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Abstract: Incorporating wind energy on a large scale into power systems presents challenges for the
operation and control of the grid. To enhance the safety of power grid operation, accurate short-term
forecasting of wind power is necessary, as it minimizes the impact of randomness. Considering the
uncertainty and prediction issues associated with wind power, this paper introduces a CNN–GRU
ultra-short-term wind power prediction model. This model relies on multichannel signals, including
data such as wind speed, wind direction, climate conditions, and historical power outputs collected
from wind farms. These data types contribute to the formation of a comprehensive multichannel
signal for wind power. Following that, the CNN method extracts both global and partial features
from these signals. Concurrently, features are extracted from past power outputs based on their
time series. These features are then combined with the ones obtained from the convolution process.
Subsequently, these combined features are input into a fully connected network. This step is crucial
for blending multichannel information and generating forecast results. To validate the model, it was
tested using data from a wind farm located in a specific region of Sichuan Province. According to our
experimental results, the model demonstrates a high level of accuracy in computation and robust
generalization ability.

Keywords: ultra-short-term; wind power forecasts; multichannel signals; one-dimensional
convolution; GRU

1. Introduction

Wind power is a leading alternative solution to global energy and environmental
challenges. In recent years, its adoption has seen rapid growth. By 2021, China’s installed
wind power capacity was 338.31 GW. Intriguingly, this made up 40.4% of the global total
installed capacity. In addition, China’s generation from wind was 652.6 billion kWh. This
marked a 40.5% increase from the previous year, and it accounted for 6.99% of the country’s
entire electricity production [1]. Upon introducing the “dual-carbon” goal, the role of wind
power in new energy generation is set to grow. However, its generation is unpredictable.
This is because it relies on factors such as wind speed, wind direction, and humidity.
Therefore, this unpredictability presents major challenges for the operation and control of
power systems and stands as a barrier to integrating a large amount of new energy into
the grid [2–4]. For these reasons, accurate wind power prediction is vital. Such predictions
ensure the safety and stability of new energy usage and the overall operation of the power
system [5].

Artificial intelligence algorithms are popular for forecasting new energy output. This
is because they can efficiently handle high-dimensional data and perform non-linear fit-
ting [6,7]. With advances in information acquisition technology, wind power plants now
offer more detailed monitoring data. This progress ensures a solid data foundation for
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processing and forecasting wind power [8,9]. Regarding the processing of the extensive col-
lected data, traditional machine learning has several representative algorithms. Examples
include Support Vector Machine (SVM) [10], Bayesian models [11], integrated learning [12],
and various shallow neural networks [13]. Though these traditional algorithms use their
robust non-linear fitting capacity for prediction, they often miss out on the full features
of data and the temporal features of wind power. As a result, predictions made by these
traditional algorithms sometimes lack accuracy [14]. On the other hand, deep learning
algorithms, notably recurrent neural networks (RNN) and long short-term memory (LSTM)
networks, have brought improvements. Their main advantage is the capability to remember
long time series, enhancing the accuracy of wind power prediction [15–17]. Building upon
this, many researchers have introduced feature engineering modules at the beginning of the
process. Some methods involve using the k-means clustering algorithm to categorize and
forecast specific datasets [18] or employing Principal Component Analysis (PCA) to filter
multivariate time series and reduce feature vector dimensions [19]. Others have utilized
Mutual Information Theory (MI) to determine the length of historical sequences [20]. Using
these unsupervised algorithms to select features from raw data might result in losing infor-
mation. Specifically, the correlation between different data channels could be overlooked,
leading to not making full use of multichannel data.

Both the standalone Convolutional Neural Network (CNN) and the Gated Recurrent
Unit (GRU) models have inherent limitations. CNN, which excels at capturing spatial
features, falls short when it comes to modeling long-term temporal dependencies. It pri-
marily focuses on local patterns and might miss subtle nuances in time series data. On
the other hand, the GRU, known for capturing temporal dependencies, is sensitive to
data order and timing, making it less robust in handling multichannel data with com-
plex temporal interactions. These constraints can impact the accuracy of ultra-short-term
wind power predictions. To address the aforementioned issues, this paper introduces a
CNN–GRU ultra-short-term wind power prediction model. This model leverages deep
learning algorithms such as Convolutional Neural Networks (CNN) and Gated Recurrent
Units (GRU) to improve the accuracy of wind power predictions. This model has shown
exceptional efficacy and promising applications in the domains of aerospace communi-
cation, biomedical science, and network security. Its robust performance and versatility
have sparked widespread research interest and opened compelling prospects for further
exploration [21–23]. Additionally, this model focuses on multichannel signals to utilize
data collected from power plants efficiently and reduce the uncertainty in wind power
forecasts. The steps are as follows:

1. Employ CNN to extract both global and partial features from the multichannel signals;
2. Utilize a GRU network to extract features from the temporal features of past wind

power data;
3. Implement a fully connected network to merge these extracted features and produce

highly accurate prediction results.

2. Principles of the Deep Learning Model
2.1. CNN Model

CNN is a deep learning model that has been widely used in several fields, such as
image recognition, computer vision, and natural language processing. Inspired by the
biological vision system, CNN uses multilayer convolution and pooling operations to
automatically learn and extract features from input data.

The CNN training process typically utilizes techniques such as backpropagation to
optimize the model. During training, CNN calculates losses by comparing predictions to
true labels. It subsequently updates network parameters using optimization algorithms
like gradient descent. This iterative process allows the model to gradually converge and
improve prediction accuracy.

CNN has achieved great success in image and text processing through its ability to
learn local perception through convolutional and pooling operations, the effectiveness of
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parameter sharing, and the representational capabilities of fully connected layers. These
advantages enable CNN to automatically learn high-level feature representations from raw
inputs, thus facilitating accurate modeling and analysis of complex data.

The basic components of a CNN include convolutional layers. Here are the functions
and characteristics of each component in Figure 1:

1. Convolutional layer: The convolutional layer is the core of CNN. It performs convolu-
tion operations by sliding a learnable convolutional kernel over the input data and
applying a nonlinear activation function to the result. The convolution operations
capture the local spatial relationships in the input data, extracting visual features in
images or local structures in text. The parameter sharing mechanism of convolutional
kernels reduces the number of parameters in CNN, making it less complex when
dealing with a large number of inputs;

2. Pooling layer: The pooling layer usually follows the convolutional layer. Its purpose
is to reduce the dimensionality of feature maps, thus reducing the complexity of the
model and preserving important features. Common pooling operations include max
pooling and average pooling. Pooling operations aggregate values within a fixed-size
window sliding over the input data, producing pooled results. This reduces the size
of feature maps while providing some degree of translational and scale invariance;

3. Fully connected layer: After convolution and pooling layers, features are flattened
and connected to fully connected layers. A fully connected layer is a traditional neural
network layer in which each neuron is connected to all neurons in the previous layer.
It performs nonlinear mapping and classification tasks by learning weights and biases.
Through multiple iterations of training, the fully connected layers can learn complex
feature representations in high-dimensional space to classify or regressively predict
input data.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 13 
 

 

like gradient descent. This iterative process allows the model to gradually converge and 
improve prediction accuracy. 

CNN has achieved great success in image and text processing through its ability to 
learn local perception through convolutional and pooling operations, the effectiveness of 
parameter sharing, and the representational capabilities of fully connected layers. These 
advantages enable CNN to automatically learn high-level feature representations from 
raw inputs, thus facilitating accurate modeling and analysis of complex data. 

The basic components of a CNN include convolutional layers. Here are the functions 
and characteristics of each component in Figure 1: 
1. Convolutional layer: The convolutional layer is the core of CNN. It performs convo-

lution operations by sliding a learnable convolutional kernel over the input data and 
applying a nonlinear activation function to the result. The convolution operations 
capture the local spatial relationships in the input data, extracting visual features in 
images or local structures in text. The parameter sharing mechanism of convolutional 
kernels reduces the number of parameters in CNN, making it less complex when 
dealing with a large number of inputs; 

2. Pooling layer: The pooling layer usually follows the convolutional layer. Its purpose 
is to reduce the dimensionality of feature maps, thus reducing the complexity of the 
model and preserving important features. Common pooling operations include max 
pooling and average pooling. Pooling operations aggregate values within a fixed-size 
window sliding over the input data, producing pooled results. This reduces the size 
of feature maps while providing some degree of translational and scale invariance; 

3. Fully connected layer: After convolution and pooling layers, features are flattened 
and connected to fully connected layers. A fully connected layer is a traditional neu-
ral network layer in which each neuron is connected to all neurons in the previous 
layer. It performs nonlinear mapping and classification tasks by learning weights and 
biases. Through multiple iterations of training, the fully connected layers can learn 
complex feature representations in high-dimensional space to classify or regressively 
predict input data. 

 
Figure 1. Diagram of the basic component structure of CNN. 

2.2. GRU Recurrent Neural Network Model 
GRU is designed to address the issues of vanishing and exploding gradients in tradi-

tional recurrent neural networks while maintaining strong modeling capabilities. Com-
pared to other recurrent units like LSTM, GRU has a simpler structure with fewer param-
eters, making it more computationally efficient. The core idea of GRU is to introduce two 
gates, namely the Update Gate and Reset Gate, to control the flow of information within 
the network. At each time step, the GRU unit calculates the hidden state based on the 
current input, the previous hidden state, and the outputs of the gates. The steps are as 
follows: 

Figure 1. Diagram of the basic component structure of CNN.

2.2. GRU Recurrent Neural Network Model

GRU is designed to address the issues of vanishing and exploding gradients in tra-
ditional recurrent neural networks while maintaining strong modeling capabilities. Com-
pared to other recurrent units like LSTM, GRU has a simpler structure with fewer parame-
ters, making it more computationally efficient. The core idea of GRU is to introduce two
gates, namely the Update Gate and Reset Gate, to control the flow of information within the
network. At each time step, the GRU unit calculates the hidden state based on the current
input, the previous hidden state, and the outputs of the gates. The steps are as follows:

1. Reset Gate: The current input and the previous hidden state are concatenated and fed
into a sigmoid activation function, producing a reset gate value between 0 and 1. It
determines how much of the past information should be ignored;

2. Update Gate: Similarly, the current input and the previous hidden state are concate-
nated and passed through a sigmoid activation function, generating an update gate
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value between 0 and 1. It determines how much of the new information should be
included in the hidden state;

3. Candidate Hidden State: the current input and the previous hidden state are concate-
nated and processed by the tanh activation function, resulting in a candidate hidden
state value between −1 and 1;

4. Updated Hidden State: Based on the update gate, candidate hidden state, and previ-
ous hidden state, a weighted sum operation is performed to obtain the current hidden
state. The update gate controls the balance between the past and new information.

By incorporating reset and update gates, GRU can capture long-term dependencies in
sequences and alleviate the vanishing gradient problem. Compared to LSTM, GRU has a
simplified structure that is easier to train and optimize, particularly on smaller datasets.
In summary, GRU is a commonly used recurrent unit for modeling sequential data. It
introduces update and reset gates to improve long-term dependency modeling and offers
higher computational efficiency compared to LSTM. The GRU structure is illustrated in
Figure 2:
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As shown in Figure 1, rt is the reset gate, Zt is the update gate, Xt is the input at the
current moment, and ht and ht−1 are the outputs at the current and previous moments. The
GRU parameters are calculated as follows:

zt = σ(Wz · [ht−1, xt]), (1)

rt = σ(Wr · [ht−1, xt]), (2)

h̃t = tanh(W · [rt ∗ ht−1, xt]), (3)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t, (4)

where h̃t is the candidate hidden state; Wz, Wr, W are the parameter matrices; and denotes
σ(x) and tanh(x) are the sigmoid and tanh activation functions.

2.3. Multichannel-Based CNN–GRU Prediction Models

Regarding wind power, we form a feature matrix. This matrix merges 12 channels of
data related to wind speed, wind direction, climate conditions, and past power readings.
These data include 10 m, 30 m, 50 m, and 70 m wind speeds, 10 m, 30 m, 50 m, and 70 m
wind directions, temperature, pressure, humidity, and past power readings. The time scale
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for each data type is one minute. These data points are combined over a time frame into a
window of size n = 1440, resulting in a 12 × 1440 matrix. Based on the multichannel CNN–
GRU prediction model, features from the original feature matrix are extracted through
three branches of processing, as shown in Figure 3:

1. Left branch: This branch uses convolutional operations to extract global features from
every data channel. For clarity, the first layer of one-dimensional convolution here
has 64 kernels, each 17 in size, and operates at a step size of 3;

2. Right branch: Here, partial features from each data channel are extracted using more
compact convolution kernels. The first layer of one-dimensional convolution here has
64 kernels, each 9 in size, and operates at a step size of 3. This smaller kernel ensures
finer feature extraction of subtle features;

3. GRU neural network module: Input the past wind power generation outputs into a
GRU neural layer, as indicated by the red box in Figure 2. This allows us to extract
temporal features and capture the sequential traits of wind power generation. This
extracts the temporal features. Following this, a fully connected layer pinpoints the
time series traits, aiding in better understanding and predicting the trends of wind
power generation. After this, features from global, partial, and temporal features are
merged. This combined data is then run through a fully connected layer to determine
the prediction result. Through this design, we make full use of global information,
partial features, and temporal trends, enhancing the accuracy and reliability of the
prediction model.
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3. Results and Discussion of Prediction Models

To validate the accuracy of the predictive method proposed in this paper for wind
power plant output prediction in practical applications, experimental verification was
conducted using data collected from a wind power plant in Sichuan Province over the
course of one year in 2020. The dataset consists of 1440 data points per day for each
influencing factor and wind power output, collected at 1 min intervals. These data are
classified into four main categories: wind speed, wind direction, weather, and historical
output, as illustrated in Figures 4–7, respectively. Their characteristics are shown in Table 1.
For model training, 70% of the complete dataset is employed, with 25% reserved for
validation, and the remaining 5% designated for prediction.
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Table 1. Characteristics of various factors.

Influencing Factor Max Min

Wind speed (m/s) 18 0
Wind direction (◦) 360 0
Temperature (◦C) 24 −11
Air pressure (Pa) 701 691.15

Humidity (%) 100 18.46
History contribution (kW) 90.02 0

Experimental Environment: We carried out the simulations on an Intel (R) Core (TM)
i5-8250U processor. The algorithm model was built using the Python 3.7 language. To
show the effectiveness of the CNN–GRU prediction model based on multichannel signals
proposed in this paper, we compared it to other models for verification. These included the
GRU model, LSTM model, Mutual Information Theory–LSTM model (MI–LSTM), and the
Principal Component Analysis–LSTM model (PCA–LSTM). All these models were adjusted
to operate at their best performance. To elaborate: the GRU model had three GRU units,
the LSTM model had three LSTM units, and both the MI–LSTM and PCA–LSTM had three
LSTM units. The PCA–LSTM model had its reference dimension set at 75%.

3.1. Multichannel Signal Construction

Wind power generation is inherently unpredictable due to the intricate interplay of
multiple factors. The relationship expression between wind power and influencing factors
is as follows:

P(x) = f (Sn, Dn, Ta, Pr, H, Pt), (5)

where P(x) is the wind power; Sn is the wind speed; Dn is the wind direction; Ta is the air
temperature; Pr is the air pressure; H is the humidity; and Pt is the historical wind power.

The pivotal elements influencing wind power exhibit dependency on diverse meteoro-
logical conditions. Leveraging real-time meteorological data garnered from wind farms, a
meticulous multichannel signal profile has been constructed to explicate the multifaceted
factors impacting wind power.

1. Anemometer tower wind speed signal: Wind speed directly influences the amount of
wind power generated. From observations at wind farms, wind speed data falls into
four categories: 10 m, 30 m, 50 m, and 70 m wind speeds;

2. Anemometer tower wind vane signal: The wind’s direction and its force on turbine
blades determine the wind energy conversion rate. There are four main wind direction
data types: 10 m, 30 m, 50 m, and 70 m wind directions;

3. Wind tower climate monitoring signal: current weather elements, such as temperature,
air pressure, and humidity, influence wind turbine output;
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4. Wind turbine output signal: The wind turbine output signal exhibits strong time
series characteristics, allowing the model to learn from the temporal patterns of load
variations through the time series data. This enables the model to capture the dynamic
behavior and changes in wind power over time.

The partial features of the multichannel signals are collected from various channels
within the wind farm, as shown in Table 2. These multichannel signals serve as the model
input, allowing it to extract the impact features of wind power generation effectively. An in-
depth analysis of these features results in a comprehensive comprehension of the inherent
unpredictability of wind power generation. Additionally, it furnishes valuable insights for
the enhancement of the model.

Table 2. Multichannel signal summary.

Influencing Factors Type of Feature Feature Representation

Wind speed

10 m wind speed S10
30 m wind speed S30
50 m wind speed S50
70 m wind speed S70

Wind direction

10 m wind direction D10
30 m wind direction D30
50 m wind direction D50
70 m wind direction D70

Climate
Temperature Ta
Air pressure Pr

Humidity H
History contribution Wind power Pt (1, 2, 3 . . . n)

3.2. Determination of the Prediction Window

The prediction capability of the model is determined by its prediction window size.
Such capability is measured by how accurately it can forecast future periods over extended
durations. In our experiment, we used prediction windows that spanned 15 min each. We
tested various window lengths: two, three, four, five, six, and seven. For these window
sizes, we employed different models to predict wind power. To assess the prediction
accuracy of the model, we chose R2 and MSE as our evaluation indicators. The details of
these indicators are provided below:

R2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 , (6)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (7)

where N denotes the data length; yt denotes the true value; ŷt denotes the load model
calculated value; and y denotes the mean of true values.

According to Table 3 and Figure 8, our proposed method performed better than other
models in terms of R2 and MSE. Even when the prediction window size increased, our
method continued to exhibit superior performance. Additionally, it was more consistent,
and its performance decline over time was comparably more gradual.
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Table 3. Comparison of prediction accuracy in different windows.

Number of
Windows

Evaluation
Indicators GRU LSTM MI–

LSTM
PCA–
LSTM

Methodology
for This Paper

2
R2 0.9443 0.9445 0.9503 0.9517 0.9613

MSE 0.0021 0.0030 0.0019 0.0015 0.0009

3
R2 0.9489 0.9499 0.9495 0.9501 0.9609

MSE 0.0021 0.0019 0.0025 0.0018 0.0011

4
R2 0.9339 0.9329 0.9389 0.9432 0.9589

MSE 0.0049 0.0051 0.0039 0.0031 0.0019

5
R2 0.9259 0.9267 0.9329 0.9331 0.9450

MSE 0.0078 0.0071 0.0044 0.0048 0.0028

6
R2 0.8891 0.8901 0.8993 0.9011 0.9321

MSE 0.0115 0.0099 0.0105 0.0095 0.0055

7
R2 0.8709 0.8711 0.8809 0.8891 0.9009

MSE 0.0148 0.0145 0.0128 0.0108 0.0098
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Figure 8. Comparison of model prediction accuracy.

3.3. Ablation Experiments

This paper introduces a prediction model. This model has three feature extractors:
two are CNN modules, and one is a GRU module. Accordingly, it is necessary to evaluate
the impact of each feature extractor on the predictions. Thus, we adopt the same network
parameters as shown in the CNN–GRU prediction model with multichannel signals as
shown in Figure 3. These parameters are divided into three parts:

1. Left branch for global feature extraction using CNN (global);
2. Middle branch for partial feature extraction using Conv (partial);
3. Right branch for time series extraction using GRU.

We first trained each module individually and produced predictions. Next, we com-
bined modules in pairs and trained them. Thereafter, we compared the prediction accuracy
of the six different configurations across prediction windows of sizes (five, seven, and nine).
The results are displayed in Table 4.
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Table 4. Comparison of ablation experiment results.

Modules Evaluation
Indicators

Five
Windows

Seven
Windows

Nine
Windows

Conv (Global)
R2 0.8835 0.8635 0.8495

MSE 0.0137 0.0277 0.0393

Conv (Partial)
R2 0.8995 0.8766 0.8544

MSE 0.0112 0.0199 0.0352

GRU (Temporal) R2 0.8972 0.8663 0.8507
MSE 0.0126 0.0224 0.0383

Conv (Global) + Conv
(Partial)

R2 0.9344 0.9143 0.8992
MSE 0.0041 0.0071 0.0116

Conv (Global) + GRU
(Temporal)

R2 0.9309 0.9201 0.9005
MSE 0.0043 0.0061 0.0099

Conv (Partial) + GRU
(Temporal)

R2 0.9350 0.9250 0.9150
MSE 0.0038 0.0052 0.0079

Table 4 proves the prediction accuracy for the three distinct modules and their com-
binations across window sizes of five, seven, and nine. Upon analysis, it becomes clear
that relying solely on individual modules—be it Conv (Global), Conv (Partial), or GRU
(Temporal)—falls short in feature extraction. This deficiency leads to less than optimal
prediction accuracy. Interestingly, merging two modules elevates prediction accuracy.
In addition, when the GRU (Temporal) module is absent, model accuracy experiences a
steeper decline as the prediction sequence grows. This pattern suggests that the GRU (Tem-
poral) module is finely attuned to extended time sequences and exhibits greater stability.
Utilizing CNN for both global and partial feature extraction in the multichannel design
and subsequently integrating this information through fully connected layers enriches
the model’s ability. It becomes adept at illustrating the interconnections among diverse
influencing factors. Therefore, the model devised in this study capitalizes on blending
channel features with temporal elements. This holistic approach ensures that the collected
data from the wind farm is fully utilized to optimize wind power generation predictions.

3.4. Open Data Set Trials

Regarding the data sources, this research employed historical datasets sourced from
six wind power installations situated in Texas, USA. The data, provided by the National
Renewable Energy Laboratory (NREL), covers the period between 2004 and 2006. They
include both operational figures and associated influential elements, sampled at consistent
15 min intervals. Each unique ID number represents a different wind farm, and Table 5
displays the specific locations of the wind farms.

Table 5. Specific locations of six wind farms.

ID Latitude Longitude

SITE_00173 36.14 −100.34
SITE_00193 36.42 −100.44
SITE_00215 36.42 −100.67
SITE_00365 36.50 −100.68
SITE_00446 36.50 −100.28
SITE_00797 36.56 −100.54

Table 5 demonstrates the locations of the six wind power plants. Notably, they are
situated close to each other. As a result, data from all six plants were combined for the
purposes of model training. This combined dataset was then split: 70% was designated
for training, and the remaining 30% for testing. Building on insights from Section 3.3, we
established a prediction window size of seven. The same training parameters were applied
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to glean the training outcomes. The comparative results for each model are presented in
both Figure 9 and Table 6.
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Table 6. Comparison of evaluation indicators among different models.

Models R2 MSE

GRU 0.8696 0.0148
LSTM 0.8713 0.0141

MI–LSTM 0.8831 0.0125
PCA–LSTM 0.8873 0.0104

Proposed method 0.9013 0.0096

Based on the findings of Figure 8 and Table 6, it is evident that our method demon-
strates superior prediction accuracy when trained on the public dataset. This indicates
that our model possesses strong generalization capabilities on real-world data and effec-
tively captures associations and trends within the data. These findings further validate the
reliability and effectiveness of our approach, showcasing potential applications in wind
power prediction.

4. Conclusions

This paper introduces a prediction model, specifically a CNN–GRU ultra-short-term
wind power prediction model based on multichannel signals. CNN plays a pivotal role
in extracting both global and partial features from the multichannel data collected by the
power plant, while GRU networks are used to extract temporal features of historical wind
power. These extracted features are then combined using a fully connected network to
obtain predicted results. The proposed model offers several advantages:

1. A multichannel data sample set includes wind speed, direction, air temperature, air
pressure, humidity, and historical output. Such an approach ensures that data from
wind farms is maximized. By leveraging CNN, both global and partial features are
extracted from each channel. This process allows for the identification of key impact
features associated with wind power generation;

2. The GRU network, renowned for its capability to capture temporal dependencies in
time series data, is pivotal to this paper. It adeptly extracts the historical temporal
features of wind power.

Despite the significant progress achieved in this study, we acknowledge certain limita-
tions. Specifically, the multichannel data utilized may have gaps in certain aspects. It does
not comprehensively consider static characteristics, such as terrain and the size of wind
farms, both of which can influence wind power output. Therefore, future studies should
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aim to supplement the dataset with additional static data from each wind farm. In this
light, we hope to discover a wider range of factors that can influence wind power, so that
the accuracy of the prediction models can be further improved.
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