
Citation: Liu, J.-C.; Chang, C.-C.;

Chang, C.-C.; Xu, S. High-Capacity

Imperceptible Data Hiding Using

Permutation-Based Embedding

Process for IoT Security. Electronics

2023, 12, 4488. https://doi.org/

10.3390/electronics12214488

Academic Editor: Paris Kitsos

Received: 16 September 2023

Revised: 14 October 2023

Accepted: 30 October 2023

Published: 31 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

High-Capacity Imperceptible Data Hiding Using
Permutation-Based Embedding Process for IoT Security
Jui-Chuan Liu 1 , Ching-Chun Chang 2, Chin-Chen Chang 1,* and Shuying Xu 1

1 Department of Information Engineering and Computer Science, Feng Chia University,
Taichung 40724, Taiwan; p1200318@o365.fcu.edu.tw (J.-C.L.); p0968875@o365.fcu.edu.tw (S.X.)

2 Information and Communication Security Research Center, Feng Chia University, Taichung 40724, Taiwan;
ccc@fcu.edu.tw

* Correspondence: ccc@o365.fcu.edu.tw

Abstract: The internet of things (IoT) has become a popular technology in communication which
utilizes the concept of connecting things together and exchanges information through various net-
works. Since data can be transferred through a wide range of channels, IoT systems suffer from
potential data leakages. One of the common ways to reduce such risks is to engage steganography
with secret information during transmission. A novel scheme proposed in this paper exploits simple
pixel permutations to embed secret data. Instead of handling pixel blocks, the proposed scheme
maneuvers on pixels directly. The proposed scheme simply manipulates the sequenced pixels using
two coefficients, a threshold of range for pixel values, and a specified clustering count to fulfill the
two major requirements of effective data hiding. The experimental results indicate that the proposed
scheme provides a satisfactory embedding capacity and preserves a high level of image visual quality.
The overall performance of the proposed scheme demonstrates its high potential in IoT security.

Keywords: data hiding; IoT security; permutation-based embedding; pixel permutation

1. Introduction

Internet of things (IoT) communication systems have evolved speedily to meet the
massive needs of many industries, such as automobiles, wearables, and smart cities [1]. The
IoT technology can connect these widely distributed wireless devices for modern commu-
nications; thus, machine-to-machine (M2M) interaction becomes one of the fundamental
requirements for an abundance of applications. With the arrival of the AI evolution era, IoT
technology is advancing even more rapidly, with big data running through our daily lives
behind the scenes. The revenue of IoT industries is huge and will increase tremendously
more in the near future. This is exciting yet scary, because data can be easily hijacked or
stolen through unsecured channels which may be designed within the infrastructure of an
IoT system [2,3]. The security of information in IoT technologies becomes more and more
important than ever [4,5]. Some industries entangle personal privacy data, such as licensing,
medical, or finance data, in their data transfers. Other industries can involve trading secrets,
such as integrated circuits and software designs. Data hiding (DH) techniques, which hide
secrets in cover media, were studied as one of the solutions to resolve privacy issues during
data transmission [6,7].

DH is the art of hiding secrets [8–10]. Secrets are exchanged through convert channels
into digital cover media. Digital images are popular media and many data hiding studies
focus on them. The fundamental principle of DH for digital images is to conceal secret data
into a cover image without much distortion. In order not to raise data-thieves’ attention, it
is important to keep the visual quality of a steganographic image visually close to a cover
image. Based on the reversibility of the cover image, the data hiding methods can be divided
into two categories, namely, reversible data hiding (RDH) and irreversible data hiding (IRDH).
Depending on the applications’ requirements, reversible ones recover the original media,

Electronics 2023, 12, 4488. https://doi.org/10.3390/electronics12214488 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12214488
https://doi.org/10.3390/electronics12214488
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0007-3401-8742
https://orcid.org/0000-0002-7319-5780
https://orcid.org/0000-0002-6192-2223
https://doi.org/10.3390/electronics12214488
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12214488?type=check_update&version=2

Electronics 2023, 12, 4488 2 of 13

while irreversible ones either do not care about the original media or the stego media has a
comparable quality to its originals. Moreover, the data hiding methods can be classified into
four categories according to the domains being processed: spatial [11–18], transform [19–21],
compressed [22–24], and encryption [8,25–27]. When using spatial domain methods, secret
data are embedded into cover images by modifying their pixel values. Different to methods
in the spatial domain, the schemes in the transform domain convert the plaintext images
into frequency coefficients first and modify the frequency coefficients to realize the secret
embedding. In the compressed domain, the schemes compress the original images and
utilize the compressed images as the carriers to embed data. With the rapid development
of cloud technology, DH schemes in the encryption domain have emerged. These schemes
encrypt cover images before transmitting them through the public channel to ensure the
privacy of the cover images while embedding secret information.

The traditional permutation-based data hiding methods embed secret data by rear-
ranging the pixels in an image [28,29]. In [28], Wang et al. divided the image into blocks
and then rotated the pixels within each block to embed an additional 2 bits of data. The
additional data can be extracted without loss by considering the location of the maximum
or minimum pixel. In [29], Xu et al. proposed a regularization operation to preprocess
the divided image blocks, converting most of them into regulated blocks. The additional
data was then embedded into these image blocks by permuting the pixels within. Since the
permutation process only disrupts the pixels without directly modifying the pixel values, it
becomes challenging for malicious attackers to detect the stego image through pixel-based
analyses, such as pixel histogram analysis. However, one drawback of the existing methods
is that the pixels are reordered block-wise, which may lead to a dramatic change in pixel
values at the edges after permutation. To solve this problem, the proposed scheme uses
pixel-based permutation with two critical coefficients instead of block-wise permutation
to hide data to efficiently avoid some disadvantages of block-based permutations. The
novel scheme proposed here can produce better results because there are two important
control coefficients in the offered scheme. One of them controls the range of the differences
allowed in a selected group and the other one is to control how many members or instances
can be in a group. Cover images are scanned from left to right and from top to bottom to
form a pixel stream. By using the two coefficients, a multiset is created based on the current
unprocessed pixel. A permutation table is generated using a random seed according to the
selected multiset. Extracting secret data uses a regenerated permutation table during the
data recovery stage. It will embed secret data into the cover image by the bits determined
by the distinctive permutations of the multisets. Our experiments show promising results
using this proposed permutation-based embedding scheme.

The contributions of the proposed scheme are described below:

• A context owner can control the distortion of cover images by using only two coefficients.
• When the visual quality of the embedded images is in an acceptable situation, the

embedded capacity is relatively high compared to the state-of-the-art methods.
• The proposed scheme demonstrates its high potential in IoT security.

As we briefly stated our problem and a rough description of the anticipated solution,
the related methods are to be explained in Section 2. Section 3 will lay out the prime details
of the proposed scheme, followed by Section 4, which includes the experiments conducted
and the analysis completed. Lastly, the conclusion will summarize our research findings.

2. Related Work

There are a few basic concepts that are integrated in the proposed scheme. General
descriptions of these concepts are described to refresh some fundamental knowledge related
to multisets.

Electronics 2023, 12, 4488 3 of 13

2.1. Permutations of Multisets

In mathematics, a multiset is a modified set which allows multiple instances of an
element. A monomial is a multiset of indeterminates. If there is a finite set,

A = {a1, a2, · · · , an}, (1)

a multiset can be represented as

(A, m) =
{

am(a1)
1 , am(a2)

2 , · · · , am(an)
n

}
, (2)

where A is the base set of the multiset, m is the multiplicity function from A,
and {a1, a2, · · · , an} are distinct elements in (A, m); m(an) is the multiplicity of the el-
ement an or the number of occurrences of the element an. For example, a multiset with
{a, a, b, b, c} element instances can be rewritten as monomial

{
a2, b2, c

}
or a2b2c.

If the multiplicities of the distinct elements in (A, m) are m(a1), m(a2), · · · , m(an),
the size of (A, m) is as indicated in Equation (3):

S = m(a1) + m(a2) + · · ·+ m(an). (3)

The number of distinct permutations P of the multiset (A, m) is

P =

(
S

m(a1), m(a2), · · · , m(an)

)
=

S!
m(a1)!m(a2)! · · ·m(an)!

=
S!

∏n
i=1 m(ai)!

, (4)

where the factorial S! is the total number of possible permutations for the multiset. The
factorial of m(ai)! is the amount of repeated permutations due to the multiplicity of m(ai).

Here is an example to help with understanding the permutations of a multiset: if
there is a multiset (A, m) = {2, 2, 3, 3}, it can also be represented as

{
22, 32}. The total

number of permutations of the multiset is 24, but the number of distinct permutations of
the multiset is six according to P = (2+2)!

2! × 2! =
4 × 3 × 2 ×1

(2 × 1) × (2 × 1) = 6. Figure 1 displays the
example’s possible permutations and its distinct permutations.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 14

There are a few basic concepts that are integrated in the proposed scheme. General
descriptions of these concepts are described to refresh some fundamental knowledge re-
lated to multisets.

2.1. Permutations of Multisets
In mathematics, a multiset is a modified set which allows multiple instances of an

element. A monomial is a multiset of indeterminates. If there is a finite set, 𝐴 = ሼ𝑎ଵ, 𝑎ଶ, ⋯ , 𝑎௡ሽ, (1)

a multiset can be represented as ሺ𝐴, 𝑚ሻ = ሼ𝑎ଵ௠ሺ௔భሻ, 𝑎ଶ௠ሺ௔మሻ, ⋯ , 𝑎௡௠ሺ௔೙ሻሽ, (2)

where 𝐴 is the base set of the multiset, 𝑚 is the multiplicity function from 𝐴 , and ሼ𝑎ଵ, 𝑎ଶ, ⋯ , 𝑎௡ሽ are distinct elements in ሺ𝐴, 𝑚ሻ; 𝑚ሺ𝑎௡ሻ is the multiplicity of the element 𝑎௡
or the number of occurrences of the element 𝑎௡. For example, a multiset with ሼ𝑎, 𝑎, 𝑏, 𝑏, 𝑐ሽ
element instances can be rewritten as monomial ሼ𝑎ଶ, 𝑏ଶ, 𝑐ሽ or 𝑎ଶ𝑏ଶ𝑐.

If the multiplicities of the distinct elements in ሺ𝐴, 𝑚ሻ are 𝑚ሺ𝑎ଵሻ, 𝑚ሺ𝑎ଶሻ, ⋯ , 𝑚ሺ𝑎௡ሻ, the
size of ሺ𝐴, 𝑚ሻ is as indicated in Equation (3): 𝑆 = 𝑚ሺ𝑎ଵሻ ൅ 𝑚ሺ𝑎ଶሻ ൅ ⋯ ൅ 𝑚ሺ𝑎௡ሻ. (3)

The number of distinct permutations 𝑃 of the multiset ሺ𝐴, 𝑚ሻ is 𝑃 = ቀ ௌ௠ሺ௔భሻ,௠ሺ௔మሻ,⋯,௠ሺ௔೙ሻቁ = ௌ!௠ሺ௔భሻ!௠ሺ௔మሻ!⋯௠ሺ௔೙ሻ! = ௌ!∏ ௠ሺ௔೔ሻ!೙೔సభ , (4)

where the factorial 𝑆! is the total number of possible permutations for the multiset. The
factorial of 𝑚ሺ𝑎௜ሻ! is the amount of repeated permutations due to the multiplicity of 𝑚ሺ𝑎௜ሻ.

Here is an example to help with understanding the permutations of a multiset: if
there is a multiset ሺ𝐴, 𝑚ሻ = {2, 2, 3, 3}, it can also be represented as ሼ2ଶ, 3ଶሽ . The total
number of permutations of the multiset is 24, but the number of distinct permutations of
the multiset is six according to 𝑃 = ሺଶାଶሻ!ଶ! ൈ ଶ! = ସ ൈ ଷ ൈ ଶ ൈଵሺଶ ൈ ଵሻ ൈ ሺଶ ൈ ଵሻ = 6. Figure 1 displays the exam-
ple’s possible permutations and its distinct permutations.

(a)

(b)

Figure 1. Permutations of multiset {2, 2, 3, 3}: (a) all possible permutations; (b) distinct permutations. Figure 1. Permutations of multiset {2, 2, 3, 3}: (a) all possible permutations; (b) distinct permutations.

Electronics 2023, 12, 4488 4 of 13

2.2. Permutation Ordering

The Fisher–Yates shuffle was first introduced in 1938 and is also known as the Knuth
shuffle [30]. It is an algorithm using random drawing to generate a random permutation of
numbers from 1 to N. There are many algorithms that were derived to handle the duplicated
numbers and implement them more efficiently to improve the performance of the original
shuffle method since the controlling of the shuffling sequences is widely applied on many
different applications.

3. Permutation-Based Embedding Scheme

When dealing with data hiding problems, researchers are looking for a solution
with high visual media quality and high embedding quantity. The proposed scheme
is straightforward and uses simple permutation operations. Figure 2 demonstrates the
fundamental framework of the scheme.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 14

2.2. Permutation Ordering
The Fisher–Yates shuffle was first introduced in 1938 and is also known as the Knuth

shuffle [30]. It is an algorithm using random drawing to generate a random permutation
of numbers from 1 to N. There are many algorithms that were derived to handle the du-
plicated numbers and implement them more efficiently to improve the performance of the
original shuffle method since the controlling of the shuffling sequences is widely applied
on many different applications.

3. Permutation-Based Embedding Scheme
When dealing with data hiding problems, researchers are looking for a solution with

high visual media quality and high embedding quantity. The proposed scheme is straight-
forward and uses simple permutation operations. Figure 2 demonstrates the fundamental
framework of the scheme.

Figure 2. Framework of permutation-based embedding scheme.

A cover image 𝐼 sized 𝑊 ൈ 𝐻 is converted to a sequence of pixels from left to right
and from top to bottom. 𝐼 = ሼ𝑝଴଴, 𝑝ଵ଴, ⋯ , 𝑝ௐିଵ,଴, 𝑝଴ଵ, 𝑝ଵଵ, ⋯ , 𝑝ௐିଵ,ுିଵሽ. (5)

The 𝑝௜௝ is the pixel located at column 𝑖 and row 𝑗. It is limited to greyscale images
because the pixel values range from ሾ0, 255ሿ for simpler number manipulation in our ex-
periments.

There are two important coefficients for a group in the proposed scheme:
• A group pixel count 𝑐, where 𝑐 ൐ 1. It is used to limit the number of pixels in the

multiset for fast permutation table creation.
• A difference 𝑑, where 𝑑 ൒ 1. It is to limit the range of pixel values. When a difference

coefficient is large, the pixel variation among pixels in the group is large which can
impact the visual quality of the cover image.

3.1. Permutation-Based Data Embedding
A list of inputs is required from a sender in order to generate permutation tables and

embed secret data into a stego image to send to a receiver. The algorithm represents the
flow of secret data embedding after the sender has a cover image 𝐼, a group instance count 𝑐, a difference coefficient 𝑑, and the secret data 𝑆. 𝑆 = ሼ𝑠଴, 𝑠ଵ, ⋯ , 𝑠௥ିଵሽ. (6)

here, 𝑠௞ = ሼ0, 1ሽ and 0 ൑ 𝑘 ൏ 𝑟.
After all pixels in the cover image are processed, a stego image 𝐼ᇱ is created and sent

to the receivers. The detail steps are described in Algorithm 1.

Figure 2. Framework of permutation-based embedding scheme.

A cover image I sized W × H is converted to a sequence of pixels from left to right
and from top to bottom.

I = {p00, p10, · · · , pW−1,0, p01, p11, · · · , pW−1, H−1}. (5)

The pij is the pixel located at column i and row j. It is limited to greyscale images because
the pixel values range from [0, 255] for simpler number manipulation in our experiments.

There are two important coefficients for a group in the proposed scheme:

• A group pixel count c, where c > 1. It is used to limit the number of pixels in the
multiset for fast permutation table creation.

• A difference d, where d ≥ 1. It is to limit the range of pixel values. When a difference
coefficient is large, the pixel variation among pixels in the group is large which can
impact the visual quality of the cover image.

3.1. Permutation-Based Data Embedding

A list of inputs is required from a sender in order to generate permutation tables
and embed secret data into a stego image to send to a receiver. The algorithm represents
the flow of secret data embedding after the sender has a cover image I, a group instance
count c, a difference coefficient d, and the secret data S.

S = {s0, s1, · · · , sr−1}. (6)

here, sk = {0, 1} and 0 ≤ k < r.
After all pixels in the cover image are processed, a stego image I′ is created and sent

to the receivers. The detail steps are described in Algorithm 1.

Electronics 2023, 12, 4488 5 of 13

Algorithm 1: Data embedding

Input A greyscale cover image I, a group pixel count c, a difference d, and the secret data S.
Output A stego image I′.
Step 1 Set the first pixel from the image I as the start pixel with pij = p00.
Step 2 Set current value vij as equal to the pixel value of the start pixel pij and add vij to a new group Gij. Mark pij as

processed. Set x = i, y = j.
Step 3 Search pixel forward by advancing the pixel location (x, y) until it finds a pixel value vxy, where

vij − d ≤ vxy ≤ vij + d, add to the group Gij and mark the found pixel as processed.
Step 4 Repeat Step 3 until the number of pixels in the group Gij reaches the specified group pixel count c or there are no

more unprocessed pixels.
Step 5 Check if the number of pixels is less than c; if it is yes, continue to Step 10.
Step 6 Check if there is only one distinct pixel value in the group Gij; if it is yes, continue to Step 10.
Step 7 Generate a permutation table according to pixel values in the group Gij using random seed shuffling and calculate

the number of distinctive permutations Pij using Equation (4).
Step 8 Calculate the number of embeddable bits bij using

bij =
⌊

log2Pij

⌋
(7)

where Pij is the number of distinctive permutations for the pixel group Gij.
Step 9 Convert bij of binary value to decimal as the index value IDXij into the permutation table generated in Step 6.

Replace the group pixel values with the ordered values pointed by the index IDXij.
Step 10 Check if there is an unprocessed pixel left in the pixel stream. If there is, set it as the start pixel, set the current

pixel pij and repeat Step 2. Otherwise, stop the process and send the output stego image I′.

Figure 3 details an example of permutation-based data embedding. In this example,
set the permuting count in a group c to 5 and the difference coefficient to 2. In Figure 3a,
assume that the circled pixel is the current processed pixel with value 30 in image I and that
the proposed scheme uses a raster scan method to find five pixels with values that are within 2
in differences of the value 30. Figure 3b shows these pixel values are {30, 29, 30, 31, 32} ={

29, 302, 31, 32
}

. The number of its possible distinctive permutations is 60; therefore, the
number of embeddable bits is blog260c = 5 according to Equation (7). Assume the next 5 bits
in secret data S is (00111)2 = 7, index 7 is selected from permutation table and its number
permutation {30, 30, 29, 32, 31} replaces {30, 29, 30, 31, 32} in the stego image I′.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 14

Algorithm 1. Data embedding
Input A greyscale cover image 𝐼, a group pixel count 𝑐, a difference 𝑑, and the secret data 𝑆.
Output A stego image 𝐼ᇱ.
Step 1 Set the first pixel from the image 𝐼 as the start pixel with 𝑝௜௝ = 𝑝଴଴.
Step 2 Set current value 𝑣௜௝ as equal to the pixel value of the start pixel 𝑝௜௝ and add 𝑣௜௝ to a new group 𝐺௜௝. Mark 𝑝௜௝ as processed. Set 𝑥 = 𝑖, 𝑦 = 𝑗.
Step 3 Search pixel forward by advancing the pixel location ሺ𝑥, 𝑦ሻ until it finds a pixel value 𝑣௫௬, where 𝑣௜௝ െ 𝑑 ൑ 𝑣௫௬ ൑ 𝑣௜௝ ൅ 𝑑, add to the group 𝐺௜௝ and mark the found pixel as processed.
Step 4 Repeat Step 3 until the number of pixels in the group 𝐺௜௝ reaches the specified group pixel count 𝑐 or there are no more unprocessed pixels.
Step 5 Check if the number of pixels is less than 𝑐; if it is yes, continue to Step 10.
Step 6 Check if there is only one distinct pixel value in the group 𝐺௜௝; if it is yes, continue to Step 10.
Step 7 Generate a permutation table according to pixel values in the group 𝐺௜௝ using random seed shuf-

fling and calculate the number of distinctive permutations 𝑃௜௝ using Equation (4).
Step 8 Calculate the number of embeddable bits 𝑏௜௝ using 𝑏௜௝ = උ𝑙𝑜𝑔ଶ𝑃௜௝ඏ, (7)

where 𝑃௜௝ is the number of distinctive permutations for the pixel group 𝐺௜௝.
Step 9 Convert 𝑏௜௝ of binary value to decimal as the index value 𝐼𝐷𝑋௜௝ into the permutation table gen-

erated in Step 6. Replace the group pixel values with the ordered values pointed by the index 𝐼𝐷𝑋௜௝.
Step 10 Check if there is an unprocessed pixel left in the pixel stream. If there is, set it as the start pixel,

set the current pixel 𝑝௜௝ and repeat Step 2. Otherwise, stop the process and send the output stego
image 𝐼ᇱ.

Figure 3 details an example of permutation-based data embedding. In this example,
set the permuting count in a group 𝑐 to 5 and the difference coefficient to 2. In Figure 3a,
assume that the circled pixel is the current processed pixel with value 30 in image 𝐼 and
that the proposed scheme uses a raster scan method to find five pixels with values that are
within 2 in differences of the value 30. Figure 3b shows these pixel values are
{30, 29, 30, 31 32ሽ = ሼ29, 30ଶ, 31, 32ሽ. The number of its possible distinctive permutations
is 60; therefore, the number of embeddable bits is ⌊𝑙𝑜𝑔ଶ60⌋ = 5 according to Equation (7).
Assume the next 5 bits in secret data 𝑆 is ሺ00111ሻଶ = 7, index 7 is selected from permu-
tation table and its number permutation {30, 30, 29, 32 31ሽ replaces {30, 29, 30, 31 32ሽ in
the stego image 𝐼ᇱ.

(a)

Electronics 2023, 12, x FOR PEER REVIEW 6 of 14

(b)

Figure 3. Permutation-based embedding: (a) search qualified pixels in group from current pixel; (b)

process of pixel replacement in a group.

3.2. Data Extraction

When a receiver receives a stego image, the embedded secret data can be extracted

by the following steps if there are known 𝑐 and 𝑑. The extraction steps are described in

Algorithm 2.

Algorithm 2. Data extraction

Input The stego image 𝐼′, the group pixel count 𝑐, and the difference 𝑑.

Output Recovered image 𝐼′′.

Step 1 Convert stego image 𝐼′ to a pixel stream.

Step 2 Set the first pixel from the image 𝐼′ as the start pixel with 𝑝𝑖𝑗
′ = 𝑝00

′

Step 3 Set current value 𝑣𝑖𝑗
′ as equal to the pixel value of the start pixel 𝑝𝑖𝑗

′ and add 𝑣𝑖𝑗
′ to a new group

𝐺𝑖𝑗. Mark 𝑝𝑖𝑗 as processed. Set 𝑥 = 𝑖, 𝑦 = 𝑗;

Step 4 Search forward by advancing the pixel location (𝑥, 𝑦) until it finds a pixel value 𝑣𝑥𝑦
′ , where 𝑣𝑖𝑗

′ −

𝑑 ≤ 𝑣𝑥𝑦
′ ≤ 𝑣𝑖𝑗

′ + 𝑑, add to group and mark the pixel as processed.

Step 5 Repeat Step 4 until the number of group pixel count reach specified 𝑐 or there are no more pixels.

Step 6 Check if group member count is equal to 𝑐; continue to Step 11 if it is a yes.

Step 7 Check if there is more than one distinct member in the group; if there is only one, continue to Step

11.

Step 8 Generate a permutation table according to group members using random seed shuffling.

Step 9 Match the order of the group members with all permutation orders in the permutation table to

obtain the table index of the order.

Step 10 Convert the order into a binary bit stream and append them to the decoded binary secret stream.

Step 11 Check if there is an unprocessed pixel left in the pixel stream. If there is, set it as the start pixel, set

the current pixel 𝑝𝑖𝑗
′ and repeat Step 3. Otherwise, stop the process with a recovered image 𝐼′′.

Figure 4 demonstrates the extraction of the secret data in our embedding example.

After receiving 𝑐 , 𝑑 , and the stego image 𝐼′ , the pixel values extracted are

{ 30, 30,29, 32, 31} = {29, 302, 31, 32} . We can find that the index number of

{30, 30,29, 32, 31} in the permutation table is 7, and thus the secret message (00111)2 is

extracted to be appended to the previously extracted secret data stream.

Figure 3. Permutation-based embedding: (a) search qualified pixels in group from current pixel;
(b) process of pixel replacement in a group.

Electronics 2023, 12, 4488 6 of 13

3.2. Data Extraction

When a receiver receives a stego image, the embedded secret data can be extracted
by the following steps if there are known c and d. The extraction steps are described in
Algorithm 2.

Algorithm 2: Data extraction

Input The stego image I′, the group pixel count c, and the difference d.
Output Recovered image I ′′ .
Step 1 Convert stego image I′ to a pixel stream.
Step 2 Set the first pixel from the image I′ as the start pixel with p′ij = p′00
Step 3 Set current value v′ij as equal to the pixel value of the start pixel p′ij and add v′ij to a new group Gij. Mark pij as

processed. Set x = i, y = j;
Step 4 Search forward by advancing the pixel location (x, y) until it finds a pixel value v′xy, where v′ij − d ≤ v′xy ≤ v′ij + d,

add to group and mark the pixel as processed.
Step 5 Repeat Step 4 until the number of group pixel count reach specified c or there are no more pixels.
Step 6 Check if group member count is equal to c; continue to Step 11 if it is a yes.
Step 7 Check if there is more than one distinct member in the group; if there is only one, continue to Step 11.
Step 8 Generate a permutation table according to group members using random seed shuffling.
Step 9 Match the order of the group members with all permutation orders in the permutation table to obtain the table

index of the order.
Step 10 Convert the order into a binary bit stream and append them to the decoded binary secret stream.
Step 11 Check if there is an unprocessed pixel left in the pixel stream. If there is, set it as the start pixel, set the current pixel

p′ij and repeat Step 3. Otherwise, stop the process with a recovered image I ′′ .

Figure 4 demonstrates the extraction of the secret data in our embedding example. After
receiving c, d, and the stego image I′, the pixel values extracted are {30, 30, 29, 32, 31} ={

29, 302, 31, 32
}

. We can find that the index number of {30, 30, 29, 32, 31} in the permu-
tation table is 7, and thus the secret message (00111)2 is extracted to be appended to the
previously extracted secret data stream.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 14

Figure 4. Permutation-based secret data extraction.

4. Experimental Results and Analysis

Since the visual performance of images and data payload can judge the efficiency of

the proposed scheme, experiments with the image quality, which showed desirable re-

sults, were conducted first. In order to confirm that the data payload results from our

scheme can surpass the state-of-the-art schemes, related experiments were also completed

for comparisons afterwards. The selected test images for experiments are displayed in

Figure 5. The four images are popular greyscale images with diverse smoothness. The

corresponding histograms of the images are shown in Figure 5 as well.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Four standard test images: (a) airplane, (b) Lena, (c) baboon, and (d) sailboat. (e–h) are the

histograms of images (a–d).

4.1. Visual Performance

To visually demonstrate the effectiveness of the proposed scheme in terms of the vis-

ual performance, we present the stego images in Figure 6. The experiment sets the range

difference to be 2 and the member count in groups to be 5. From the figure, we can see

that all stego images have an outstanding visual quality. The differences in the test set are

Figure 4. Permutation-based secret data extraction.

4. Experimental Results and Analysis

Since the visual performance of images and data payload can judge the efficiency
of the proposed scheme, experiments with the image quality, which showed desirable
results, were conducted first. In order to confirm that the data payload results from our
scheme can surpass the state-of-the-art schemes, related experiments were also completed

Electronics 2023, 12, 4488 7 of 13

for comparisons afterwards. The selected test images for experiments are displayed in
Figure 5. The four images are popular greyscale images with diverse smoothness. The
corresponding histograms of the images are shown in Figure 5 as well.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 14

Figure 4. Permutation-based secret data extraction.

4. Experimental Results and Analysis

Since the visual performance of images and data payload can judge the efficiency of

the proposed scheme, experiments with the image quality, which showed desirable re-

sults, were conducted first. In order to confirm that the data payload results from our

scheme can surpass the state-of-the-art schemes, related experiments were also completed

for comparisons afterwards. The selected test images for experiments are displayed in

Figure 5. The four images are popular greyscale images with diverse smoothness. The

corresponding histograms of the images are shown in Figure 5 as well.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Four standard test images: (a) airplane, (b) Lena, (c) baboon, and (d) sailboat. (e–h) are the

histograms of images (a–d).

4.1. Visual Performance

To visually demonstrate the effectiveness of the proposed scheme in terms of the vis-

ual performance, we present the stego images in Figure 6. The experiment sets the range

difference to be 2 and the member count in groups to be 5. From the figure, we can see

that all stego images have an outstanding visual quality. The differences in the test set are

Figure 5. Four standard test images: (a) airplane, (b) Lena, (c) baboon, and (d) sailboat. (e–h) are the
histograms of images (a–d).

4.1. Visual Performance

To visually demonstrate the effectiveness of the proposed scheme in terms of the
visual performance, we present the stego images in Figure 6. The experiment sets the range
difference to be 2 and the member count in groups to be 5. From the figure, we can see
that all stego images have an outstanding visual quality. The differences in the test set
are not recognizable when viewing with the naked eye. Furthermore, when examining
the histogram distributions corresponding to these stego images, we observe that they are
identical to those of the original images. Therefore, malicious attackers cannot detect the
stego images through histogram analysis.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 14

not recognizable when viewing with the naked eye. Furthermore, when examining the

histogram distributions corresponding to these stego images, we observe that they are

identical to those of the original images. Therefore, malicious attackers cannot detect the

stego images through histogram analysis.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Visual results and their corresponding histograms when setting 𝒅 = 𝟐, 𝒄 = 𝟓. (a) air-

plane, (b) Lena, (c) baboon, and (d) sailboat. (e–h) are the histograms of images (a–d).

When evaluating the visual performance, the peak signal-to-noise ratio (PSNR) [31]

is measured in the experiments to check the amount of distortion between a cover image

and a steganographic image.

PSNR = 10 (
𝑊 × 𝐻 × 2552

∑ ∑ (𝑝𝑖𝑗 − 𝑝𝑖𝑗
′)2𝐻−1

𝑗=0
𝑊−1
𝑖=0

), (8)

where the size of a cover image is 𝑊 × 𝐻, 𝑝𝑖𝑗 is the pixel value at (𝑖, 𝑗) of the cover im-

age, and 𝑝𝑖𝑗
′ is the pixel value at (𝑖, 𝑗) of its stego image. The results are given in Tables 1

and 2. The experiments were conducted by using various range difference coefficient 𝑑

with a fixed member count in groups; varying member counts and fixing difference coef-

ficient 𝑑 were also attempted. The PSNRs were reduced when the range difference was

increased. As the differences among the pixel values become larger, it causes greater color

distortion of the pixels. Nevertheless, it seems there is no impact on changing the group

pixel count 𝑐. These results can be observed in the two tables.

Table 1. PSNR results when setting 𝒄 = 𝟓.

 Airplane Lena Baboon Sailboat

𝑑 = 1 49.9138 49.6091 49.4841 50.1613

𝑑 = 2 45.5175 44.9660 44.7239 45.7078

𝑑 = 3 42.9644 42.1785 41.7483 42.7407

Table 2. PSNR results when setting 𝒅 = 𝟐.

 Airplane Lena Baboon Sailboat

𝑐 = 4 45.9944 45.4401 45.2277 46.1493

𝑐 = 5 45.5175 44.9660 44.7239 45.7078

𝑐 = 6 45.2598 44.6983 44.4488 45.4289

Figure 6. Visual results and their corresponding histograms when setting d = 2, c = 5. (a) airplane,
(b) Lena, (c) baboon, and (d) sailboat. (e–h) are the histograms of images (a–d).

Electronics 2023, 12, 4488 8 of 13

When evaluating the visual performance, the peak signal-to-noise ratio (PSNR) [31] is
measured in the experiments to check the amount of distortion between a cover image and
a steganographic image.

PSNR = 10

(
W × H × 2552

∑W−1
i=0 ∑H−1

j=0 (pij − p′ij)
2

)
, (8)

where the size of a cover image is W × H, pij is the pixel value at (i, j) of the cover image,
and p′ij is the pixel value at (i, j) of its stego image. The results are given in Tables 1 and 2.
The experiments were conducted by using various range difference coefficient d with a
fixed member count in groups; varying member counts and fixing difference coefficient d
were also attempted. The PSNRs were reduced when the range difference was increased.
As the differences among the pixel values become larger, it causes greater color distortion
of the pixels. Nevertheless, it seems there is no impact on changing the group pixel count c.
These results can be observed in the two tables.

Table 1. PSNR results when setting c = 5.

Airplane Lena Baboon Sailboat

d = 1 49.9138 49.6091 49.4841 50.1613
d = 2 45.5175 44.9660 44.7239 45.7078
d = 3 42.9644 42.1785 41.7483 42.7407

Table 2. PSNR results when setting d = 2.

Airplane Lena Baboon Sailboat

c = 4 45.9944 45.4401 45.2277 46.1493
c = 5 45.5175 44.9660 44.7239 45.7078
c = 6 45.2598 44.6983 44.4488 45.4289

We employed another two key metrics, the information entropy [32] and correla-
tion coefficient [33], respectively, to further assess our scheme. The information entropy
measures the complexity and the information content of images, while the correlation
coefficient quantifies the similarity between two images. As shown in Table 3, the infor-
mation entropy of the stego images matches that of the original images, indicating that
our method maintains the information content of the images. The results emphasize that
our approach is not only effective in hiding information but also excellent in retaining the
inherent informational characteristics of the cover images. Moreover, the data in Table 4
reveals a high degree of similarity between our stego images and the original images with
correlation coefficients approaching 1, further confirming the method’s exceptional ability
to maintain the inherent informational characteristics of the cover images. These two
experiments provide additional evidence of the imperceptibility of our method.

Table 3. Image information entropy when setting d = 2, c = 5.

Airplane Lena Baboon Sailboat

Original image 6.7059 7.4455 7.3579 7.1914
Stego image 6.7059 7.4455 7.3579 7.1914

Table 4. Image correlation coefficient results when setting d = 2, c = 5.

Airplane Lena Baboon Sailboat

- 0.9995 0.9997 0.9995 0.9996

Electronics 2023, 12, 4488 9 of 13

4.2. Embedding Capacity

To determine if the amount of the data embedded is satisfying or not, embedding
capacity (EC) is measured. EC is the total data payload imbedded or is the total number of
bits of data embedded.

The proposed scheme shows high embedding capacity according to the embedded bit
counts in Tables 5 and 6. The results indicate that the ECs are improved when the range
difference d is larger. It also means that embedding amounts are increased when more
qualified groups can be formed. When the member count of groups is boosted, the EC is
increased as well. The reason is that as the amount of distinct permutations becomes larger,
more bits can be embedded.

Table 5. EC results when c is set to 5.

Airplane Lena Baboon Sailboat

d = 1 762,655 827,630 852,455 705,600
d = 2 1,581,345 1,777,900 1,864,670 1,431,095
d = 3 2,174,145 2,466,185 2,637,900 2,023,410

Table 6. EC results when d is set to 2.

Airplane Lena Baboon Sailboat

c = 4 673,780 729,240 755,710 625,768
c = 5 1,581,345 1,777,900 1,864,670 1,431,095
c = 6 4,175,618 4,827,111 5,172,407 3,684,086

Even though our scheme is designed without reversibility, we add experiments to
include a simple reversible method by simply recording original permutation indices to
make sure the proposed scheme can obtain reasonable results even if we add a reversible
mechanism. Even though our algorithms and examples demonstrated a non-reversible
scheme, it can be easily modified to support reversibility by embedding original index
orders of permuted data. The embedding capacity will be less as expected because of the
extra storage needed for auxiliary information to be used for image recovery. Tables 7 and 8
are the experiments with the reversible capability which showed promising results as well.

Table 7. EC results with reversibility when c = 5.

Airplane Lena Baboon Sailboat

d = 1 411,150 473,325 497,744 362,495
d = 2 1,218,577 1,413,046 1,499,844 1,071,323
d = 3 1,601,573 1,890,819 2,271,478 1,659,970

Table 8. EC results with reversibility when d = 2.

Airplane Lena Baboon Sailboat

c = 4 355,225 407,340 433,415 594,303
c = 5 1,218,577 1,413,046 1,499,844 1,071,323
c = 6 36,988,031 4,347,775 4,692,851 3,208,897

4.3. Robustness Analysis

To analyze the robustness of our scheme against various attacks, such as noise attacks
and shear attaches, we used “Lena” as the cover image and the “FCU logo” as the secret
data in the experiments of the robustness checks. In Figure 7, (a1) is the stego image without
any attacks, (b1) encountered noise attacks and (c1,d1) is with shear attacks. (a2,b2,c2,d2)
are the extracted secret data from the stego images with or without attacks. (a3,b3,c3,d3)
are the recovered images after extracting the secret. However, it should be noted that the

Electronics 2023, 12, 4488 10 of 13

cover image could not be recovered when the additional data for original image recovery
is cut. As we examine the results of our experiments related to robustness, we can not only
resist both noise attacks and small-scale shear attacks but also achieve a high visual quality
on both the recovered secrets and the recovered images. While the performance of our
method is diminished under large-scale shear attacks, it is worth noting that the recovered
secret image remains discernible to some extent.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14

extra storage needed for auxiliary information to be used for image recovery. Tables 7 and
8 are the experiments with the reversible capability which showed promising results as
well.

Table 7. EC results with reversibility when 𝑐 = 5.

 Airplane Lena Baboon Sailboat 𝑑 = 1 411,150 473,325 497,744 362,495 𝑑 = 2 1,218,577 1,413,046 1,499,844 1,071,323 𝑑 = 3 1,601,573 1,890,819 2,271,478 1,659,970

Table 8. EC results with reversibility when 𝑑 = 2.

 Airplane Lena Baboon Sailboat 𝑐 = 4 355,225 407,340 433,415 594,303 𝑐 = 5 1,218,577 1,413,046 1,499,844 1,071,323 𝑐 = 6 36,988,031 4,347,775 4,692,851 3,208,897

4.3. Robustness Analysis
 To analyze the robustness of our scheme against various attacks, such as noise attacks

and shear attaches, we used “Lena” as the cover image and the “FCU logo” as the secret
data in the experiments of the robustness checks. In Figure 7, (a1) is the stego image with-
out any attacks, (b1) encountered noise attacks and (c1,d1) is with shear attacks.
(a2,b2,c2,d2) are the extracted secret data from the stego images with or without attacks.
(a3,b3,c3,d3) are the recovered images after extracting the secret. However, it should be
noted that the cover image could not be recovered when the additional data for original
image recovery is cut. As we examine the results of our experiments related to robustness,
we can not only resist both noise attacks and small-scale shear attacks but also achieve a
high visual quality on both the recovered secrets and the recovered images. While the
performance of our method is diminished under large-scale shear attacks, it is worth not-
ing that the recovered secret image remains discernible to some extent.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

Figure 7. (a1) “Lena” cover image without attacks, (b1) “Lena” with salt and pepper noise attacks,
(c1) “Lena” with shear attacks (20 × 20 patch), (c1) “Lena” with shear attacks (80 × 512 patch),
(a2) extracted “FCU logo” from (a1), (b2) extracted “FCU logo” from (b1), (c2) extracted “FCU logo”
from (c1), (d2) extracted “FCU logo” from (d1), (a3) recovered “Lena” image from (a1), (b3) recovered
“Lena” image from (b1), (c3) recovered “Lena” image from (c1), (d3) recovered “Lena” image from (d1).

4.4. Performance Comparison with Other DH Methods

Other than some basic experiments to analyze the performances of the proposed
scheme, we compare our results with some of the state-of-the-art schemes [15–18,29] to
make sure our results are still solid. The results of Table 9 (Comparative performance of
PSNR (dB)) use four grayscale images to compare between our method and the state-of-the-
art ones by using range difference between [−1, 1] with group size 5. We can see from the
numbers showed in Table 9 that the visual quality of the proposed scheme outperformed
the rest of selected schemes.

Table 9. Comparative performance of PSNR (dB).

Airplane Lena Baboon Sailboat

[15] 35.30 35.00 31.57 33.68
[16] 36.16 35.40 33.87 33.56
[17] 40.37 40.42 40.41 40.40
[14] 44.87 46.21 43.13 43.95
[29] 46.27 45.56 44.98 45.13
[18] 46.38 46.38 46.38 46.38

Proposed scheme 49.91 49.60 49.48 50.16

Electronics 2023, 12, 4488 11 of 13

Table 10 (Comparative performance of EC) also uses four grayscale images to compare
between our method and the state-of-the-art schemes. The EC results are collected when
setting c to 5 and d to 2. Two coefficients c and d values can be adjusted if a larger EC
is desired.

Table 10. Comparative performance of EC.

Airplane Lena Baboon Sailboat

[29] 166,289 158,203 140,095 153,902
[16] 264,389 253,001 169,152 253,000
[14] 275,251 267,386 374,865 309,329
[18] 524,288 524,288 524,288 524,288

Proposed scheme 1,581,345 1,777,900 1,864,670 1,431,095

Table 11 (Comparative performance of EC) again uses four grayscale images to com-
pare between our method and the state-of-the-art reversible data hiding schemes when
c = 5 and d = 2. Same as in the above table, the c and d values can be adjusted if a larger
EC is desired. While the proposed scheme is a non-reversible method, we reserve the
maximum amount of space in order to store data for reversibility support.

Table 11. Comparative performance of EC.

Airplane Lena Baboon Sailboat

[15] 404,937 537,395 715,653 602,931
[17] 655,360 655,360 655,360 655,360

Proposed scheme 1,218,577 1,413,046 1,499,844 1,071,323

We conducted a computation timing analysis comparing with other permutation-
based data hiding methods [28,29] to conclude our experiments. Based on the timing
results in Table 12, our scheme did not have better timing comparing with the others. The
main reason for this is that our scheme required forward searches which may take time.
Nevertheless, we think it is worthwhile to spend a little extra time to exchange for the
outstanding embedding capacity results. In addition, we provide stego image histograms
of these two permutation-based methods and our method using “Lena” as an example.
From the histogram results (Figure 8), it is evident that the histogram of [28] exhibits a
uniform distribution, which is due to the fact that it is conducted on the encrypted image.
The histogram of [29] roughly approximates that of the original image, but its actual data
distribution has also changed. In contrast, the histogram obtained by our method is identical
to that of the original image. Hence, we can deduce that the other two permutation-based
methods may be detected by histogram analysis, while our method will not be.

Table 12. Time complexity comparison for data embedding.

Airplane Lena Baboon Sailboat

[28] 0.0038 0.0057 0.0094 0.0088
[29] 0.0032 0.0059 0.0083 0.0082

Proposed scheme 0.0056 0.0085 0.0117 0.0106

Electronics 2023, 12, 4488 12 of 13

Electronics 2023, 12, x FOR PEER REVIEW 12 of 14

We conducted a computation timing analysis comparing with other permutation-

based data hiding methods [28,29] to conclude our experiments. Based on the timing re-

sults in Table 12, our scheme did not have better timing comparing with the others. The

main reason for this is that our scheme required forward searches which may take time.

Nevertheless, we think it is worthwhile to spend a little extra time to exchange for the

outstanding embedding capacity results. In addition, we provide stego image histograms

of these two permutation-based methods and our method using “Lena” as an example.

From the histogram results (Figure 8), it is evident that the histogram of [28] exhibits a

uniform distribution, which is due to the fact that it is conducted on the encrypted image.

The histogram of [29] roughly approximates that of the original image, but its actual data

distribution has also changed. In contrast, the histogram obtained by our method is iden-

tical to that of the original image. Hence, we can deduce that the other two permutation-

based methods may be detected by histogram analysis, while our method will not be.

Table 12. Time complexity comparison for data embedding.

 Airplane Lena Baboon Sailboat

[28] 0.0038 0.0057 0.0094 0.0088

[29] 0.0032 0.0059 0.0083 0.0082

Proposed scheme 0.0056 0.0085 0.0117 0.0106

(a) (b) (c) (d)

Figure 8. Histogram results of the “Lena” image. (a) Original image, (b) stego image of [28], (c) stego

image of [29], and (d) stego image of the proposed scheme.

5. Conclusions

The proposed scheme offers a simple yet efficient permutation-based approach

which manipulates nearby pixels in greyscale images using two coefficients to control.

One of the controls is a threshold of the range for the pixel values and the other is a spec-

ified clustering count. The experiments show that the method can effectively improve the

embedding capacities by using the indices of the permutation tables. The experimental

results show that the proposed scheme offers an excellent embedding capacity while pre-

serving a high level of image visual quality. Therefore, the proposed scheme underscores

its significant potential in enhancing IoT security.

Because pixel changes in the scheme are limited, the visual quality is retained. Since

our scheme is simple and can be easily integrated with others, it should also benefit other

state-of-the-art methods.

Author Contributions: Conceptualization, C.-C.C. (Ching-Chun Chang) and C.-C.C. (Chin-Chen

Chang); methodology, C.-C.C. (Ching-Chun Chang) and C.-C.C. (Chin-Chen Chang); software, S.X.;

validation, S.X. and J.-C.L.; formal analysis, S.X. and J.-C.L.; investigation, J.-C.L.; resource, C.-C.C.

(Ching-Chun Chang) and J.-C.L.; data curation, J.-C.L.; writing—original draft preparation, J.-C.L.;

writing—review and editing, C.-C.C. (Ching-Chun Chang), S.X. and C.-C.C. (Chin-Chen Chang);

visualization, J.-C.L. and S.X.; supervision, C.-C.C. (Chin-Chen Chang) and J.-C.L.; project admin-

istration, C.-C.C. (Chin-Chen Chang). All authors have read and agreed to the published version of

the manuscript.

Funding: This research received no external funding.

Figure 8. Histogram results of the “Lena” image. (a) Original image, (b) stego image of [28], (c) stego
image of [29], and (d) stego image of the proposed scheme.

5. Conclusions

The proposed scheme offers a simple yet efficient permutation-based approach which
manipulates nearby pixels in greyscale images using two coefficients to control. One of the
controls is a threshold of the range for the pixel values and the other is a specified clustering
count. The experiments show that the method can effectively improve the embedding
capacities by using the indices of the permutation tables. The experimental results show
that the proposed scheme offers an excellent embedding capacity while preserving a high
level of image visual quality. Therefore, the proposed scheme underscores its significant
potential in enhancing IoT security.

Because pixel changes in the scheme are limited, the visual quality is retained. Since
our scheme is simple and can be easily integrated with others, it should also benefit other
state-of-the-art methods.

Author Contributions: Conceptualization, C.-C.C. (Ching-Chun Chang) and C.-C.C. (Chin-Chen Chang);
methodology, C.-C.C. (Ching-Chun Chang) and C.-C.C. (Chin-Chen Chang); software, S.X.; validation,
S.X. and J.-C.L.; formal analysis, S.X. and J.-C.L.; investigation, J.-C.L.; resource, C.-C.C. (Ching-Chun
Chang) and J.-C.L.; data curation, J.-C.L.; writing—original draft preparation, J.-C.L.; writing—
review and editing, C.-C.C. (Ching-Chun Chang), S.X. and C.-C.C. (Chin-Chen Chang); visualization,
J.-C.L. and S.X.; supervision, C.-C.C. (Chin-Chen Chang) and J.-C.L.; project administration, C.-C.C.
(Chin-Chen Chang). All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ateya, A.A.; Mahmoud, M.; Zaghloul, A.; Soliman, N.F.; Muthanna, A. Empowering the internet of things using light communi-

cation and distributed edge computing. Electronics 2022, 11, 1511. [CrossRef]
2. Ahmid, M.; Kazar, O. A comprehensive review of internet of things security. J. Appl. Secur. Res. 2023, 18, 289–305. [CrossRef]
3. Anand, A.; Singh, A.K. A hybrid optimization-based medical data hiding scheme for industrial internet of things security. IEEE

Trans. Ind. Inform. 2022, 19, 1051–1058. [CrossRef]
4. Huang, C.-T.; Tsai, M.-Y.; Lin, L.-C.; Wang, W.-J.; Wang, S.-J. VQ-based data hiding in IoT networks using two-level encoding

with adaptive pixel replacements. J. Supercomput. 2018, 74, 4295–4314. [CrossRef]
5. Lakshmanna, K.; Kaluri, R.; Gundluru, N.; Alzamil, Z.S.; Rajput, D.S.; Khan, A.A.; Haq, M.A.; Alhussen, A. A review on deep

learning techniques for IoT data. Electronics 2022, 11, 1604. [CrossRef]
6. Bender, W.; Gruhl, D.; Morimoto, N.; Lu, A. Techniques for data hiding. IBM Syst. J. 1996, 35, 313–336. [CrossRef]
7. Ni, Z.; Shi, Y.-Q.; Ansari, N.; Su, W. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 354–362.
8. Kim, C.; Dao, N.-N.; Jung, K.-H.; Leng, L. Dual reversible data hiding in encrypted halftone images using matrix encoding.

Electronics 2023, 12, 3134. [CrossRef]
9. Kumar, S.; Gupta, A.; Walia, G.S. Reversible data hiding: A contemporary survey of state-of-the-art, opportunities and challenges.

Appl. Intell. 2021, 52, 7373–7406. [CrossRef]
10. Yu, C.; Zhang, X.; Li, G.; Zhan, S.; Tang, Z. Reversible data hiding with adaptive difference recovery for encrypted images. Inf. Sci.

2021, 584, 89–110. [CrossRef]

https://doi.org/10.3390/electronics11091511
https://doi.org/10.1080/19361610.2021.1962677
https://doi.org/10.1109/TII.2022.3164732
https://doi.org/10.1007/s11227-016-1874-9
https://doi.org/10.3390/electronics11101604
https://doi.org/10.1147/sj.353.0313
https://doi.org/10.3390/electronics12143134
https://doi.org/10.1007/s10489-021-02789-2
https://doi.org/10.1016/j.ins.2021.10.050

Electronics 2023, 12, 4488 13 of 13

11. Yuan, J.; Zheng, H.; Ni, J. Efficient reversible data hiding using two-dimensional pixel clustering. Electronics 2023, 12, 1645.
[CrossRef]

12. Kamil Khudhair, S.; Sahu, M.; K. R., R.; Sahu, A.K. Secure reversible data hiding using block-wise histogram shifting. Electronics
2023, 12, 1222. [CrossRef]

13. Peng, F.; Li, X.; Yang, B. Improved PVO-based reversible data hiding. Digit. Signal Process. 2014, 25, 255–265. [CrossRef]
14. Xiong, X.; Chen, Y.; Fan, M.; Zhong, S. Adaptive reversible data hiding algorithm for interpolated images using sorting and

coding. J. Inf. Secur. Appl. 2022, 66, 103137. [CrossRef]
15. Chi, H.-X.; Horng, J.-H.; Chang, C.-C.; Li, Y.-H. Embedding Biometric Information in Interpolated Medical Images with a

Reversible and Adaptive Strategy. Sensors 2022, 22, 7942. [CrossRef] [PubMed]
16. Nguyen, T.-S.; Huynh, V.-T.; Vo, P.-H. A novel reversible data hiding algorithm based on enhanced reduced difference expansion.

Symmetry 2022, 14, 1726. [CrossRef]
17. Gao, K.; Horng, J.-H.; Chang, C.-C. An authenticatable (2, 3) secret sharing scheme using meaningful share images based on

hybrid fractal matrix. IEEE Access 2021, 9, 50112–50125. [CrossRef]
18. Horng, J.-H.; Xu, S.Y.; Chang, C.-C. An efficient data-hiding scheme based on multidimensional mini-SuDoKu. Sensors 2020, 20,

2739. [CrossRef]
19. Zhang, H.; Hu, L.T. A data hiding scheme based on multi-directional line encoding and integer wavelet transform. Signal Process.

Image Commun. 2019, 78, 331–334. [CrossRef]
20. Gao, G.; Shi, Y.-Q. Reversible data hiding using controlled contrast enhancement and integer wavelet transform. IEEE Signal

Process. Lett. 2015, 22, 2078–2082. [CrossRef]
21. Kim, C.; Yang, C.-N.; Leng, L. High-capacity data hiding for ABTC-EQ based compressed image. Electronics 2020, 9, 644.

[CrossRef]
22. Huang, F.J.; Qu, X.C.; Kim, H.J.; Huang, J.W. Reversible data hiding in JPEG images. IEEE Trans. Circuits Syst. Video Technol. 2016,

26, 1610–1621. [CrossRef]
23. Hong, W.; Ma, Y.-B.; Wu, H.-C.; Chen, T.-S. An efficient reversible data hiding method for AMBTC compressed images. Multimed.

Tools Appl. 2017, 76, 5441–5460. [CrossRef]
24. Kim, C. Dual reversible data hiding based on AMBTC using Hamming code and LSB replacement. Electronics 2022, 11, 3210.

[CrossRef]
25. Zhang, X. Separable and error-free reversible data hiding in encrypted images. Signal Process. 2016, 123, 9–21.
26. Zhang, H.; Li, L.; Li, Q. Reversible data hiding in encrypted images based on block-wise multi-predictor. IEEE Access 2021, 9,

61943–61954. [CrossRef]
27. Zhang, W.; Ma, K.; Yu, N. Reversibility improved data hiding in encrypted images. Signal Process. 2014, 94, 118–127. [CrossRef]
28. Wang, X.; Chang, C.-C.; Lin, C.-C. Reversal of pixel rotation: A reversible data hiding system towards cybersecurity in encrypted

images. J. Vis. Commun. Image Represent. 2022, 82, 103421. [CrossRef]
29. Xu, S.; Chang, C.-C.; Horng, J.-H. Image covert communication with block regulation. IEEE Signal Process. Lett. 2023, 30,

1217–1221. [CrossRef]
30. Knuth, D.E. The Art of Computer Programming; Pearson Education: London, UK, 1997; Volume 3.
31. Smith, S. Digital Signal Processing: A Practical Guide for Engineers and Scientists, 2nd ed.; Newnes: Boston, MA, USA, 2002;

pp. 532–535.
32. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
33. Asuero, A.G.; Sayago, A.; González, A.G. The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics12071645
https://doi.org/10.3390/electronics12051222
https://doi.org/10.1016/j.dsp.2013.11.002
https://doi.org/10.1016/j.jisa.2022.103137
https://doi.org/10.3390/s22207942
https://www.ncbi.nlm.nih.gov/pubmed/36298292
https://doi.org/10.3390/sym14081726
https://doi.org/10.1109/ACCESS.2021.3069008
https://doi.org/10.3390/s20092739
https://doi.org/10.1016/j.image.2019.07.019
https://doi.org/10.1109/LSP.2015.2459055
https://doi.org/10.3390/electronics9040644
https://doi.org/10.1109/TCSVT.2015.2473235
https://doi.org/10.1007/s11042-016-4032-8
https://doi.org/10.3390/electronics11193210
https://doi.org/10.1109/ACCESS.2021.3072376
https://doi.org/10.1016/j.sigpro.2013.06.023
https://doi.org/10.1016/j.jvcir.2021.103421
https://doi.org/10.1109/LSP.2023.3311962
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1080/10408340500526766

	Introduction
	Related Work
	Permutations of Multisets
	Permutation Ordering

	Permutation-Based Embedding Scheme
	Permutation-Based Data Embedding
	Data Extraction

	Experimental Results and Analysis
	Visual Performance
	Embedding Capacity
	Robustness Analysis
	Performance Comparison with Other DH Methods

	Conclusions
	References

