
Citation: Nguyen, H.; Hoang, T.;

Tran, L. Efficient Hardware

Implementation of Elliptic-Curve

Diffie–Hellman Ephemeral on

Curve25519. Electronics 2023, 12, 4480.

https://doi.org/10.3390/

electronics12214480

Academic Editor: Paris Kitsos

Received: 15 September 2023

Revised: 26 October 2023

Accepted: 26 October 2023

Published: 31 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Efficient Hardware Implementation of Elliptic-Curve
Diffie–Hellman Ephemeral on Curve25519
Hung Nguyen 1,2,†, Trang Hoang 1,2,† and Linh Tran 1,2,*,†

1 Department of Electronics, Faculty of Electrical-Electronics, Ho Chi Minh City University of Technology
(HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam;
ngthung@hcmut.edu.vn (H.N.); hoangtrang@hcmut.edu.vn (T.H.)

2 Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District,
Ho Chi Minh City 700000, Vietnam

* Correspondence: linhtran@hcmut.edu.vn
† These authors contributed equally to this work.

Abstract: Hardware architecture optimized for implementing the elliptic-curve Diffie–Hellman
ephemeral (ECDHE) on 256-bit Montgomery elliptic curves presents unique challenges, particularly
for resource-constrained IoT and mobile devices. This work aims to provide an efficient hardware
implementation of ECDHE on Curve25519, including a dedicated finite state machine (FSM) designed
to handle point multiplication and ECDHE operations, utilizing constant-time algorithms and a
unified memory block for resource management. Additionally, we introduce an optimized modular
computation unit that covers modular addition, subtraction, multiplication, and inversion. Our
proposed hardware architecture enhances the efficiency of ECDHE operations while maintaining
low resource utilization, considerably reduced latency, and low power consumption. Synthesized
on the Xilinx Artix-7 platform, our design boasts 64,000 Slices and a clock speed of 102 MHz, and it
computes an ECDHE scalar multiplication operation in 1.1 ms, consuming 117 mW. The proposed
hardware design can be applied to various platforms, including mobile devices and IoT systems.

Keywords: elliptic curve cryptography; FPGA; hardware implementation; point multiplication;
Curve25519; low power

1. Introduction

The Internet is much more encrypted now than it was in the past. Information is much
more secure with the widespread application and usage of Internet security protocols,
such as elliptic curve cryptography (ECC) in Transport Layer Security (TLS) [1,2]. The
standard requires many devices, including personal computers, smartphones, and Internet
of Things (IoT) devices, to compute cryptography encryption and decryption whenever
they communicate over the World Wide Web.

While practical ECC computations are crucial in safeguarding user data privacy on
mobile and IoT devices, the primary bottlenecks are the limited processing power and
energy resources of these devices. Hardware implementation is designed to increase
computational speed and reduce energy consumption through paralleling techniques used
on low-power microcontrollers or mobile phones.

Many methods for calculating and processing ECC on hardware differ in performance,
area, occupied memory, power consumption, and security level. We focus on putting our
design onto a field-programmable gate array (FPGA). Research by Izu et al. [3] shows a
method that applies simple algorithms and utilizes the FPGA structure to achieve high
efficiency, which is a trade-off with the area. The above study also builds on the original
work of Aoki et al. [4]. One of the initial adoptions of digital signal processors (DSPs) for
modular operation is from [5]. While using a DSP has the advantage of fast computational
speed, it requires the DSP resource to be available and consume more power. To enhance a

Electronics 2023, 12, 4480. https://doi.org/10.3390/electronics12214480 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12214480
https://doi.org/10.3390/electronics12214480
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12214480
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12214480?type=check_update&version=1


Electronics 2023, 12, 4480 2 of 16

modular addition, Rogawski et al. suggested using fast carry chain adders [6] based on a
parallel prefix network [7]. The result is better speed in modular adding and subtracting
operations, with a trade-off with latency of pipeline stages. For modular multiplication,
the choice is between a high-radix multiplier [8] or high-density karatsuba with NLP
multiplication [9]. A high radix level increases the complexity of the design, and it is better
to compensate for the low radix level with better hardware adders. Redundant binary
representation is another notable method for modular multipliers [10]. P. Kocher et al.
pointed out that the vulnerability to power analysis attacks is notable in the hardware
design for cryptography processing in FPGAs [11]. Fischer et al. also gave an example
structure against energy analysis [12].

In the case of Curve25519, Sasdrich et al. presented the first Curve25519 hardware
design [13]. Kopperman et al. presented two Curve25519 hardware implementations that
could process ECDHE scalar multiplication under 100 µs [14,15]. Interleaved modular multi-
pliers were used in research [16] to reduce power consumption. Niasar et al. [17] presented
three designs with low resource requirements, area–time efficiency, and high performance.
Research [18] showed a hardware–software hybrid design for resource-constrained devices.
Research [19] showed scalable point multiplication for Curve25519. Kudithi et al. [20]
implemented their design with a radix-2 multiplier, using mixed Jacobian coordinates on
different FPGA platforms and application-specific integrated circuits (ASIC). With different
parameters, Kieu et al. [21] supported multiple curves on their FPGA and ASIC designs.

Our research is to create a hardware design that handles cryptography operation for
the TLS curve Curve25519 [22]. The ECC operation includes elliptic-curve Diffie–Hellman
ephemeral (ECDHE) key generation and computation.

The main contribution of this paper includes creating a hardware design structure that
can do the following:

• Generate the public key for ECDHE and compute the shared key according to IEEE
P1363 [23] with support for the TLS 256-bit elliptic curve Curve25519 [2].

• Employ a fast elliptic computation unit optimized for modular addition, subtraction,
multiplication, and inversion.

• Comprise a specialized finite state machine (FSM) that executes point multiplication
and ECDHE operations, utilizing a constant-time algorithm and relying on a single
consolidated memory block to optimize resource utilization.

The remaining sections of this paper are structured as follows. Section 2 provides an
overview of the mathematical backgrounds and parameters of Curve25519. Section 3 is the
proposed hardware design for implementing Curve25519 elliptic-curve Diffie–Hellman
ephemeral (ECDHE) processes. Our findings and results are elaborated upon in Section 4.
Section 5 discusses our design, including comparisons with relevant references. Section 6
concludes and summarizes this paper.

2. Backgrounds
2.1. Elliptic Curve Cryptography Mathematics

ECC is based on a finite field in the form of an integer mod p, where p is prime. A
field F is a set of elements with addition and multiplication operators. For every element a
in field F, except 0, there exists an element a−1 ∈ F so that a ∗ a−1 = 1.

In a finite field of order p (prime field), for a prime number p, a finite field of degree p,
GF(p), is defined as the set Zp = 0, 1, . . . , p− 1, with the algebraic operations modulo p.
Each element in Zp (except 0) has a modular inverse (i.e., there exists z, w ∈ Zp such that
wz = 1 mod(p) or z =w−1mod(p)).

2.2. Curve25519 Parameters

The curve presented in this paper is Curve25519 (Montgomery curve). Table 1 presents
the parameters and corresponding values of Curve25519 from standards [24–26]. These
are the values used in the hardware design proposed in the paper. The curve is defined in



Electronics 2023, 12, 4480 3 of 16

a prime field with the prime p close to a power of 2 to optimize the efficiency of modulo
computations.

Table 1. Curve25519 parameters.

Parameter Value

p 2255 − 19
a 486662

u(S) 09
v(S) 1478161944758954479102059356840998688726460613

4606134616475288964881837755586237401
n 2252 + 0x14def9dea2f79cd65812631a5cf5d3ed
h 08

2.3. Computation on Montgomery Curve

A Montgomery curve on the field Fp is in the following form:

By2 = x3 + Ax2 + x (A, B ∈ Fp, B 6= 0, A2 6= 4) (1)

On the projective coordinate system, with x =X
Z and y = Y

Z , the form is presented
in the function below. Notice that Y is no longer needed. P(x : y) is now P(X : Z) with
Z 6= 0. There are two special points O =(0 : 1 : 0) and T = (0 : 0 : 1) that are converted to
O = (1 : 0) and T = (0 : 0).

This form allows us to use the Montgomery powering ladder algorithm to compute
scalar multiplication on the Montgomery curve. A modified version of this algorithm is
preferred because of the side-channel attack prevention [27].

2.4. Elliptic-Curve Diffie–Hellman Ephemeral (ECDHE)

ECDHE is the method used during the key exchange between the server and the client
so that the result is a pre-master secret known to both parties. During the handshake, after
the server and client have agreed on which cipher suite and curve to use, both of them
know the parameter domain, including the following values:

• p: prime number p defined for the field Fp
• a: parameters of the curve equation
• S(u, v): coordinates of base point (generator)
• n: order of S, defined as the smallest integer for which nS = 0
• h: the cofactor

The pre-master secret agreement process is as follows:

• The server chooses a random number k (0 < k < n). Then, the server calculates kS
and sends it to the client.

• The client chooses a random number k′ (0 < k′ < n). The client calculates k′S and
sends it to the server.

• Server and client, after obtaining the ephemeral data k or k′ of the other end, can
calculate the pre-master secret P = kk′S = k′kS

3. Hardware Design

The ECC Core is the proposed hardware structure for implementing elliptic curve
cryptography over Curve25519. The ECC Core features a data input bus and start signal
along with a mode input for choosing between modes of operation. The calculation status
is updated to the output, and the result follows.

The design method is implemented as intuitive, easy-to-modify hardware modules
that can work individually with their tasks. The ECU handles modular addition, subtrac-
tion, multiplication, and inversion. The Figure 1 presents the structure of the ECC Core. It
includes an interface controller, a tri-phase controller, and an ECU.



Electronics 2023, 12, 4480 4 of 16

Figure 1. Three-component hardware structure of ECC Core.

The interface controller handles data output and input, mode selection, and testing
purposes. The tri-phase controller (TPC) is the finite state machine (FSM) for scalar mul-
tiplication, random number generation, memory interface, etc., to serve the ECDHE key
generation and computation process. The ECU processes modular arithmetic tasks given
by the TPC.

3.1. Interface Controller

The interface controller connects the system’s primary input and output interfaces
to the TPC. It also does random number generation and error checking for invalid values
during computation. Figure 2 shows the general structure of the interface controller with
dedicated FSMs for receiving the input and processing ECDHE key generation and compu-
tation. The input received is 512-bit in parallel for ease of computation. We synthesized our
design with another serial-to-parallel interface to eliminate the pin issue. The I/O interface
has 32-bit input and output controlled with ready, acknowledge, and a busy flag to receive
or output data from the memory in 32-bit chunks. We designed the FSMs so that the state
transitions depend only on the current state and mode input, minimizing complex logic.
This simplistic FSM architecture provides low-latency performance while minimizing the
attack surfaces side-channel leaking and improving security [28].

For ECDHE key generation and computation, the first 256-bit of the input is u, and
the latest 256-bit is k. Figure 3 shows the three FSMs. Figure 3a is the interface controller
FSM that interacts with the ECDHE generation FSM (Figure 3b) and ECDHE computation
FSM (Figure 3c).

The interface controller FSM (a) waits for the start signal and reads the mode input
M[1] from the I/O interface to choose between the ECDHE key generation operation or
ECDHE key computation. The ECDHE key generation FSM (b) starts with the random
generation of k. If k is non-zero, we start the scalar multiplication operation with P from
the curve parameter Table 1. If the result returns an invalid point (point at infinity or zero),
the random generation process starts again to obtain another random k for calculation.
The ECDHE computation FSM (c) instructs the tri-phase controller to obtain the data from
memory and start the scalar multiplication process.

The ECDHE generation procedure starts with choosing a random k (and repeating
if k is not valid), computing scalar multiplication, and checking for validation (Q is not
point zero) according to Section 2.4. The ECDHE computation procedure receives data
from the input and computes the scalar multiplication. Then, it checks for validation (P is
not point zero).



Electronics 2023, 12, 4480 5 of 16

Figure 2. General structure of the interface controller.

Figure 3. Finite state machines in the interface controller. (a) Interface controller FSM. (b) ECDHE
key generation FSM. (c) ECDHE key computation FSM.

3.2. Tri-Phase Controller

The tri-phase controller interacts with the interface controller and the ECU and controls
its internal memory block. We use a BRAM as the internal memory block where values are
generated between each operation in the memory. The memory size used is 32 × 256-bit,
enough for operations on 256-bit operands of ECDHE key generation and computation.
Figure 4 presents the structural diagram of the tri-phase controller.



Electronics 2023, 12, 4480 6 of 16

Figure 4. Structural diagram of the tri-phase controller.

3.2.1. Internal Memory Access

We use 32 × 256-bit random access memory with a synchronous read-and-write clock.
We use 23 addresses as storage for global variables and 9 as temporary variables. The
number is to accommodate the modified scalar multiplication for Montgomery curves.
Table 2 shows how we named each address. The names correspond to the variables in
Algorithm 1.

Table 2. Memory addresses and descriptions for the 32 × 256-bit memory.

Name Value Description

X_G 0 X-coordinate of point G
Y_G 1 Y-coordinate of point G
X_3G 2 X-coordinate of point 3G
Y_3G 3 Y-coordinate of point 3G
Z_3G 4 Z-coordinate of point 3G
X_5G 5 X-coordinate of point 5G
Y_5G 6 Y-coordinate of point 5G
Z_5G 7 Z-coordinate of point 5G
X_7G 8 X-coordinate of point 7G
Y_7G 9 Y-coordinate of point 7G
Z_7G 10 Z-coordinate of point 7G
X_KG 15 X-coordinate of point KG
PKEY 17 Public key

ZRRAM 18 All zero value
ONERAM 19 All one value

TEMP 20–28 Temporary value
BLNK 31 Blank value



Electronics 2023, 12, 4480 7 of 16

Algorithm 1 Modified scalar multiplication for Montgomery curves.

1: x1 = u, x2 = 1, z2 = 0, x3 = u, z3 = 1, swap = 0, a24 = 121,665
2: for (t = bits− 1 down to 0) do
3: swap = swapk[t]

4: (x2, x3) = SWAP(swap, x2, x3)
5: (z2, z3) = SWAP(swap, z2, z3)
6: swap = k[t]
7: A = x2 + z2
8: AA = A2

9: B = x2 − z2
10: BB = B2

11: E = AA− BB
12: C = x3 + z3
13: D = x3 − z3
14: DA = D ∗ A
15: CB = C ∗ B
16: x3 = (DA + CB)2

17: z3 = x1 ∗ (DA− CB)2

18: x2 = AA ∗ BB
19: z2 = E ∗ (AA + a24 ∗ E)
20: end for
21: (x2, x3) = SWAP(0, x2, x3)
22: (z2, z3) = SWAP(0, z2, z3)
23: return x2 ∗ (MONTINV(z2))

3.2.2. Tri-Phase Scalar Multiplication for Montgomery Curves

The algorithm used in the design to perform scalar multiplication for Montgomery
elliptic curves (here, we use curve X25519) is S.Turner’s algorithm [24,27]. This algorithm
ensures the constant-time characteristic for all input values.

Because the original algorithm is written in Python for software, we made some changes to
the algorithm to make it suitable for hardware. The modified algorithm is shown in Algorithm 1.
The constant a24 is (486,662− 2)/4 = 121,665 for curve25519/X25519. Specifically, the following
process is performed:

• Remove the k shift and switch to indexing.
• Drop the swap value on the last two swaps because the last 3 bits of k are always zero

after correctly decoding in RFC 7748 [24].
• Remove the last exponent. Montgomery exponential can be performed on hardware,

but it takes too much time; instead, Montgomery inverse gives the same result, which
is proved below:
We can quickly prove that the Montgomery exponential step is the Montgomery inverse.
Given t = a−1 mod p and t = ap−2 mod p
⇐⇒ a ∗ t mod p = 1 mod p
⇐⇒ a ∗ ap−2 mod p = 1 mod p
⇐⇒ ap−1 mod p = 1 mod p

This is Fermat’s little theorem [29].

Montgomery scalar multiplier is divided into three parts. The structural diagram for
the multiplier is presented in the tri-phase scalar multiplication FSM in Figure 4.

• Initialization phase (init)

– Initialize values in the memory block.
– Decode the input scalar value in the form 2254 + 8 ∗ random(0, 2255 − 1) and

convert it from Little-Endian to an integer.
– Decode the input point coordinate value, convert little-endian to an integer, and

give the mask to bit 256.



Electronics 2023, 12, 4480 8 of 16

• Calculation phase (comp)

– Perform the loop of swapping, multiplying, and adding points 255 times.
– Interact with ECU’s internal memory from 45-state FSM.

• Final phase

– Perform the final calculation with one Montgomery inverse and one Montgomery
multiplication.

– Normalize and save the result in the internal memory.

Appendix A shows the operations we execute in each step of the finite state machine
for each phase in the tri-phase controller. The operation accesses the corresponding address
in the internal memory to store or load necessary values for computation.

3.3. Random Number Generator

We utilize a pseudo-random number generator (PRNG) to generate random numbers.
Generally, we adopt a linear feedback shift register design, as outlined in [30], with adjust-
ments to accommodate a 256-bit format. Feedback is incorporated at specific positions: 256,
254, 251, and 246. PRNGs are straightforward and primarily employed for simulation and
testing. The structure of the Galois 256-bit LFSR is visually represented in Figure 5.

Figure 5. 256-bit LFSR feedback at 256, 254, 251, 246.

3.4. Elliptic Compute Unit

The elliptic compute unit (ECU) receives data and control signals from the tri-phase
controller. It consists of four modules for four operations: modular addition, Montgomery
multiplication, Montgomery inversion, and swap operator.

Figure 6 shows the structural diagram of the ECU, and Figure 7 presents the controller
state machine of the ECU. For modular addition, subtraction, and swap state, the state
machine starts the corresponding operation based on the mode selection signal and returns
when the module finishes. A normalized (NOR) state is needed for modular inverse and
multiplication before returning the result. The normalized state removes the excess R−2

from Montgomery multiplication and inversion. Because the ECU affects the critical path
of the design heavily, we try to optimize our design on each operation unit of the ECU
carefully. Every operation of the ECU is for 256-bit operands and uses a constant-time
algorithm to prevent side-channel attacks.

3.5. Modular Adder and Subtractor

To optimize timing for the 256-bit modular adder and subtractor, we use a Kogge–Stone
adder (KSA) structure. We designed the dual-purpose modular addition and subtraction
unit based on the high-radix parallel prefix network modular adder/subtractor proposed
by Rogawski et al. [6]. This Koggle–Stone parallel prefix network adder/subtractor (KSA)
is appropriate for optimizing operating frequency and pipeline.

The adder receives 256-bit input a and b with two MSBs processed by the controller.
The low 256-bit section is the input for KSA. The controller also processes the signa, signb, c1
and determines the result’s signo and co. Signal sel selects the mode between subtraction
and addition. The design has 2 clock latencies. Figure 8 provides the dual-purpose structure
packed with a micro finite state machine.



Electronics 2023, 12, 4480 9 of 16

Figure 6. The structural diagram of the ECU.

Figure 7. The controller state machine of the ECU.

Figure 8. Structural diagram of the modular adder and subtractor.

3.6. Montgomery Multiplication

For modular multiplication, we utilize radix-2 Montgomery modular multiplication,
as proposed by Xiao et al. [8], but modified with KSAs instead of 256-bit regular adders for
high performance. Algorithm 2 shows the Montgomery modular multiplication used in
the proposed design.

The hardware design for the Montgomery multiplication architecture uses the ref-
erenced algorithm with uk = 1, u = k = 1, which uses the mux and carry load adder
and the shift register to compute the values of S through each loop. Sij computation uses



Electronics 2023, 12, 4480 10 of 16

16-bit adders. R = 2256 is a constant. It has a 256-bit input port for the Multiplicand and
Multiplier a and b and the prime and pre-calculated inverse prime number. The start signal
starts the operation. It completes the multiplication after 256 loops and outputs the 256-bit
result and a done signal. Figure 9 shows the structural diagram.

Algorithm 2 Montgomery modular multiplication

1: Input: A = ∑i=k−1
i=0 ai2i, B = ∑i=k−1

i=0 bi2i, M = ∑i=k−1
i=0 mi2i, M′ = inverse(M, 2k)

2: Output: ABR−1 mod MwithR = 2k

3: S = 0
4: for (i = 0 to n− 1) do
5: S = S + b[i] ∗ A
6: qi = ((S mod 2) ∗M′) mod 2;
7: S = (S + qi ∗ N)/2;
8: end for
9: return S

Figure 9. Structural diagram of the Montgomery multiplication unit.

3.7. Montgomery Inversion

We design the modular inversion block based on the constant-time binary extended
Euclidean algorithm proposed by Savacs [31], with modifications including Koggle–
Stone adders and optimized control logic. It consists of three consecutive Koggle–Stone
adder blocks (DELTA_UV, DELTA_RS, and SIGMA) performing arithmetic operations.
An INV_CONTROL finite state machine controls the sequencing and operations of the
DELTA_UV, DELTA_RS, and SIGMA blocks.

The algorithm computes the modular inversion result within 512 iterations, with the
calculation time depending on the length of our prime value.

Figure 10 shows the structural diagram of the Montgomery inversion unit. It uses a
256-bit data input. The start signal starts the unit and resets the count from the controller to
512 loops, with u = v = r = s = 0. We check for stage jumping between the second and
eighth computation steps at each iteration. At each computationstep, delta_uv, delta_rs,
and sigma are calculated sequentially. After one iteration, the value is stored and looped
back until the counter reaches 0. The output is a 256-bit result and done signal.

Figure 10. Structural diagram of the Montgomery inversion unit.



Electronics 2023, 12, 4480 11 of 16

4. Results

We used Python on Google Colab with RFC 7748 [24] and High-Assurance Crypto-
graphic Library (HACL) [32] to build the testing environment for our design. Testing was
performed with Known Answer Test (KAT) from the mentioned standards. The design was
tested in the simulation environment. The simulation results show that it ran correctly for
the cases outlined in the KAT of the standard ECDHE with Curve25519 from [24].

We synthesized our design on Vivado and implemented it on Xilinx Artix-7. Our
design achieved a speed of 102 MHz, computing ECDHE key generation and computation
in 110 thousand clock cycles. The resource utilization report shows 6409 Slice usage, zero
digital signal processors (DSPs), and four block random access memories (BRAMs). Addi-
tional information regarding the resource utilization of key internal modules is provided in
Table 3. Xilinx Power Estimator estimated the design power consumption at 117 mW. After
1.1 ms, the design finished the scalar multiplication operation. The value was calculated
from the number of cycles it took to complete the operation times the speed of the design.

Table 3. Resource consumption of internal modules.

Module Slice LUTs Slice Registers Slice Block RAM Tile

ECC Core 18,427 21,710 6409 4

Interface controller 34 52 20 0
Tri-phase controller 2136 1555 832 4
Elliptic compute unit 16,257 20,100 5794 0

Modular adder and subtractor 2324 4086 1144 0
Montgomery multiplication 3778 4814 1573 0
Montgomery inversion 10,155 11,200 3253 0

5. Discussion

To comprehensively evaluate the efficiency of our proposed hardware architecture
designed for elliptic-curve Diffie–Hellman ephemeral (ECDHE) operations on the 256-bit
Montgomery Curve25519, we present a comparative analysis to relevant prior works, as
summarized in Table 4. The table shows resource utilization (in Slice(s), DSP(s), BRAM(s),
latency, and power consumption. To better compare to the previous result, we use a figure of
merit called A× T, or area × time, where the area is in kSlices and time is the latency in ms,
as shown in Equation (2), which is normalized to our proposed design.

A× T = Area(kSlice) ∗ Time(Latency in ms) (2)

Our architecture has advantages in terms of resource utilization and power efficiency.
With a reduced utilization of 6414 slices and four Block RAMs (BRAM), we achieved a clock
frequency of 102 MHz. The latency of 1100 µs is competitive among the listed works, even
though it may be slightly higher than some implementations. The problem with using only
BRAM to store data and temporary values is that it increases the latency with each ECU
read-and-write operation.

Figure 11 shows the A × T products of our work and other implementations.
Mehrabi et al. [16] presented a multiple multipliers implementation that commanded a
higher allocation of resources and higher power usage compared to our design. How-
ever, their design did not use any BRAM, achieving a better latency and a higher A× T
product than ours. However, in terms of power consumption, our design consumes
only half of the power estimation. Our work’s A× T product is better than the other
designs. Koppermann et al. [14,15] provided high-performance implementation with
heavy DSP usage to improve their latency compared to our design, so their area factor is
higher when comparing A× T values. Different implementations of [20] use the radix-2
multiplier for modular operation, achieving a good area utilization result but slower
latency than ours. The design in [21] is the smallest hardware implementation in terms



Electronics 2023, 12, 4480 12 of 16

of area that supports Curve25519; however, they used the multiple carry saves adder to
perform arithmetic operations, so their design speed was considerably slow.

Table 4. Comparison of resource utilization and latency with related works.

Slices DSP BRAM Frequency (MHz) Latency (ms) Power (mW) A × T

[16] 12.9 K 0 0 137.5 0.28 236 1 3.6 2

[14] 21 K 260 0 115 0.12 789 1 21.8 2

[15] 17.9 K 175 0 115 0.12 709 1 15.2 2

[20] [a] 7.4 K 0 0 122.8 2.44 - 18.0 2

[20] [b] 5.5 K 0 0 122.8 2.44 - 13.42 2

[20] [c] 6.6 K 0 0 105.9 2.83 - 18.7 2

[20] [d] 8.7 K 0 0 76.31 3.93 - 34.2 2

[21] 3 K 0 0 78 2.81 3 - 8.43 2

This work 6.4 K 0 4 102 1.1 117 1 7.04 2

Note: 1 Estimated with Xillinx Power Estimator. 2 DSP is estimated as 619 Slices [20]. BRAM resources are
ignored. 3 Estimated from Throughputs. [a] Kudithi et al.’s implementation on Kintex-7 FPGA. [b] Kudithi et
al.’s implementation on Virtex-7 FPGA. [c] Kudithi et al.’s implementation on Virtex-6 FPGA. [d] Kudithi et al.’s
implementation on Virtex-5 FPGA.

Figure 11. A× T product comparison between implementations.

While a higher clock frequency was employed in some prior works to achieve lower
latencies, our approach strives for a balance between performance and energy consumption.
Our architecture demonstrates efficient resource usage, making it well-suited for scenarios
that prioritize secure communication and cryptographic key exchange without sacrificing
substantial power resources. Our design proves to be better suited when considering
lightweight FPGA and ASIC configurations devoid of DSP blocks.

The security of IoT devices is an important consideration when implementing system
designs. As Di Matteo et al. [33] and Zulberti et al. [34] discussed, side-channel attacks, such
as simple power analysis (SPA) and differential power analysis (DPA), on cryptographic
hardware pose a significant threat. While side-channel attack countermeasures are crucial
for comprehensive IoT security, an in-depth examination is beyond the scope of this paper.



Electronics 2023, 12, 4480 13 of 16

Our implementation focuses instead on core functionality and performance, with security
considerations noted as crucial future work.

6. Conclusions

This paper introduces an efficient hardware architecture for the execution of elliptic-
curve Diffie–Hellman ephemeral (ECDHE) on the 256-bit Montgomery elliptic curves,
Curve25519. We introduce optimized FSMs and a structured approach to modular compu-
tation units in the design to enhance performance and resource utilization. Compared to
related works, our design offers a compelling solution that balances computational power
proficiency and optimized resource allocation. In future research, the latency of our design
can be further improved by reducing the finite state machine overhead, implementing a
register-based approach, and accessing RAM only when necessary. This approach has the
potential to significantly reduce the existing latency, making our design more competitive
compared to other reference implementations.

Author Contributions: Conceptualization, H.N.; methodology, H.N.; software, H.N.; validation, T.H.;
formal analysis, T.H.; investigation, L.T.; resources, L.T.; data curation, H.N.; writing—original draft
preparation, H.N.; writing—review and editing, T.H.; visualization, T.H.; supervision, L.T.; project
administration, L.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by VNU-HCM under grant number DS2022-20-05.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Research data is available at https://github.com/hakatu/ephemeral-
ecc (accessed on 1 September 2023).

Acknowledgments: This research is funded by VNU-HCM under grant number DS2022-20-05. We
would like to thank Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, for the
support of time and facilities for this study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ECDHE Elliptic-curve Diffie–Hellman ephemeral
ECC Elliptic curve cryptography
RTL Register transfer level
SEC Standards for Efficient Cryptography
NIST National Institute of Standards and Technology
LUT Look-up table
BRAM Block random access memory
DSP Digital signal processor
FPGA Field programmable gate array
ASIC Application-specific integrated circuit

Appendix A. Operation Sequence of the Tri-Phase Controller

The operations carried out at each stage of the finite state machine for every phase in
the tri-phase controller are displayed in Table A1.

https://github.com/hakatu/ephemeral-ecc
https://github.com/hakatu/ephemeral-ecc


Electronics 2023, 12, 4480 14 of 16

Table A1. Operations sequence in the tri-phase controller.

No. Stage Name Operation

Initialize operations

1 I_IDLE Idle
2 I_INITX2 INIT X2
3 I_INITZ2 INIT Z2
4 I_INITX3 Read X_G
5 I_INITX32 Read ZRRAM, Enable Modular Addition, Wait for Valid
6 I_INITU Write X_G
7 I_INITZ3 INIT Z3
8 I_INITA24 INIT A24
9 I_INITK1 Read K
10 I_INITK2 Read 0, Enable Modular Addition, Wait for Valid
11 I_INITK3 change, Write K_dec

Loop computation operations

12 C_IDLE Idle
13 C_PREKT1 Read K
14 C_PREKT2 Read 0, Enable Modular Addition, wait for valid
15 C_SWAPX2 get swap^=k>>i & 1, Read x2
16 C_SWAPX3 Read x3, Enable swap, Wait for Valid
17 C_SWAPZ2 Write x2
18 C_SWAPZ22 Write x3, Read z2
19 C_SWAPZ3 Read z3, Enable swap, Wait for Valid
20 C_SWAPZ32 Write z2
21 C_SWAPZ33 Write z3, Read x2
22 C_GETA1 Read z2, Enable Modular Addition, Wait for Valid
23 C_GETA2 Write A, Read A
24 C_GETAA Read A, Enable Modular Multiplication, Wait for Valid
25 C_GETB1 Write AA, Read z2, x2-z2
26 C_GETB2 Read x2, Enable Modular Subtraction, Wait for Valid
27 C_GETBB Write B, Read B
28 C_GETBB2 Read B, Enable Modular Multiplication, Wait for Valid
29 C_GETE1 Write B.B., Read BB AA-BB
30 C_GETE2 Read A.A., Enable Modular Subtraction, Wait for Valid
31 C_GETX21 Write E, Read AA
32 C_GETX22 Read B.B., Enable Modular Multiplication, Wait for Valid
33 C_GETZ21 Write x2, Read E
34 C_GETZ22 Read A24, Enable Modular Multiplication, Wait for Valid
35 C_GETZ23 Write Z2TEMP, Read AA
36 C_GETZ24 Read Z2TEMP, Enable Modular Addition, Wait for Valid
37 C_GETZ25 Write Z2TEMP, Read E
38 C_GETZ26 Read Z2TEMP, Enable Modular Multiplication, Wait for Valid
39 C_GETC1 Write z2, Read x3
40 C_GETC2 Read z3, Enable Modular Addition, Wait for Valid
41 C_GETD1 Write C, Read z3, x3-z3
42 C_GETD2 Read x3, Enable Modular Subtraction, Wait for Valid
43 C_GETCB1 Write D, Read C
44 C_GETCB2 Read B, Enable Modular Multiplication, Wait for Valid
45 C_GETDA1 Write CB, Read D
46 C_GETDA2 Read A, Enable Modular Multiplication, Wait for Valid
47 C_GETX31 Write DA, Read CB
48 C_GETX32 Read DA, Enable Modular Addition, Wait for Valid
49 C_GETX33 Write DACB, Read DACB
50 C_GETX34 Read DACB, Enable Modular Multiplication, Wait for Valid
51 C_GETDACB21 Write x3, Read CB, DA-CB
52 C_GETDACB22 Read DA, Enable Modular Subtraction, Wait for Valid
53 C_GETDACB23 Write DACBS, Read DACBS
54 C_GETDACB2 Read DACBS, Enable Modular Multiplication, Wait for Valid
55 C_GETZ31 Write DACBS, Read, Read UNUM
56 C_GETZ32 Read DACBS, Enable Modular Multiplication, Wait for Valid, Counter decrement
57 C_GETZ33 Write Z3



Electronics 2023, 12, 4480 15 of 16

Table A1. Cont.

No. Stage Name Operation

Finish operations

58 F_IDLE Idle
59 F_SWAPX33 Write x3, Read z_2
60 F_POW Read z_2, Enable Modular Inverse, Wait for Valid
61 F_POW2 Write X_KG, Read x2
62 F_RSLT Read X_KG, Enable Modular Multiplication, Wait for Valid
63 F_DONE Write X_KG

References
1. Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. 2018. Available online: https://www.rfc-editor.

org/rfc/rfc8446 (accessed on 2 January 2023). [CrossRef]
2. Bernstein, D.J. Curve25519: New Diffie-Hellman speed records. In Proceedings of the International Workshop on Public Key

Cryptography, New York, NY, USA, 24–26 April 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 207–228.
3. Izu, T.; Takagi, T. Fast elliptic curve multiplications with SIMD operations. In Proceedings of the International Conference on

Information and Communications Security, Singapore, 9–12 December 2002; pp. 217–230.
4. Aoki, K.; Hoshino, F.; Kobayashi, T.; Oguro, H. Elliptic curve arithmetic using SIMD. In Proceedings of the International

Conference on Information Security, Seoul, Republic of Korea, 6–7 December 2001; pp. 235–247.
5. Itoh, K.; Takenaka, M.; Torii, N.; Temma, S.; Kurihara, Y. Fast implementation of public-key cryptography on a DSP TMS320C6201.

In Proceedings of the International Workshop on Cryptographic Hardware and Embedded Systems, Worcester, MA, USA, 12–13
August 1999; pp. 61–72.

6. Rogawski, M.; Homsirikamol, E.; Gaj, K. A novel modular adder for one thousand bits and more using fast carry chains of
modern FPGAs. In Proceedings of the 2014 24th International Conference on Field Programmable Logic and Applications (FPL),
Munich, Germany, 2–4 September 2014; pp. 1–8.

7. Hauck, S.; Hosler, M.M.; Fry, T.W. High-performance carry chains for FPGAs. In Proceedings of the 1998 ACM/SIGDA Sixth
International Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 22–25 February 1998; pp. 223–233.

8. Xiao, H.; Yu, S.; Cheng, B.; Liu, G. FPGA-based high-throughput Montgomery modular multipliers for RSA cryptosystems.
IEICE Electron. Express 2022, 19, 20220101. [CrossRef]

9. Ding, J.; Li, S. A low-latency and low-cost Montgomery modular multiplier based on NLP multiplication. IEEE Trans. Circuits
Syst. II Express Briefs 2019, 67, 1319–1323. [CrossRef]

10. Zhang, Z.; Zhang, P. A Scalable Montgomery Modular Multiplication Architecture with Low Area-Time Product Based on
Redundant Binary Representation. Electronics 2022, 11, 3712. [CrossRef]

11. Kocher, P.; Jaffe, J.; Jun, B.; Rohatgi, P. Introduction to differential power analysis. J. Cryptogr. Eng. 2011, 1, 5–27. [CrossRef]
12. Fischer, W.; Giraud, C.; Knudsen, E.W.; Seifert, J.P. Parallel scalar multiplication on general elliptic curves over Fp hedged against

Non-Differential Side-Channel Attacks. Cryptol. ePrint Arch. 2002.
13. Sasdrich, P.; Güneysu, T. Efficient elliptic-curve cryptography using Curve25519 on reconfigurable devices. In Proceedings of the

International Symposium on Applied Reconfigurable Computing, Vilamoura, Portugal, 14–16 April 2014; pp. 25–36.
14. Koppermann, P.; De Santis, F.; Heyszl, J.; Sigl, G. X25519 hardware implementation for low-latency applications. In Proceedings

of the 2016 Euromicro Conference on Digital System Design (DSD), Limassol, Cyprus, 31 August–2 September 2016; pp. 99–106.
15. Koppermann, P.; De Santis, F.; Heyszl, J.; Sigl, G. Low-latency X25519 hardware implementation: Breaking the 100 microseconds

barrier. Microprocess. Microsyst. 2017, 52, 491–497. [CrossRef]
16. Mehrabi, M.A.; Doche, C. Low-cost, low-power FPGA implementation of ED25519 and CURVE25519 point multiplication.

Information 2019, 10, 285. [CrossRef]
17. Niasar, M.B.; El Khatib, R.; Azarderakhsh, R.; Mozaffari-Kermani, M. Fast, small, and area-time efficient architectures for

key-exchange on Curve25519. In Proceedings of the 2020 IEEE 27th Symposium on Computer Arithmetic (ARITH), Portland, OR,
USA, 7–10 June 2020; pp. 72–79.

18. Mondal, S.; Patkar, S. Hardware-software hybrid implementation of non-deterministic ECC over Curve-25519 for resource
constrained devices. In Proceedings of the 2021 Asian Conference on Innovation in Technology (ASIANCON), Pune, India, 27–29
August 2021; pp. 1–8.

19. Wu, G.; He, Q.; Jiang, J.; Zhang, Z.; Long, X.; Zhao, Y.; Zou, Y. A High-Performance Hardware Architecture for ECC Point
Multiplication over Curve25519. In Proceedings of the 2022 IEEE 30th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), New York, NY, USA, 15–18 May 2022; pp. 1–9.

20. Kudithi, T.; Sakthivel, R. An efficient hardware implementation of the elliptic curve cryptographic processor over prime field. Int.
J. Circuit Theory Appl. 2020, 48, 1256–1273. [CrossRef]

21. Kieu-Do-Nguyen, B.; Pham-Quoc, C.; Tran, N.T.; Pham, C.K.; Hoang, T.T. Low-cost area-efficient FPGA-based multi-functional
ECDSA/EdDSA. Cryptography 2022, 6, 25. [CrossRef]

https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc8446
http://doi.org/10.17487/RFC8446
http://dx.doi.org/10.1587/elex.19.20220101
http://dx.doi.org/10.1109/TCSII.2019.2932328
http://dx.doi.org/10.3390/electronics11223712
http://dx.doi.org/10.1007/s13389-011-0006-y
http://dx.doi.org/10.1016/j.micpro.2017.07.001
http://dx.doi.org/10.3390/info10090285
http://dx.doi.org/10.1002/cta.2759
http://dx.doi.org/10.3390/cryptography6020025


Electronics 2023, 12, 4480 16 of 16

22. Elliptic Core Cryptography (ECC) Multiply/Verify Accelerator. 2010. Available online: http://www.ipcores.com/elliptic_curve_
crypto_ip_core.htm#:~:text=Elliptic%20Curve%20Point%20Multiply%20and%20Verify%20Core&text=Elliptic%20Curve%20
Cryptography%20(ECC)%20is,algorithms%20approved%20by%20the%20NSA (accessed on 2 January 2022).

23. Jablon, D. IEEE P1363 standard specifications for public-key cryptography. In Proceedings of the CTO Phoenix Technologies
Treasurer, IEEE P1363 NIST Key Management Workshop, Gaithersburg, MD, USA, 1–2 November 2001.

24. RFC 7748–Elliptic Curves for Security. 2016. Available online: https://datatracker.ietf.org/doc/html/rfc7748 (accessed on 2 Jan-
uary 2022).

25. Transport Layer Security (TLS) Parameters. 2005. Available online: https://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml (accessed on 2 January 2022).

26. Cooper, M.J.; Schaffer, K.B. Security Requirements for Cryptographic Modules. NIST. 2019. Available online: https://www.nist.
gov/publications/security-requirements-cryptographic-modules-0 (accessed on 11 January 2022).

27. Coron, J.S. Resistance against differential power analysis for elliptic curve cryptosystems. In Proceedings of the International
workshop on cryptographic hardware and embedded systems, Worcester, MA, USA, 12–13 August 1999; pp. 292–302.

28. Jati, A.; Gupta, N.; Chattopadhyay, A.; Sanadhya, S.K. A configurable crystals-kyber hardware implementation with side-channel
protection. ACM Trans. Embed. Comput. Syst. 2023, 3587037. [CrossRef]

29. Fermat’s Little Theorem–Wikipedia. Available online: https://en.wikipedia.org/wiki/Fermat27s_little_theorem (accessed on
2 January 2022).

30. Ward, R.; Molteno, T. Table of linear feedback shift registers. Datasheet. 2007. Available online: https://datacipy.cz/lfsr_table.pdf
(accessed on 2 February 2023).

31. Savaş, E.; Koç, Ç.K. Montgomery inversion. J. Cryptogr. Eng. 2018, 8, 201–210. [CrossRef]
32. GitHub-Project-Everest/Hacl-Star: HACL*, a Formally Verified Cryptographic Library Written in F*. Available online: https:

//github.com/project-everest/hacl-star (accessed on 2 January 2022).
33. Di Matteo, S.; Baldanzi, L.; Crocetti, L.; Nannipieri, P.; Fanucci, L.; Saponara, S. Secure elliptic curve crypto-processor for real-time

IoT applications. Energies 2021, 14, 4676. [CrossRef]
34. Zulberti, L.; Di Matteo, S.; Nannipieri, P.; Saponara, S.; Fanucci, L. A script-based cycle-true verification framework to speed-up

hardware and software co-design: Performance evaluation on ecc accelerator use-case. Electronics 2022, 11, 3704. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.ipcores.com/elliptic_curve_crypto_ip_core.htm#:~:text=Elliptic%20Curve%20Point%20Multiply%20and%20Verify%20Core&text=Elliptic%20Curve%20Cryptography%20(ECC)%20is,algorithms%20approved%20by%20the%20NSA
http://www.ipcores.com/elliptic_curve_crypto_ip_core.htm#:~:text=Elliptic%20Curve%20Point%20Multiply%20and%20Verify%20Core&text=Elliptic%20Curve%20Cryptography%20(ECC)%20is,algorithms%20approved%20by%20the%20NSA
http://www.ipcores.com/elliptic_curve_crypto_ip_core.htm#:~:text=Elliptic%20Curve%20Point%20Multiply%20and%20Verify%20Core&text=Elliptic%20Curve%20Cryptography%20(ECC)%20is,algorithms%20approved%20by%20the%20NSA
https://datatracker.ietf.org/doc/html/rfc7748
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.nist.gov/publications/security-requirements-cryptographic-modules-0
https://www.nist.gov/publications/security-requirements-cryptographic-modules-0
http://dx.doi.org/10.1145/3587037
https://en.wikipedia.org/wiki/Fermat27s_little_theorem
https://datacipy.cz/lfsr_table.pdf
http://dx.doi.org/10.1007/s13389-017-0161-x
https://github.com/project-everest/hacl-star
https://github.com/project-everest/hacl-star
http://dx.doi.org/10.3390/en14154676
http://dx.doi.org/10.3390/electronics11223704

	Introduction
	Backgrounds
	Elliptic Curve Cryptography Mathematics
	Curve25519 Parameters
	Computation on Montgomery Curve
	Elliptic-Curve Diffie–Hellman Ephemeral (ECDHE)

	Hardware Design
	Interface Controller
	Tri-Phase Controller
	Internal Memory Access
	Tri-Phase Scalar Multiplication for Montgomery Curves

	Random Number Generator
	Elliptic Compute Unit
	Modular Adder and Subtractor
	Montgomery Multiplication
	Montgomery Inversion

	Results
	Discussion
	Conclusions
	Appendix A
	References

