charged its perpetrators and the
attacks stopped.

A few months later, Zcryptor, which combines features of a worm, created an attack
called a crypto-worm or ransom-worm, which is particularly damaging as it can stop an
entire system by replicating itself across the network.

WannaCry, in 2017, was cataloged as one of the largest attacks in terms of the ma-
chines and business sectors affected. It used the EternalBlue exploit [87] that exploited
the vulnerabilities of Microsoft’s SMB (Server Message Block) protocol. It demanded the
ransom in Bitcoin, equivalent to USD 300, but as the encryption key was not available,
thousands of paying victims found they could not get their files back. At the end of 2017,
the United States of America and the United Kingdom attributed the ransomware to North
Korea. Two months after WannaCry, the NotPetya attack (successor to Petya) took place. It
encrypted files and did the same with the MBR, which meant that, even with the decryption
key, the victim could not recover the files. It was distributed using a trojanized version
of the M.E.Doc software for updates, necessary for companies doing business in Ukraine.
The attackers compromised the update server to insert the malicious software. A few
months later, the attack was attributed to Russia according to the United States, Canada
and Australia.

This period of time was also characterized by the development of new variants of
existing ransomware instead of developing new families. For example, Goldeneye appeared
in 2017, which is a variant of Petya, and is pretty similar to WannaCry. However, this new
variant is more dangerous because it solves the encryption problems of its predecessors.

Since 2016, there has been ransomware using the RaaS model, such as Stampado, Goliath
and Locky. However, the operators initially only provided the executable file, so the attacker
who bought it was responsible for the entire operation. This aspect changed with GandCrab
(2018), which offered a portal for affiliates, allowing them to follow the attack and manage
the payment. This same year, Ryuk appeared, setting a new standard by being the first
to operate as a targeted attack. It used Tribot and PowerShell Empire to spread and install
itself. Additionally, it used PowerShell and Windows Management Instrumentation (WMI) to
perform lateral movements.

4.4. New Extortion Techniques

In 2019 and 2020, new ransomware attacks appeared with two dangerous and de-
structive aspects: double extortion and oriented to organizations instead of individuals.
Double extortion encrypts and steals the victim’s files so that, if victims do not pay, they
are threatened with publishing data or selling it on the black market. An example of
this is Maze (2019), which provides a leak site and, therefore, uses ransomware as a data
theft attack (double extortion). Its successor, Egregor (2020), incorporates a support service
for victims to protect their systems if they paid. On the other hand, to maximize profit,
attackers select victims in large, well-known organizations where the ransom amount can
be higher. This does not mean that individualized attacks will disappear.

The COVID-19 pandemic has triggered the explosion of double extortion and RaaS.
During this period, the number of attacks on hospitals, government organizations and uni-
versities increased, with 72% of new samples and 77 new campaigns during the first
months [88]. Attackers took advantage of the event to carry out the following: (i) execute
more and faster attacks (shortening the time between infection and activation), (ii) recruit
collaborators to maximize impact, and (iii) offer RaaS on the Dark Web [89]. This increase
was generalized to all types of malware. We must highlight campaigns that took advantage
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of the coronavirus issue, such as Ransomware-GVZ [90], NetWalker and CoViper. One of the
reasons for this proliferation is the increase in remote work, which allowed the vulnerabili-
ties of remote desktop protocols to be exploited at a higher level. Also, we should indicate
that the amount requested in ransoms with these attacks increased by 60% on average [91].

Also, in 2019, QLocker attacked NAS (Network Attached Storage) systems, the CVE-2021-
28799 vulnerability being exploited. This ransomware was active again in early 2022 [92]. In
this same year, Conti appeared, one of the most common ransomware families, with more
than 450 known victims and considered a relative of Ryuk (2018–2021), since both are
operated by the same Wizard Spider subgroup, and reuses code from it. Conti is especially
hard since it persecuted health organizations during the pandemic. After the attack on
Ireland’s Health Service Executive, the group was forced to give the decryption key to stop
the possible response from the government. In 2020, the Trickbot Trojan began to be used
together with Emotet and Ryuk, and Trickbot was eventually included inside Conti [18].

Lockbit appeared in 2019 and continued throughout 2020, reporting more than
9000 incidents. Given the large number of affiliates, it is difficult to establish how it
proceeds. Some gain access using phishing campaigns while others take advantage of
exposed RDP servers or even exploit VPN vulnerabilities or cloud infrastructures such as
SonicWall or Microsoft SharePoint. REvil reappeared as LockBit 2.0, hoping to capture REvil’s
affiliates. One of its features is the automation of the deployment process for affiliates,
who only have to take control of Active Directory and run a script. The rest is done by
the program.

In May 2021, the RaaS variant of REvil was used to carry out one of the largest attacks
in history, where the attackers demanded Kaseya USD 70 million for unlocking more than
one million devices. In December of this same year, Konsari appeared, the first to exploit
the Log4Shell vulnerability (CVE-2021-4428).

Grief (2021) was the successor of DoppelPaymer. It was deployed in an environment
already compromised by Dridex and the post-exploitation was performed using Cobal
Strike. This family is obfuscated and uses anti-analysis techniques that include API hashing,
VEH (Vector Exception Handling), the Heaven’s Gate technique [93] and the encryption of
relevant data carried out with RC4. Grief runs with specific parameters calculated based on
the victim’s environment and fails if these are missing or incorrect. Moreover, it disables
Windows Defender and deletes shadow copies with vssadmin and diskshadow [94].

4.5. Critical Infrastructure Attacks

Another important milestone in the evolution of ransomware is the appearance in
2021 of attacks against critical infrastructures (CI). The Sabbath group, which operates
various ransomware including Rollcoast, exposed data and extorted several US school
districts using social networks like Reddit and Twitter. Since July, it started using Themida to
package ransomware samples and prevent detection. It is designed to run in memory and
check the system language (it has an exclusion list of 40 languages). Similarities to Tycoon
ransomware were detected.

In a recent work on attacks on CIs [95], a change in this type of incident is shown
mainly due to the pandemic of COVID-19. A change is shown in the type of organizations
affected, where attacks on government organizations are less frequent (going from 35.9%
to 16.6%) while increasing the attacks to other sectors. The study also reflects how the
ransom payment, given the pressure and tracking of Bitcoin, has shifted to the use of
conventional means.

Another important aspect in 2021 was the publication in a hacker forum of the com-
plete source code of Babuk (or Babyk) ransomware [96]. This was made by one of the
developers, a 17-year-old suffering from advanced cancer. The group that operated this
family also announced a change in the way they operated according to which they were
not going to encrypt the data but just steal them. If the victim does not contact attackers
after being notified of the theft, the data will be published [97].
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In 2022, the attackers of UNC2596 (known as Cuba) operated the ColdDraw Cuba ran-
somware, which targeted public service providers, government agencies and organizations
that support non-profit and healthcare entities. They used a re-branding approach, as is the
case with Entropy, which has many similarities with the general-purpose malware Dridex,
or like Sabbath with Arcane. From the second half of 2022 until today, some changes can be
observed. First, ransomware groups are centered on more directed attacks and especially
on critical infrastructures [98]. Second, because more organizations are refusing to pay,
ransomware is more centered on data ex-filtration so they can extort the victims with their
publication. Some recent incidents are the attack on the Costa Rican government by Conti,
or the NFC team by the BlackByte group. Third, phishing emails are the preferred way to
obtain valid access credentials for the target [99].

Another interesting aspect is that of collaboration between ransomware actors like
Ex-Conti and FIN7, also known as ITG14, which work together with the new Domino
backdoor, used to distribute the payload of the Nemesis infostealer project [100].

During the Russia–Ukraine conflict, the ransomware with more activity affecting
strategic sectors is especially related to defence, like LockBit 3.0, BlackCat (ALPHV) or
Black Basta [45].

Recently, a ransomware evolution from Windows to Linux systems in large companies
has been observed. Here, a double extortion is carried out, with different persistence
mechanisms and evasion mechanisms by erasing log files [101]. Also, MacOS-related [102]
and even cloud-based [103] samples appeared.

In summary, it should be noted that, since the appearance of the first sample of
ransomware, the growth of attacks has been enormous. We can highlight the following
factors in this evolution: pseudo-anonymous payment mechanisms [104], anonymous
networks [105], RaaS [106,107] and botnets [108]. All of them make it easier for ransomware
operators to work with higher impunity.

In the first half of 2021, we can find 130 active families grouped into 30,000 clusters.
The most active ones were GandCrab with 6000 clusters, followed by Babuk, Cerber, Matsnu,
Congur, Locky, TeslaCrypt, Rkor and Reveton [38].

An interesting fact regarding evolution is to see how fresh the samples used in the
attacks are. VirusTotal shows, in the same report [38], the existence of a correlation between
the specimens already examined on the platform and those that appeared in the first
instance. This could indicate that the attackers prepare new samples for most of their
attacks, except for the peak observed in the first quarter of 2021, where the activity seems
to show that previous samples are being reused. These experimental data agree with the
analysis carried out in reference [109], which establishes a formula to predict the probability
of new attacks. The data analyzed between 2016 and 2020 indicates that a previously
observed ransomware attack is more likely than a new one.

Although ransomware attack vectors tend to be similar to those for general mal-
ware [110,111], a recent prominent trend can be observed [112]:

• An attack on the supply chain. This attack tries to extend the radius of affection of
ransomware to the entire software supply chain by inserting malicious code into a
trusted component [113].

• The use of the RaaS model to launch and maintain an attack campaign [10].
• An attack on unpatched systems. While new ransomware to exploit zero-day vulnera-

bilities appears, known vulnerabilities continue to be exploited on unpatched systems.
• Phishing. Although they are not the main cause, phishing emails are frequent in

ransomware attacks.
• Multiple extortion. New extortion models include multiple levels of extortion, per-

sonalization and evolution towards new protected goods such as IoT (Internet of
Things) [114]. It should be noted that, according to a report by the consulting firm
Unit 42 [115], some families of ransomware have evolved from double to quadruple
extortion [116]. The Suncrypt group even called the victim to pressure her into making
the payment [117].
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As a summary of the current situation, the cyber-intelligence report by S21Sec [45],
covering the second half of 2022, shows that the most active groups were Lockbit, BlackCat and
Black Basta. Among the countries mainly affected, we find the United States of America (619),
the United Kingdom (79), France (58), Germany (62) and Spain (48).

5. Defence against Crypto-Ransomware

As is usual for any other kind of security threats, the defence lines against crypto-
ransomware can be organized at three different levels: prevention, detection and response
(including recovery in this last phase). First, mechanisms to avoid the occurrence of crypto-
ransomware events should be deployed on the target environment. Since we cannot
guarantee the complete avoidance of such a kind of situation, the environment should be
monitored over time in order to detect potential incidents. In case they occur, countermea-
sures should be deployed to solve the incidents and, if so, to recover the affected system
and restore it to its original operation state.

In the rest of the section, a revision of the proposals in the literature for each of the
above defence lines is presented.

5.1. Crypto-Ransomware Mitigation

Several recommendations are provided in the literature to mitigate this harmful threat
and, thus, to try to avoid its occurrence [118–123]:

• Periodically patching software and firmware, since ransomware usually attacks
known vulnerabilities [124].

• Segmenting networks to reduce the number of reachable systems [125]. In a more
general way, the Zero Trust Model can be adopted to avoid the existence of any
reliable perimeter [126].

• Blocking access to web resources that are potentially dangerous such as name servers
and malicious or suspicious IP addresses, ports and protocols.

• Use of whitelists for authorized applications.
• Use of standard accounts instead of privileged ones.
• Establishing BYOD (Bring Your Own Device) policies for personal devices on

corporate environments [127].
• Avoiding the use of personal applications on the equipment such as email clients or

social networks.
• Training staff and users about security risks, in particular regarding social engineering.

Associated behaviors should be supervised.
• Managing authorization credentials to every asset in the organization. In particular,

regarding the file system.
• Making periodic off-site backups [128].
• Protecting against data ex-filtration events, which are identified in the MITRE

ATT&CK report [129].

In addition to the previous most adopted ones, a variety of other prevention schemes
can be found in the literature. For instance, a multi-layered prevention system is proposed
in references [130,131], where, among other possible techniques, anti-malware software
deployment, firewall configuration, DNS/Web filtering and email security can be consid-
ered. In this way, in case of a ransomware incident, the multi-layer defence will allow us
to recover data. Furthermore, reference [132] implements a module of traffic analysis to
detect potential communications between victims and C&C servers to get cipher keys. This
way, in case of a ransomware incident, the data could be deciphered. Similarly, the authors
of reference [133] rely on the DFR (Digital Forensics Readiness) framework to collect, in a
pro-active way, system artifacts over time so that, in the case of a ransomware incident, we
are able to perform a forensics analysis to recover ciphering keys and, from them, to recover
the data affected by the attack.

A different approach addresses attack simulation where data breaches occur based
on Cyber Threat Intelligence (CTI) and the MITRE ATT&CK framework to mitigate the
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threat [134]. Sensitive system points for surveillance can be identified with Rantology [135],
an ontology that allows the evaluation of the program’s maliciousness based on different
factors, including API function calls and the running behaviors. Moreover, it is possible
to learn from the different attack types through multistage game theory in order to derive
measures to mitigate their negative impact and improve the decision-making process
of defenders [136].

A complementary prevention scheme is the convenience of designing a recovery plan.
That is, the elaboration of a procedure aimed to restore the system in case of an incident or
disaster is definitive to guarantee its continuity. Recovery, however, is usually described in
conjunction with the response schemes, as we shall describe below in Section 5.3.

Some recent papers in the literature are specifically intended to create a survey of
prevention and mitigation schemes [137,138]. In what follows, some of the previously
itemized prevention mechanisms are detailed.

5.1.1. Access Control

Access control and permission policies are principal in avoiding privilege escalation
by ransomware in case of incidents through user credentials [139]. It is recommended to
implement the lowest privilege and separate functions basis through a role-based access
control scheme.

AntiBotics [140] makes use of a periodic biometric and challenge-based manual authen-
tication procedure to prevent data loss or modification. Likewise, whitelist-based solutions
seem to be promising [141], like that in reference [142] where only specific programs are
allowed to access files while the rest of the programs are blocked. Similarly, the authors of
reference [143] propose limiting the access to the pseudo-random numbers generator API,
since it is considered a critical resource.

Another different approach is provided by MTD (Moving Target Defense) [144], where
file extensions are continuously and randomly modified with the aim of reducing the
impact of attacks. Instead, other works propose differing the control access decisions to
analyze the access consequences and, if necessary, to undo changes [145].

Sophos developed Intercept X Endpoint, a tool that makes use of behavioral analysis
to prevent ransomware from writing on the system’s registry [146]. Intercept X is capable
of blocking zero-day APTs (Advanced Persistent Threats) and relies on Crypto Guard to
recover files.

In a similar line, Microsoft released two products to fight against ransomware: Defender
for Endpoint and Defender for Identity. The first one allows access to folders only for reliable
applications [147], while the second tool is aimed at identifying advanced threats, especially
those regarding lateral movements [148].

Some other proposals rely on firmware. This is the case for reference [149], where a
mechanism is proposed to prevent unauthorized applications from accessing file data if
they do not know the key registered in the disk. To avoid Petya-like attacks against the
MBR (Master Boot Record), the authors of reference [150] introduce a hardware-based
architecture to protect and control access to the boot process and the associated data.

There are also proposals based on SDN (Software Defined Networks) to prevent ransom
propagation over the network. For instance, the authors of reference [151] perform anomaly
detection on traffic SMB-related ports 139 and 445.

The Staged Event-Driven Access Control (SEDAC) approach incorporates both program-
centric and user-centric access control measures to intercept a greater number of ran-
somware attack vector types than other proposals. For that, only delegate access control
decisions regarding file operations that users either need or are capable of making and
where the security is not affected, while non-negotiable access control decisions made by
OS and software developers are enforced [152].
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5.1.2. Data Backups

The use of backups is a generic mechanism aimed at recovering information due to
a number of threats, either random or deliberate. In the case of a ransomware incident,
only new data generated after the last backup will be affected. For that, the backups
should not be accessible to attackers. This way, it is necessary to balance data protection
and the resources needed to achieve it. This way, the authors of reference [153] introduce
improvements to the evaluation of security risks and develop a tool to analyze backups.

Amoeba [154] is a Solid-State Drive (SSD) backup and restoration system that detects
infected pages through a hardware accelerator and minimizes the backup overhead. Ac-
cording to the evaluation provided by the authors, the tool gives a high detection accuracy
due to the small total ratio of False Positives (FP) and False Negatives (FN), only 2.58%.

Safe Zone [155] maintains all the user’s (compressed) files into a unique file (safe zone),
which is always open for writing to prevent access by other resources. The application has
a File Watcher register to collect the events of the safe zone. This way, the last version of
the files is recovered from the safe zone in the case of a ransomware incident.

More recently, reference [156] considered a backup scheme called RAP (RAnsomware
Protection) focused on confidentiality and DoS attacks. RAP adjusts the backup over-
head and the recovery through a secure channel based on blockchain by using an AONT
(All-Or-NoThing) optimization.

Another solution by Dell is PowerProtect Cyber Recovery [157], which duplicates
every writing and adding operation. One of them is local (production system), while the
second is remote over the network, in the recovery site. To measure the de-duplication rate,
a time window is used so that a ransomware attack is concluded in case a given threshold
on the rate is reached. In such a case, the remote I/O operations are inhibited to protect
the data.

Some more daring proposals consider a specific filesystem, like Model Core [158]. It is
decentralized and analyzes in real-time the client petitions to check data integrity (by moni-
toring the metadata structure of files) and conclude the potential infection. A private cloud
is the proposed alternative for data backup in reference [159]. Furthermore, the proposal
found in reference [160] affords file immunization by storing a backup of files at the end
of them.

5.1.3. Deception Techniques

The relevance of deception techniques in computer security [161] is well known, since
they constitute a pro-active defence approach. A formal study and test of such techniques
can be found in reference [162]. For example, RansomTracer [163] is a honeypot designed to
collect traces from an attack by using a monitored bait. The environment is configured to
monitor remote access, clipboard, mounted disks and executable files. Likewise, a honeyfile
is a trap file aimed at generating a notification if it is accessed. In this line, the authors of
reference [164] propose to create a big central file to be monitored. In case a ransomware
sample accesses the file, the time involved in ciphering it will be enough to allow the
detection of this circumstance and to protect the rest of the archives.

Decoy files are a variety of trap files, where archives are deployed around the folders
on the filesystem to compute the number of times a thread traverses the filesystem and
generates a score to measure its potential malicious behavior [165].

Other specific practical deception systems are as follows. RWGuard [166] also uses
decoy files to detect and trace the behavior of input/output processes and changes in files.
To do this, a machine learning (ML)-related model is considered. RansomWall [167] uses the
decoy file approach in a multi-layered defence. Thus, when a process is suspected to be
malicious in the trap layer, the files are copied until determining if it is really malicious or
benign on other layers. Furthermore, SentryFS [168] is a specialized filesystem that deploys
trap files around the environment. Traps are generated using NLP (Natural Language
Processing) and both content and metadata are constantly updated to be attractive for
ransomware. Moreover, the proposal clones files to avoid the actual data being ciphered.
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After that, an AI agent assigns the activity a suspicion value to allow users to approve or
discard changes.

Focused on Android IoT devices, decoy files are used by KRProtector [169] to prevent
ransomware in the ciphering phase without root privileges. R-Sentry deploys decoy files
across the filesystem by analyzing the filesystem traversal patterns of existing ransomware
samples. When the decoy file detects the access, the process is killed [170].

A more elaborated and current decoy-file-based approach is R-Locker [171,172], where
authors deploy a set of trap files around the filesystem with the particularity that they are
FIFO-based files. This way, once a ransomware sample accesses the file it is blocked by the
OS. Thanks to that, a countermeasure is automatically launched to solve the problem with
no affection to the rest of the filesystem.

In a different way, the proposed approach in reference [173] detects attacks when a
decoy file disappears, it responds in such a case by making a system shutdown. RTrap [174]
also creates deceptive files through machine learning to attract access to them by attackers
(or ransomware). When detecting any access to deceptive files, RTrap autonomously
contains the incident disconnecting the victim from the network and killing all the malicious
processes. The proposed decoy-watcher can catch, contain and control the running of the
ransomware in less than 5.35 s.

5.1.4. User Training and Awareness

As previously indicated, the attack vectors of ransomware are the same as those for
malware in general. Considering that users are the weakest links in the security chain,
social engineering and phishing are very relevant techniques. As a consequence, it is
principal user training and awareness to effectively fight against ransomware.

In reference [175], the most relevant attack vectors for ransomware as well as the
principal training and awareness aspects to be applied to mitigate social engineering are
identified and analyzed. Software-based solutions like gamification and simulation are
adequate to reach that goal. A similar study is performed in reference [176] to prevent
spear phishing.

The authors of reference [177] apply PMT (Protection Motivation Theory) to investigate
the motivation of users to adopt protection measures against ransomware. Experimentation
establishes that the main motivation is derived from fear due to the severity and vulnera-
bility of threats. The principal recommendations to users to fight against ransomware are
as follows [178]: antivirus/anti-malware installation on computers and mobile devices, the
use of strong and different passwords for personal and work computers, periodic security
backups, not opening enclosed files in mail and the use of mirror shielding technologies.
In addition, reference [179] proposes carrying out training exercises to help identify poten-
tial security breaches and guarantee the correctness of mitigation and recovery processes.

After analyzing the TTPs associated with different ransomware families, a predictive
model regarding the characteristics of this threat is created. The model, RANDEP (RAN-
somware and DEPloyment) [180], allows for knowing when users are aware of the appearance
of ransomware in the environment.

5.2. Detection of Crypto-Ransomware

The aim of deploying detection solutions relies on environment supervision to deter-
mine the potential occurrence of ransomware incidents [181]. If so, the necessary actions to
thwart its effect as soon as possible will be launched [182].

Figure 5 shows a taxonomy of detection mechanisms for ransomware which is
based on the previous ones in references [183,184]. This new taxonomy includes more
detection schemes while unifying and organizing them better. Two main categories of
detection approaches are defined: based on the data source considered and based on the
processing performed.
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Figure 5. Taxonomy of detection schemes for ransomware.

5.2.1. Data Source

Detection solutions usually rely on dynamically monitoring diverse activities to obtain
data from which to be able to conclude the occurrence of certain events. As indicated
through Figure 5, such monitoring may involve kernel or user space. In the first case,
detailed information about the inner state of the system can be obtained. For that, however,
root privileges are required. In addition, developing a kernel module or controller is
a complex and critical task, as a little error can give way to a generalized system error
(i.e., kernel panic). It is also important to mention that installing a kernel controller is
feasible for Windows or Linux platforms but that task is only allowed in mobile devices
after jailbreaking/rooting them, which implies removing the security mechanisms in the
system and, thus, exposing the device. On the other hand, monitoring the user space is
easier but less complete than the kernel one from the perspective of knowing the real state
of the device.

The most common activities to be monitored concern filesystem and storage devices.
Works like that in reference [183] rely on the correlation between the number of bytes
written into a file (usually low for ciphered files) and the edition distance of file names.

Ransomware uses the same I/O operations as regular users (e.g., read(), write()). In this
way, the authors of reference [185] propose a system to learn the behavior of ransomware from
header information in Input/Output (I/O) operations (block address, operation typology,
data size) to detect ransomware. Also, reference [186] introduces a system to obtain the
probability of ransomware based on the comparison of the current I/O activity with a
historical one. These proposals, like the one in reference [187], rely on an unrestricted access
to I/O request packets (IRP).

Gathering information from the user space is the approach used by PayBreak and
UShallNotPass [143], which make use of hooks to intercept cryptographic library calls.

In reference [188], the authors introduce Sentinel to detect and recover data based on
access patterns by using system mechanisms like audit logs, filter controllers (Windows),
file system stack (Unix) or light events (Linux and IBM Spectrum Scale). In addition,
reference [189] considers process creation patterns as well. Furthermore, the tool ARW in
reference [190] combines the analysis of the life cycle of files with their content to detect
cryptographic attacks.

As mentioned, system and service logs are also recurrent data sources for ransomware
detection [191,192]. This is also the case of the system DeepRan, where BiLSTM (Attention-
based Bidirectional Long Short Term Memory) is considered for detection [193]. Similarly,
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reference [194] makes use of a number of features obtained through a forensic analysis of
artifacts, like process descriptors or DLL (Dynamic-link Library), to feed a XGBoost (eXtreme
Gradient Boosting) classifier.

The file typology or the extension can be modified when files are ciphered by ran-
somware. Such changes can be monitored to determine the presence of this kind of
attack [166]. This work also uses the similarity of different file versions to detect ran-
somware actions.

API calls are recurrently monitored to determine the occurrence of a number of
activities: C&C communications, privilege escalation, file access, ciphering and many other
functions associated with ransomware action [195]. Some works, like references [196,197],
analyze and filter API calls to obtain the most relevant ones. API calls can be also combined
with DLL-related features like in reference [198].

Also, opcodes or bytecodes contain rich information about context and semantics,
which provides information about the behavior of a given program. Some works that make
use of these kinds of features are references [199–204], where ML models like SVM (Support
Vector Classifier), HMM (Hidden Markov Model), CNN (Convolutional Neural Network)
or RF (Random Forest) are used.

References [205,206] focus on variables related to executable programs in Windows like
code size, image, DLL features or initialized data. Over them, ML detection methods like
PCA (Principal Component Analysis), SVM, KNN (K-Nearest Neighbors) and RF are applied.

The authors of reference [207] make use of a number of features (entropy changes,
apps retention state, lateral movement, system resources) to define an eight-final-states FSM
(Finite State Machine). When one of these states is reached by the system, a ransomware event
is concluded. Also, using a number of different features, the proposal in reference [208]
relies on an ACO (Ant Colony Optimization) procedure for ransomware detection. More,
Refs. [209,210] also makes use of a number of features among which are file ciphering rate,
writing operations, registry changes, CPU usage or DLLs used.

Traffic monitoring is also relevant for ransomware detection, where features like packet
size, message frequency and malicious domains, among others, support C&C communica-
tions occurrence. In this vein, the authors of reference [211] make use of Domain Generation
Algorithms (DGA). Also, reference [212] considers message size in HTTP headers to detect
CryptoLocker and Locky samples. In such a case, an SDN is used to stop the communication
with the malicious domain. Also based on SDN and auto-organizative networks, refer-
ence [213] introduces a defence scheme against ransomware. The authors of reference [214]
introduce REDFISH, a system to detect ransomware actions through monitoring network
traffic for shared network data volumes. Further works in a similar vein can be found in
references [215–217], where either generic traffic features (communication duration, protocol,
IP addresses, etc.) or specific TCP-related features are considered by using ML algorithms
like RF, SVM, DT (Decision Tree) and LR (Logistic Regression).

Since phishing is a recurrent attack vector, some researchers analyze URLs based
on ML techniques to detect if they are malicious or benign by considering features like
protocol, domain, path and other traffic features [218]. To detect ransomware samples
against database servers, the proposal DIMASQ (Dynamic Identification of Malicious Query
Sequences) is introduced in reference [219], where colored Petri networks are used to classify
malicious requests.

In some cases, the detection proposal is focused on analyzing the extortion notice
provided to the user once the data are ciphered. In reference [220], the ransomware
embedded in Android apps is detected by comparing the similarity of a set of images of the
analyzed program with a set of extortion images corresponding to ransomware variants.
Reference [221] introduces a forensics tool to analyze the extortion pop-up message of the
ransomware. Based on an OCR (Optical Character Recognition) process, the message and the
payment instructions are recovered. More recently, the authors of reference [222] propose
studying files related to ransomware to identify it. For that, LSA (Latent Semantic Analysis),
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used to seek similarities among files, and ML, used to classify files as benign or malicious,
are implemented.

A recent work is reference [223], where a ransomware SSD (State Solid Disk) (RSSD)
controller is constructed based on an assisted hardware registry. This keeps old data copies
in a conservative way and performs storage requests with a small overhead. Moreover,
the subsequent analysis of the attack is allowed, from which we can obtain storage evidence
for attack investigation purposes. Also based on hardware, the authors of reference [224]
propose RAPPER to determine static and dynamic programs’ integrity by using a model
with a time series of HPC (Hardware Performance Counter). Furthermore, reference [225]
introduces RanStop, where hardware events feed a neural network using the model LSTM
(Long Short Term Memory). Similarly, reference [226] makes use of hardware profiles
for Windows-related ransomware detection. A more recent work determines, for early
detection, the most effective time frame and also the appropriate HPC registers [227].

A different approach is proposed in reference [228], where the cryptocoin rate and
blockchain congestion are monitored over time. If an increase is detected, the system is
blocked to avoid malware infection [229].

5.2.2. Processing

Whichever the data source considered, some kind of processing of the information
collected is needed to conclude the occurrence of a ransomware event. As in the case of
malware in general, detection schemes can be classified as signature-based or anomaly-
based. That is, a set of well-known (ransomware-related) pre-defined patterns or behaviors
are either detected, or a certain deviation with respect to the expected normal operation of
the target system occurs.

An example of signature-based processing is the case of hashing, used, for example, in
VirusTotal (https://www.virustotal.com/gui/home/search (accessed on 25 October 2023)),
to identify and classify malicious samples. Hashing can also be used in combination
with other techniques like diffuse signature and entropy to detect samples for which no
signatures are known [230].

Other proposals consist of assigning values to quantify the malicious behavior of a
process. This is the case of Redemption or CryptoDrop. This is also the case of reference [231],
where YARA rules [232] are used to characterize the behavior of a sample based on API func-
tions, extortion-related words, cryptographic signatures and file names. If the rule reaches a
given threshold, the sample is classified as malicious. In comparison with signature-related
detection, the anomaly-based paradigm is able to detect unknown malware samples.

There are a number of detection proposals based on entropy [166,233,234]. Also, the
authors of reference [235] make use of entropy for file headers, the accuracy obtained
being 99.96%. This feature feeds an SVM model to discriminate between malicious and
benign files [236]. However, because entropy by itself cannot detect the differences between
ciphered files and compressed files [237], or it can be even evaded [238,239], the anal-
ysis should be complemented. This is the case of reference [240], where a decoy file is
additionally considered.

EntropySA and DistSA are ML-based schemes too but they make use of byte frequency
and frequency variation, respectively, to reduce the cost of entropy [241]. Another possi-
bility to reduce such a cost is to consider visualization, like in reference [242]. In this case,
ransomware is described in terms of images which are analyzed by using neural networks.

Whatever the data gathered, ML algorithms are generally applied over them for
detection purposes [243–246]. In reference [247], a comparison of ML-based ransomware
detectors is performed. Table 3 shows the main ML-based detection techniques used
in the literature and the features collected in each [248]. Let us remark on some works
in the field. In reference [249], a natural language processing scheme is used over API
calls. A Random Forest detection algorithm over DLL features combined with resource
consumption (communications, RAM, CPU, disk, among other resources) and opened files
is implemented in reference [250].

https://www.virustotal.com/gui/home/search
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More novel, the proposal of ZSL (ZeroShot Learning framework) introduced in
reference [251] is inspired by brain mechanisms to identify new concepts. The approach is
based on API calls and is divided into two stages: the first one to learn basic features for
ransomware, and the second to infer the final malicious or benign behavior.

API calls are monitored in reference [252], but, in this case, a previous binary static
analysis is performed in a hybrid detector named PEDA (from Pre-Encryption Detection
Algorithm). The authors of reference [253] propose a behavioral anomaly detector based
on the combination of Random Forest, Decision Trees and K-Nearest Neighbor schemes.
Furthermore, the authors of reference [254] introduce the system DRTHIS (Deep Ransomware
Threat Hunting and Intelligence System) based on the combination of two ML techniques:
LSTM and CNN.

Table 3. ML-based ransomware detection approaches.

Name Classification Algorithm(s) Feature(s) Ref.

- Random Forest (RF) Raw bytes [255]
DNAact-Ran LiR K-mer frequency [256]
RansomWall ANN, GTB, LR, RF, SVM System calls/API [167]

- DT, LR, NB, RF Logfiles [166]
- ANN, DT, KNN, LiR, LR, SVM File I/O [257]

PEDA RF System Calls/API [252]
- SVM System calls/API [258]
- SVM System calls/API [259]

DPBD-FE ANN, Boosting, CART, DT, KNN, System calls/API [260]
LDA, LR, NB, RF

DRDT CNN System calls/API [261]
- ANN Log files [262]
- KNN, LR, NB, RF, SGD, SVM System calls/API [263]
- DT, LiR System calls/API [264]
- AdaBoost, Bagging, BN, DT, System calls/API, RAM memory dump [265]

LogiBoost, LR, NB, RF
iBagging/ESRS Linear regression System calls/API [247]

RAPPER ANN (LSTM) HPC [224]
- BN, RF, SVM, RT Network traffic [266]
- ANN, KNN, RF, SVM CPU consumption [267]
- RF Network traffic [268]
- CNN Operation codes [201]
- SVM Operation code sequences/byte [269]
- CNN PE executable headers [270]
- DT, LR, NB, RF, SVM DLL calls, Operation/bytes codes [271]
- DT, LR, RF, SVM DLL calls, operation code/byte sequences [272]

DRTHIS CNN, LSTM Event sequences [254]
- NB, SVM Network traffic [273]

DRDT TextCNN System calls [261]
- RF DDL calls, OS resources [250]
- RF, OoW DDL calls [249]
- KNN, LR, NB, RF, SGD, SVM System calls [195]

AIRaD AI DLL calls [198]
DeepRan BiLSTM, FC Logs [193]
RanStop LSTM Hardware events [225]

MUSTARD RF Folders, file operations and types [274]
DIMAQS CPN, DNN DB SQL queries [275]

BGPGuard CNNs, GBDT, GRU, LSTM, RNNs Features selection [276]
- RF Network traffic (PSO) [277]

SwiftR HNN, LSTM Binary code, word-embedded) [278]
RANDES GAT lists of assembly mnemonic [279]

- NN API calls [280]
- GP, CC API calls, extension of dropped files, [281]

Registry key operations, embedded strings

Abbreviations: ANN: Artificial Neural Network; BN: Bayesian Networks; CC: Cooperative Coevolution; DT: Deci-
sion Tree; GAT: Graph Attention Network; GP: Genetic Programming; GTB: Gradient Tree Boosting; HNN: Hierar-
chical Neural Network; KNN: K-Nearest Neighbors; LDA: Linear Discriminant Analysis; LiR: Linear Regression;
LR: Logistic Regression; LSTM: Long Short-Term Memory; NB: Naïve Bayes; PSO: Particle Swarm Optimization;
RF: Random Forest; SVM: Support Vector Machine.

5.3. Response to Crypto-Ransomware

Once ransomware is detected, it is necessary to launch the required actions to solve
the event. Such a response is part of the so-called disaster recovery, contingency plan
or business continuity [282,283].

Maybe the most evident reaction scheme is that of killing the malicious process when
we are sure about its harmful nature. Another possibility is to put it under inspection to
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obtain more indicators about its dangerous condition, although that can imply consuming
more system resources. Additionally, it is also possible to notify users of the event so that
they take corresponding corrective actions, which mainly rely on prevention mechanisms
(e.g., data backups).

Depending on the affectation level of the target system, the first aspect involved in
data recovery is that of ransom payment. Should we pay or not? The short answer is “No!”.
On the one hand, it should be noticed that the payment is considered an illegal action in
some countries, which is mainly intended to reduce the success and impact of this kind of
attack on society [284–286]. Moreover, payment is not the end of the story! First, it does
not guarantee that the attacker will return the victim’s data. Second, the data or the tools
provided by the attacker to recover the information can be infected with malware. Finally,
data can be stolen again later to demand additional ransom payments (provided the fact
that the victim is demonstrated to be prone to pay!) [287].

As a consequence of all of the above, it is usually recommended to restore the complete
system from scratch and restore the information from backups. A clarifying recovery
experience from a crypto-ransomware attack can be found in reference [288].

To conclude pragmatically with defence techniques against ransomware, Table 4 shows
the various anti-ransomware tools developed in the recent literature. As a general comment,
detection solutions are prevalent, in particular those focused on filesystem monitoring.

Table 4. Anti-ransomware tools (modified from reference [183]).
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KRProtector H X X
RAPPER AC X X X X
R-Killer FS N X X X X
R-Locker H X X X X
SSD-Insider S X X X X X X X
UShallNotPass PR X X X X

Abbreviations: AC: Access Control; CS: Crypto-system; FS: File system; H: Honeyfile; N: Network; PR: Pseudo
random number generator API; S: Storage.

Regarding a comparison among tools, the framework FARFEL [71] analyzes the behav-
ior of detectors from the perspective of accuracy, false positive rate and capacity to detect
polymorphic samples and new attack patterns. Moreover, a comparison of them from the
perspective of computation and system overhead can be done by using tools of thirds like
CrystalDiskMark [289], Geekbench 5 [290] or PCMark 10 [291].

A fundamental issue in developing detection tools is the disposal of working samples
for the necessary experimentation purposes. First, with learning and model estimation
objectives and second, to allow valid comparisons between alternative solutions based on
the same test corpora (reproducibility). Table 5 shows a number of repositories from which
researchers usually get real samples. Despite the utility of such repositories, it is important
to mention that, in some cases, a number of potential samples are not really operative (in
the range of 12–67%, depending on the work). It is also convenient to pay attention to the
necessity of adequately labeling the samples, not only from the perspective of the family
they belong to but also from the perspective of their real ransomware nature. All of this
would introduce a notable bias, if not directly a malfunction, in the developed systems.

Another interesting question is the dataset age and how it affects the detection accuracy
of supervised machine learning models. A recent paper proves that supervised machine
learning models trained using datasets with new ransomware samples are inefficient in
detecting old types of ransomware and vice versa [292].
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Table 5. Ransomware samples repositories (modified from reference [293]).
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Ahmed [196] 1254 673 98.8 48.1 virusshare.com, virustotal.com (accessed on 25 October 2023), spider
to repositories, forums

Berrueta [294] 70 NA NA NA PCAP repository
http://dataset.tlm.unavarra.es/ransomware/ (accessed on 25 October 2023)

Cabaj [212] NA 787 98 395.5 malwr.com, ransomtracker.abuse.ch (accessed on 25 October 2023)
ISOT [295] 669 NA NA NA www.uvic.ca/ecs/ece/isot/datasets/botnet-ransomware/ (accessed on 25 October 2023)
Morato [214] NA 54 100 2.8 NA
RISSP [296] 540 NA NA NA github.com/rissgrouphub/ransomwaredataset2016 (accessed on 23 October 2023)

Temple [297] 1156 NA NA NA Critical Infrastructures incidents (2013–2021)
https://sites.temple.edu/care/ci-rw-attacks/ (accessed on 25 October 2023)

CIRW [298] NA NA NA NA Critical Infrastructure RansomWare.
Available by request

Zscaler
ThreatLabz NA NA NA NA Repository of ransom notes

https://github.com/threatlabz/ransomware_notes/ (accessed on 25 October 2023)

NA: Not Available

6. Trends and Challenges

After studying the overall current context of crypto-ransomware, this section is de-
voted to briefly pointing out the main trends and challenges regarding this threat, which
continues to be a principal security threat worldwide [112,299]. In fact, ransomware is not
only dangerous but an ever-changing and dynamic form of crime. Some of the keys to this
dynamism and the associated risks are as follows.

Crypto-ransomware is usually assumed to consume a number of resources mainly
due to cryptographic procedures. In addition, a lot of detection and recovery solutions
are based on the local disposal of ciphered files and/or ciphering keys. Regretfully, this
situation has evolved over the years, so that new ransomware samples (i) can apply only
a partial ciphering (around 3–5%) to quick affectation and detection evasion [300,301],
and (ii) can steal information from the target system instead of, or as well as, ciphering
(and locally storing) it [302]. All of this compels us to develop new, more varied and
faster detection schemes to minimize system damage. In other words, early detection is
a mandatory requirement since the so-called Time-To-Ransom (i.e., the time between the
initial compromise of the system and the execution of ransomware) is decreasing with new
samples. Otherwise, the effective detection can be useless as the system will be already
seriously affected. For that, lightweight detection and fast recovery procedures are needed,
especially for mobile and IoT-related devices which are characterized by low resources and
computation capacities.

Also, related to the above question, one more relevant issue in ransomware fighting is
that of detection in Big Data environments, as the computational cost and the detection
response involved can make the mechanisms deployed useless. In this regard, authors
usually propose performing the feature selection process in order to reduce the problem
dimension. For that, schemes like FeSA [248], PCA, FA (Factor Analysis), TSVD (Truncated
Singular Value Decomposition) [303] or VIF (Variance of Inflation Factor) [304] are analyzed.
Despite the existence of all those proposals, the increasing speed of current computation
and transmission technologies, together with the complexity of new ransomware samples,
make it necessary to continue researching and innovating fast and early detection solutions.

As previously explained, ML algorithms are commonly considered in the detection of
ransomware solutions. Despite the results usually being satisfactory, ML schemes present
some limitations and potential improvements [305,306]:

• Estimating the adequate model is a complex task, since the occurrence of over/under-
training, and thus bias, is feasible [307].

• The cost involved in ML classification and detection techniques can be high. To avoid
that, dimensional reduction techniques are useful, like PCA in reference [308].

virusshare.com
virustotal.com
http://dataset.tlm.unavarra.es/ransomware/
malwr.com
ransomtracker.abuse.ch
www.uvic.ca/ecs/ece/isot/datasets/botnet-ransomware/
github.com/rissgrouphub/ransomwaredataset2016
https://sites.temple.edu/care/ci-rw-attacks/
https://github.com/threatlabz/ransomware_notes/
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• Despite current detection schemes being efficient, new ransomware samples can
implement novel tactics to evade detection procedures in what is called Adversarial
ML [309]. To solve this problem, hybrid classifiers are developed, which combine
both static and dynamic features [310] or different classification algorithms (ensemble
malware detection) [243].

• Also related to detection evasion, papers like reference [204] analyze the resilience of
ML algorithms against security incidents.

One more relevant aspect of current ransomware is that of life expectation [311].
A decreasing trend is observed in this line, with ∼500 days in 2017 to 60 days in 2021.
This fact can be explained by the brand-changing strategy followed by the RaaS operators
to hide criminal organizations. For instance, Evil Corp has performed several attacks
with different brands: Hades, Phoenix Crypotolocker and Doppelpaymer, among others.
Despite the changes that could be unveiled, for instance, by discovering code similarities
or following crypto-payments and flow movements searching for similar behaviors and
patterns [312], it is evident that the methodology makes its prosecution more difficult.

As pointed out by the authors of reference [313], the growth of ransomware is a conse-
quence of its high degree of economic efficiency and impunity. Current studies are focused
on issues such as the juridical implications of ransomware when it is to be considered a
law breach under data privacy or data protection laws, but legality should be strengthened
and adapted to new technical methodologies to fight against this criminal practice. In the
end, without a proper legal sanction and without a proper punishment, the crime will
be repeated and extended because of the lack of harmful consequences for the aggressor.
For that, several changes should be carried out: (i) typifying ransomware as an autonomous
and specific crime, due to its technical uniqueness; (ii) penalizing incitement, complicity
and attempts to commit this offence to limit or reduce its impunity; (iii) prohibiting and
penalizing insurance contracts for the payment of ransoms to prevent legal instruments
from becoming an additional incentive for criminals in a regrettable perversion of the sys-
tem; (iv) the international cooperation is a main instrument for dealing with the impunity
arising from the fact that it is a generally transnational crime (as a relevant example in this
direction, it should be remarked that a number of countries have recently discussed fighting
together against ransomware (https://therecord.media/u-s-convenes-30-countries-on-
ransomware-threat-without-russia-or-china/ - accessed on 25 October 2023), and also the
private sector should be involved in this common objective (https://www.europol.europa.
eu/media-press/newsroom/news/13-countries-join-global-fight-against-ransomware-0 -
accessed on 25 October 2023-)); (v) promoting crypto-currency exchange and payment
regulations as they largely support ransomware proliferation [314].

In summary, ransomware is continuously evolving and thus the efforts to defeat it
must be redoubled. In this vein, and according to the recent work in reference [315], it is
likely that the behavior of ransomware will gradually evolve and refine its operation mode
to achieve the following: (i) steal crypto-currencies; (ii) guide targets toward cloud and
IoT; (iii) migrate from ransomware payload to business email compromise (BEC); (iv) use
the kill chain for stock market manipulation; and (v) use the supply chain compromise
as a service. As a direct consequence of that continuous evolution, we are aware that the
current work is limited in drawing lasting conclusions and, thus, new overviews on the
topic should be conducted in the future to shed light on the possible new variants and
families of crypto-ransomware that appear.

7. Conclusions

The impact of crypto-ransomware attacks in recent years is indubitable, with heavy
losses in terms of both economic and reputation to individuals, companies and organi-
zations all around the world. Regretfully, and despite the efforts in fighting against the
threat, that trend will prevail in the coming years. In this way, the main aim of this work
is to go into depth about the current fundamentals of this typology of attack regarding
infection and attack models, the actors involved and the lifecycle stages to deploy its

https://therecord.media/u-s-convenes-30-countries-on-ransomware-threat-without-russia-or-china/
https://therecord.media/u-s-convenes-30-countries-on-ransomware-threat-without-russia-or-china/
https://www.europol.europa.eu/media-press/newsroom/news/13-countries-join-global-fight-against-ransomware-0
https://www.europol.europa.eu/media-press/newsroom/news/13-countries-join-global-fight-against-ransomware-0
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malicious load to better understand the inherent operation of such malware and, from it,
to develop more effective defence schemes. Also, the principal milestones of the evolution
of crypto-ransomware over time are presented and the most famous families and extortion
cases are discussed.

In order to complete the study of crypto-ransomware attacks at present, the most
relevant works in the last recent years are also presented in this paper. For that, they are
organized according to the main defence line for which they are intended: prevention,
detection, response or recovery. Such an overview allows us to know the variety and
capability of the existing proposals, as well as their restrictions and limitations. Moreover,
the main trends in ransomware infection are presented with the aim of forecasting new
attack procedures and defence requirements, in particular the convenience of strengthening
public and private legal-related collaborations to successfully defeat this scourge.

In summary, the main goal of this work is to update the knowledge and efforts to date
against crypto-ransomware, with the aim of fighting against it and minimizing its impact
and damage to society.
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