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Abstract: Intelligent wheelchair blind spot obstacle detection is an important issue for semi-enclosed
special environments in elderly communities. However, the LIDAR- and 3D-point-cloud-based
solutions are expensive, complex to deploy, and require significant computing resources and time.
This paper proposed an improved YOLOV5 lightweight obstacle detection model, named GC-YOLO,
and built an obstacle dataset that consists of incomplete target images captured in the blind spot
view of the smart wheelchair. The feature extraction operations are simplified in the backbone and
neck sections of GC-YOLO. The backbone network uses GhostConv in the GhostNet network to
replace the ordinary convolution in the original feature extraction network, reducing the model size.
Meanwhile, the Coord Attention is applied, aiming to reduce the loss of location information caused
by GhostConv. Further, the neck stem section uses a combination module of the lighter SE Attention
module and the GhostConv module to enhance the feature extraction capability. The experimental
results show that the proposed GC-YOLO outperforms the YOLO5 in terms of model parameters,
GFLOPS and F1. Compared with the YOLOS5, the number of model parameters and GFLOPS are
reduced by 38% and 49.7%, respectively. Additionally, the F1 of the proposed GC-YOLO is improved
by 10% on the PASCAL VOC dataset. Moreover, the proposed GC-YOLO achieved mAP of 90% on
the custom dataset.

Keywords: target detection; YOLOV5s; attention mechanism; lightweighting

1. Introduction

With the aging of the population, senior care communities have become an important
place to meet the needs of the elderly in their daily lives. The use of wheelchairs among the
elderly and individuals with physical disabilities is increasing. The cited paper [1] provides
a statistical test of wheelchair usage. However, due to the deterioration of the elderly’s
physical functions and diminished perceptual abilities, the barriers on both sides of the
wheelchair can pose a number of safety risks when using a wheelchair. Smart wheelchairs
offer significant assistance to individuals in such situations. To improve performance,
they distinguish the gaze of electric wheelchair passengers by introducing the distance
between objects in the visual field as a new feature vector. This addition helps to reduce
errors caused by unintentional gaze [2]. When image recognition is combined with the
wheelchair control system, facial visual recognition is primarily employed to govern the
movement direction of intelligent wheelchairs [3]. In terms of smart care, remote intelligent
systems are designed to provide care [4,5]. They have achieved significant progress, and
this paper focuses primarily on the impact of the blind spots on both sides of the wheelchair,
emphasizing the areas not easily perceived by vision. To ensure the safety and comfortable
use of smart wheelchairs for the elderly in senior care communities, the detection of
dangerous obstacles in the blind zones on both sides of the smart wheelchair has become
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an important task. In target detection algorithms across various fields, diverse sensor-
based methods, including lidar, millimeter-wave radar, and ultrasonic radar sensors, are
employed to address different scenarios. Employing the 3D point cloud encoding of lidar
for the purpose of detection [6], which is characterized by high computational complexity
and data sparsity, and has limitations on small mobile devices; 3D target detection from
LiDAR data for autonomous driving has shown good performance in 3D vision detection
such as autonomous driving [7], but has the limiting issues of high cost and complexity
of deployment on lightweight mobile devices, which can be a challenge for real-time
applications or resource-limited devices. In regard to model lightweight design [8], the
guide dog robot realizes traffic light and motion target detection based on the actual scene
requirements using the MobileNet algorithm. The algorithm’s lightweight advantage is
effectively utilized to address the problem, highlighting the importance of lightness on
mobile devices. The deep learning target detection algorithm used in this paper has made
significant contributions to the field of computer vision, providing an effective method for
solving the problem of detecting safety hazards in a wheelchair’s blind field of view. This
algorithm, which is based on deep learning and designed to detect targets, analyzes real-
time visual information around wheelchair users, helping the elderly avoid accidentally
hitting dangerous obstacles in the blind zones on either side of the wheelchair, such as
dogs, cats, potholes, and human bodies that are incompletely represented at low angles,
such as feet, legs, and wheels. These targets were gathered to construct a custom dataset.
Collaborative annotation and video data management tools can be utilized for curation
purposes [9]. In this paper, the approach to handling video data involves processing it
frame by frame, resulting in an image dataset. When used in these areas, the following
issues must be addressed.

e Target Specificity. The targets displayed on both sides of the wheelchair are incomplete.
In the case of oversized targets, only part of the target’s feature map is captured, such
as feet, legs, and wheels.

*  Model lightweighting issues. Adapting to resource-constrained environments and
meeting the needs of resource-constrained devices.

*  The issue of heavy performance loss caused by lightweighting. Losing model perfor-
mance while lightweighting is difficult to balance.

Aiming at the above problems, this paper mainly starts from three parts, the first is
to collect the target information under the low view angle to form the unique dataset, the
second in the model is to go through the Ghost [10] module to obtain the sparse feature
maps, and at the same time, utilize the CoordAtt [11] attention to obtain the channel
information and the position information, and finally, the two parts of the features will
be integrated, then, through the residual block adjustment in the neck part, the channel
information of the feature map is enhanced by the SE [12] attention, and more features
are captured to compensate for the feature loss problem caused by the convolution in the
GhostNet idea, and a richer feature output is obtained through the residual connection,
finally, trained on the PASCAL VOC dataset, the number of model parameters is nearly
3/5 of the original, and the GFLOPS are equivalent to 1/2 of the original, with almost the
same detection time, but the overall accuracy and F1 value are significantly improved.

2. Related Work

Target detection models generally have a complex network structure and a large
number of parameters, resulting in slow operation, large memory occupancy, and power
consumption on low-end devices when the model is deployed on the mobile side. To solve
these problems, in recent years, researchers have proposed that the study of lightweight
target detection models focuses on two aspects: one is a lightweight model based on the
network structure, and the other is based on some special tricks to reduce the computational
and parametric quantities of the model, so that it can be efficiently operated on low-
end devices.
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Network-based lightweight modeling is a common technique used to compress
lightweight models. Among these, the most seminal lightweight model designs involve a
deep learning approach for MMR utilizing the SqueezeNet V1.1 architecture [13], while
SqueezeNet mainly uses the Fire module to reduce the computation and parameter size of
the network, MobileNets (V1 [14], V2 [15], V3 [16]) proposed by the Google team, which
uses DSConv [17] (Depthwise Separable Convolution depth-separable convolution) and
lightweight bottleneck structure to reduce the computation and number of parameters,
ShuffleNet [18], proposed by the Megvii Inc (Face++) team, introduces a channel rear-
rangement mechanism to accelerate the convolutional computation, and EfficientNet [19],
published by Google, uses a composite scaling factor to balance the depth, width, and
resolution of the network, and GhostNet [10], proposed by Noah is Ark Lab, Huawei
Technologies, introduces a Ghost module to enhance the feature representation capability,
etc. These networks are usually designed as lightweight networks that focus on reducing
the number of parameters and computational complexity to achieve efficient inference,
but they all suffer from common limitations in terms of reduced detection performance,
inability to adequately capture complex features in the image, especially in complex scenes
or with small targets, lower performance in terms of accuracy, and possible limitations in
terms of multiscale detection that does not fully exploit multiscale information.

Based on some special techniques to reduce the computational and parametric sizes
of the model, which include model pruning, quantization, distillation, and so on. Among
them, model pruning can reduce the computation and parameter count of the model by
deleting unimportant connections, for example, the indoor target detection task, Zhang et al.
used a specific channel pruning strategy in the YOLOv3 model to achieve up to 40%
computational compression [20], but it also relies on the training model, which is not very
suitable for the scenarios that require retraining. The authors of the [21] used a block
perforation pruning method to achieve a 14 X compression rate with 49.0 mAP for YOLOv
4. However, the implementation needs to be adapted to different hardware architectures
and device characteristics, and may face limitations in terms of computational resources,
memory, and power consumption on older or low-end mobile devices. Quantization
can reduce the storage and computational overhead of the model by reducing the bit
width of the weights and activation values, for example, for the target detection task, Liu
et al. [22] used 8-bit quantization in Faster R-CNN, which reduced both the storage and
computation to one-fourth of the original, but it requires more complex training processes
and optimization techniques, and may be more complicated to implement and debug.
Moreover, knowledge distillation can effectively enhance the performance of compact
models, the Adaptive Reinforcement Supervised Distillation (ARSD) framework to improve
the recognition of lightweight models [23], but it requires a large model to be used as a
baseline, which may require more computational resources and training time.

Different lightweight models have their own advantages and disadvantages. Network-
based models usually have better speed, but may require more storage space. Model
reduction based on some special tricks can greatly reduce the storage space and computa-
tion of the model, but it may have an impact on the accuracy of the model, the model of
distillation technique can obtain a smaller model without decreasing the accuracy, but it re-
quires larger computational resources to train the large model. Hence, it is crucial to achieve
a balance between model lightweighting and model performance, and flight delays can be
predicted using the ECA-MobileNetV3 algorithm [24], which balances model performance
and weight by improving the feature extraction capability of the lightweight algorithm
through the attention module. This module has been reported as performing well in the
paper. This paper addresses the aforementioned issues by focusing on wheelchair blind
obstacle detection in the elderly community environment. It combines both the advantages
and disadvantages of the model to prioritize performance, reduce model complexity, and
enhance the feature extraction through a better attention mechanism. The aim is to strike a
balance between model compression, detection accuracy, and speed to comprehensively
improve the model’s performance.
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3. Questions and Methods
3.1. Problem Description

In the semi-enclosed environment of an elderly community, real-time obstacle detec-
tion for the blind spots of mobile intelligent wheelchairs is achieved. Traditional algorithms
often require substantial computational resources, which makes them unsuitable for mobile
devices with limited resources, secondly, in much of the current lightweight research, the
reduction in model size often comes at the cost of decreased model performance. This
trade-off makes it challenging to achieve a balance between detection accuracy and model
lightweightness. Therefore, there is a need to design a lightweight target detection algo-
rithm that can perform the target detection task quickly and accurately on mobile devices.

The goal of this thesis is to design a lightweight target detection algorithm with
high detection performance for smart wheelchair devices. In this paper, we will explore
deep-learning-based target detection algorithms and reduce the complexity and computa-
tional overhead of the algorithms by optimizing the network structure, reducing model
parameters, and using quantization techniques. Meanwhile, in this paper, the detection
accuracy and speed of the algorithm will be evaluated in experiments and compared with
existing lightweight target detection algorithms. Specifically, our research will cover the
following issues:

*  Reduce model parameters and computational complexity by controlling network
depth and width. Design a lightweight target detection network structure suitable for
mobile devices.

¢  While lightweighting the model, the performance of the model feature extraction is
improved to compensate for the feature loss problem caused by lightweighting.

e  Experimental evaluations were performed on the publicly available PASCAL VOC
dataset. Targets at low viewing angles were collected to construct a custom dataset
and to test the experimental effectiveness of the custom dataset.

Through the above research, an efficient, accurate and lightweight target detection
algorithm for mobile devices can be proposed.

Model Quantification

To reduce the model parameters and computation for network depth and width,
the model is mathematically modeled using two metrics, GFLOPS (the model’s floating
point operations, which denotes the amount of computation in billions of floating point
operations required by the model to perform inference) and Parameters (the model’s
parameter count, which denotes the total number of parameters to be trained in the model).
Backbone partially improves the efficiency of residual feature extraction in the C3 module,
reducing computational complexity and the number of parameters. Assuming that the
GFLOPS of the original Backbone with C3 module is Fyackbone and the number of parameters
is Ppackbones #(0 < & < 1) is a scaling factor for reducing the computational complexity
and the number of parameters, the GFLOPS and Parameters of the improved Backbone
module are & X Fyockpone and & X Poackbone, Tespectively. The original GFLOPS of the Neck
part is Fneck and the number of parameters is Pneck, and the computational overhead is
reduced by a scaling factor f(0 < B < 1), so that the quantized GFLOPS and Parameters
are 5 X Fpeck and B X Ppeck, respectively. In summary, the parameters and computational
quantities of the model before and after definition are

F=ax Fbackbone + AB X Fneck (1)

P = a X Ppackbone + B X Preck 2)

3.2. Model Method Description

This paper is inspired by Ghost convolutions in Ghostnet, one of the lightweight state-
of-the-art models designed for efficient inference on mobile devices. Its main component is
the Ghost module, which uses low-cost operations to generate more feature maps instead
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of the original convolution. Given an input feature X € RT*W*C with height H, width W,
and number of channels C, a typical Ghost module can replace the standard convolution in
two steps. First, a 1 x 1 convolution is used to generate the original features, i.e.,

Y' =X x Fyq 3)
Fi 1 is a point-by-point convolution, and Y’ € RH *WxChu are intrinsic features whose
size is usually smaller than the original output features. Then, the cheap operation (Fy,
for depth-separated convolution) is used to generate more features based on the intrinsic
features. The two parts of the feature are linked along the channel dimension, so that

Y = Concat( [y’, Y' x deD @)

In the Ghost module, only half of the features, the essential features, are smaller than
the original output features, which will lose the captured spatial and position information,
and to consider this loss, this paper will use the attention module to enhance its spatial and
position features.

4. Model Structure
4.1. Yolov5 Algorithm Principle

The YOLOV5 network structure consists of four main parts: Input, Backbone, Neck
and Head. The four parts, respectively, perform data input processing, feature learning,
feature enhancement processing, and target detection and classification.

Input performs Mosic operations on the input data, mainly cutting, splicing, resizing,
and optimizing the input image data to compute the anchor frames. Mosic data augmen-
tation is used to increase the diversity of the dataset, thus increasing the robustness and
generalizability of the model.

Backbone is mainly used for feature learning, and the main constituent modules are
C3 and SPPF (Spatial Pyramid Pooling—Fast).

The C3 module is similar to the original CSP (Cross-Stage Partial Network) structure,
which is mainly used to simplify the network structure, reduce the number of convolutional
layers and channels, and maintain the performance, and the SPPF module is the fusion of
deep and shallow information to improve the feature extraction ability of the network.

The Neck structure uses a PANet structure to achieve feature enhancement through
multi-layer feature fusion of top-down and bottom-up deep and shallow features, thereby
increasing the robustness of the model and improving the accuracy of the target detection.

The Head structure obtains the position of the prediction frame target in the input
image as well as the category information by designing three detection heads for detecting
targets of different scales, each of which acquires feature information of different scale sizes
from different layers of the Neck.

4.2. Improve the Structure of the Model

The most time-consuming part of the model is the C3 module, which is used to
extract features and enhance the receptive field by reducing the number of channels of the
input feature map with a 1 x 1 convolutional layer, then using a set of 3 x 3 sequential
convolutions to extract the features, and finally using 1 x 1 convolutions with residual
linking to sum the output of the previous step with the output of that layer. In this
paper, the C3 modules of the Backbone and Neck sections are quantified. The Backbone
part reduces the computational complexity and the number of parameters to the model
through the Ghost Module idea and uses Coordinate Attention (CoordAtt) to focus on the
global information. Coordinate attention has some unique advantages over other attention
mechanisms such as SE (Squeeze-and-Excitation), CBAM [25], SAM [26], ECANet [27], and
others. Spatially adaptive: it is able to focus on different locations of the input feature map
to capture important contextual information in the image.
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Parameter-efficient: it is more advantageous in terms of parameter efficiency compared
to SE Attention, which is realized by simple linear transformations and softmax operations,
making it more feasible in the case of limited computational resources. The design of
Coordinate Attention makes it more flexible and can be used in combination with other
attention mechanisms. Combining the various features mentioned above, Coordinate
Attention has good assistance in improving the capture of spatial and positional information
of features, improving the ability of module feature extraction, and reducing the number of
parameters of modules. In the Neck part of the input feature map, X € RF*W*C already
contains a large amount of feature information, in the original Neck, the SE attention and
Ghost module are used to improve the C3 module, reduce the number of parameters of the
module and the extraction of channel features, and the overall structure of the model is
shown in Figure 1.

Focus

conv

CA-Ghostbottleneck

CAGhost

CAGhost

conv

GhostSE l

downsample

CAGhost

concat

upsample

concat

GhostSE GhostSE

CAGhost concat

downsample

spp

upsample concat

CAGhost conv GhostSE

Figure 1. Improved GC-YOLO model diagram. Compared to the native YOLOv5 model, the enhanced
GC-YOLO model replaces the original C3 module in the backbone section with the CAGhost and
replaces the original C3 module in the Neck section with the GhostSE module.

4.3. CA-Ghostbotelneck

CA-GhostBotelneck (shown in Figure 2), as a key network module in the backbone
network, adopts ideas from GhostnetV2 [28]. The CA-GhostBotelneck in this paper takes
into account the fact that the Ghost module is only half functional and the nature features
are smaller than the original output features, and when extracting the features for the input
feature map X € RT*W*C the output Y € RH*W*Cou js obtained, and the features of Y
are lost in both the channel information and the position information. In this paper, the
input X is processed in two stages. First, the sparse feature map Y is obtained by the Ghost
module, and second, the channel information and position information are obtained by the
CoordAttention module, and finally, the two parts of the features are integrated to obtain a
new output. The benefits of using CA-GhostBotelneck are as follows:
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*  Reduce the number of parameters: the Ghost module can use sparse convolution to
obtain the nature features, improving the lightness of the effect.

* Improve model expressiveness: CoordAttention captures channel and position infor-
mation, allowing more flexible access to global feature information and improving
model expressiveness.

input input

X AvgPool Y Avg Pool X AvgPool Y Avg Pool
I concat+conv2d
concat+conv2d ¥
e BN-Nonlinear
BN-Nonlinear — —
—  — Conv2d Conv2d
Ghostmodule Conv2d Conv2d Shostmedule J
\’ Sigmoid Sigmoid
Sigmoid Sigmoid To——se——
—— Re-weight

Re-weight

Mul

7
MVUI DWConv
\2
thSt Ghost
v
Add Add

(a) Step size of 1 (b) Step size of 2

Figure 2. CA-GhostBotelneck with step size 1 on the left, CA-GhostBotelneck with step size 2 on
the right.

Given an input feature X € R"*W*C with height H, width W, and number of channels
C, the CA-GhostBotelneck module can replace the normal convolution in two steps. First, a
1 x 1 convolution is used to generate the intrinsic features, i.e.,

Y/:XXlel (5)

Y’ € RE*WxCou are intrinsic features whose sizes are usually smaller than the original
output features, which compensate for the lack of original channel and position information
by having stronger feature information from CoordAttention than Deep-WiseConv, i.e.,

FcoordAtt > de (6)
Y = Concat([Y, Y x Foordatt ]) @)

4.4. GhostSE

In this paper, the GhostSE structure is used in the Neck part (as shown in Figure 3), and
the intrinsic features obtained by 1 x 1 convolution have fewer output features than those
obtained by ordinary convolution. Improved access to channel information of feature maps
using SE attention to capture more features to compensate for the feature loss problem
caused by convolution in the Ghost idea, second, residual joining is used to obtain richer
feature output, and finally residual joining is performed using the GhostConvSE module
and GhostBottelneck, reducing the number of parameters and float calculations while
keeping as much feature-rich information as possible.

Given an input feature X € RT*W*C with height H, width W, and number of channels
C, output Y’ via 1 x 1 Conv,Y’ via SE Attention to output Y”, input Y” in GhostSE, and
output Z' after Add, and finally output the feature map Z, i.e.,

Y/:X><Fl><1 (8)

Y" = Concat([Y’,Y’ x Fsg]) 9)
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7' = Concat( [Y"/ Y x FGhostBottelneck} ) (10)
Z=27"x FGhOStCOIlV (11)
7
GhostConvSE
7 v
ConvBNSilLu GhostBottelneck
v v
SE Add
v v
Add GhostConv
\ \!
(a) GhostConvSE (b) GhostSE

Figure 3. The left image shows GhostConvSE, which uses SE attention to obtain more feature
information; the right image shows GhostSE.

5. Experiment
5.1. Experimental Environment

The experiment selects the PASCAL VOC dataset commonly used for target detection
for training, which is mainly used for detecting the four major classes of vehicle, household,
animal and person in the environment, and the detection target samples are relatively
abundant. The computer configuration for the experiment is GPU: RTX 3060, CPU: I5-
10400, 16G RAM; the training network environment is Python: 3.9, CUDA12.1.

5.2. Model Evaluation

In target detection tasks, it is often necessary to compare the predicted results with the
true labels, and three metrics are used to evaluate model performance in this process.

TP: Means labeled as a positive sample and predicted as a positive sample.

FP: Means that the label is a negative sample and the prediction is a positive sample.
FN: Refers to samples labeled as positive samples but predicted to be negative.

TN: Means that the label is a negative sample and the prediction is a negative sample.
Precision: Indicates the percentage of samples that were correctly predicted out of
those predicted as positive examples.

G L

P=TP/(TP+ FP) (12)
6.  Recall: indicates the proportion of positive samples that are true positive samples.
R =TP/(TP+FN) (13)

7. mAP: Used to evaluate overall model detection performance in multiple categories.
Where n is the number of categories, AP; is the average precision of the i-th category,
and r is the recall.

1
AP = / P(r)dr,r € (0,1) (14)
0
1 n
mAP = - Z; AP, (15)

8. F1 score: Combines Precision and Recall to evaluate the performance of the model and
is defined as the harmonic mean of Precision and Recall.

F1=2xPxR/(P+R) (16)
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By balancing the lightness, detection accuracy and detection speed of the model, this
paper improves the model. By calculating the Efficient value, the model M that balances
the detection efficiency and speed is finally obtained.

Efficient = E(F, P,mAP, R, F1) (17)

M = max Efficient lM (18)
MeM

5.3. Experiment

In order to verify the overall improvement of GC-YOLO of the design model, this
paper designs several comparative experiments with typical lightweight networks. The
PASCAL VOC dataset is selected, and the experimental dataset is divided into the training
set and the validation set with a ratio of 9:1, the image size is 640 x 640, the training batch
is set to 32, and all reference models are trained for 300 epochs according to this parameter.
The experiments compared the number of model parameters, GFLOPS, mean accuracy
mAP: 0.5, and harmonic mean F1.

As shown in Table 1, the original Yolov5s had 7.28 M parameters and 17.16 G GFLOPS.
With CA-GhostBotelneck and GhostSE’s GC-YOLO, the number of parameters is 2.8 M less
and GFLOPS are 8.53 G less with a slight increase in mAP and F1. The results show that the
model’s feature extraction capability is significantly improved and at the same time the
model’s parameter number is reduced.

Table 1. Comparative testing of models.

Model Parameter (M) GFLOPS (G) mAP (%) F1 FPS
YOLOV5s 7.28 17.16 84.06 0.62 25
Yolov4-MobileNetv3 11.73 18.22 69.13 0.68 28
Yolov4-tiny 6.1 6.96 64 054 30
Yoloxs 8.95 26.73 83.8 0.74 18
Yolov7-tiny 6.23 13.86 80.83 0.76 26
GC-Yolo(our) 4.48 8.63 84.19 0.72 24

The partial detection results of the GC-YOLO model are shown in figures. Figure 4
shows the harmonic mean F1 after training the model on the VOC dataset with the threshold
set to 0.5. The F1 value combines the accuracy and completeness of the model, and is
particularly useful for dealing with category imbalance or focusing on improving both
accuracy and recall. Higher F1 values are an indication of better model performance in
positive sample detection and negative sample exclusion, from the twenty categories in the
figure, it is evident that the F1 values of 12 categories are higher than the average value of
0.72, and there are only a few major fluctuations, which proves that the model achieves a
relatively balanced performance in different categories, has a better generalization ability
in each category, can adapt to different categories, and has an advantage in dealing with
multicategory problems; Figure 5 shows the average accuracy of the model mAP on each
category, combining the prediction accuracy and recall of the model on different target
categories, which is used to measure the overall performance of the model on multiple target
categories, as shown in the figure, the data are more tightly clustered, with 13 categories
exceeding 84.19%, five categories surpassing 90%, and two categories falling below 70%.
This suggests that the model is successful in accurately localizing and identifying the target
object across multiple categories, without excessively focusing on certain categories and
disregarding others, and with exceptional overall performance. Figure 6 shows the "loss
rate" of the model, especially in the security and surveillance area. It reflects the proportion
of targets missed by the model during target detection, and a lower leakage rate indicates
that the model performs better in target detection and is able to capture targets more
comprehensively, from the figure, it is evident that the leakage rate is mainly below 0.3,
with five categories exceeding this threshold. However, the highest leakage rate is only 0.56,
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indicating that the model has a high recall rate and can detect most of the target objects.
It is also robust to the size and location of different targets, ensuring a consistently low
leakage rate.

In addition to testing GC-YOLO detection on images outside the VOC dataset, in this
paper, an image downloaded from the Internet was used for detection, and the comparative
detection experiment is shown in Figure 7, and it is evident that (a) enhances target
recognition accuracy by approximately 0.05 in unobstructed and approximately 0.1 in
obstructed targets compared to (b). The model’s overall accuracy for recognizing categories
is enhanced, including the recognition of yellow cars.
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Figure 4. Harmonic mean F1 values of the GC-YOLO model for the VOC dataset.
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Figure 5. Average accuracy of the GC-YOLO model on the VOC dataset (mAP = 84.19%).
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Figure 6. GC-YOLO model miss rate in VOC dataset.

Figure 7. (a) GC-YOLO model detection results; (b) original model detection results. In this context,
blue boxes indicate people, while green boxes represent cars. Compared to Figure (b), Figure (a)
displays superior accuracy in identifying individuals, successfully detecting the concealed yellow
car, and demonstrating an increased confidence in identifying the black car. Furthermore, there is a
decreased likelihood of misidentifying a person as a vehicle.

Comparison experiments were also performed between the GC-YOLO model and the
FPS of Yolov5’s real-time detection, as shown in Figure 8. The model introduces attention
to improve the extraction of features, while ensuring the real-time performance of the
lightweight model, and the model’s FPS is relatively smooth.

5.4. Scenario Experiments with Custom Datasets

This GC-YOLO lightweight model is used in the realization of intelligent wheelchair
devices on the blind spot obstacle detection to help the user to avoid the blind spot on both
sides of the obstacles caused by safety issues.

It was found that the visual angle of wheelchair blindness is different from the unusual
visual angle, and is more a differentiator caused by the low viewing angle, which is reflected
in the overhead angle and the incompleteness of the display target. In this paper, dangerous
obstacles for wheelchair blindness in the community are defined as cats, dogs, potholes,
water bottles, and feet, legs, and wheels at the top view, and the seven categories are
designed to avoid physical injury from animal attacks, falls, and wheel accidents. For
this purpose, field targets were collected for dataset production, mainly through mobile
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phone simulation of wheelchair heights and perspectives in different scenarios, based on
different age groups, scenarios, and time periods, to build diverse sample data. In this
paper, the captured video data are processed, and the video file is sliced by frames, and
one image is selected every ten frames to obtain the foot and leg photos under different
angles and different poses. To ensure the diversity of the dataset and the amount of data,
some of the categories of the dataset were obtained from publicly available datasets and
web crawling, respectively, totaling 7916 image data. To solve the problem of unbalanced
data volume in the target dataset, this paper sets the data enhancement rate of mosaic to
fifty percent, which expands the data diversity and improves the generalization ability of
the training model. The experiment is shown in Figure 9, and the precision for various
categories exceeds 0.85, some even surpassing 0.95. The model demonstrates excellent
robustness in its capacity to generalize across targets of differing sizes such as feet, legs,
and wheels. which shows that the performance of the overall model on the custom dataset
is relatively stable, with a mAP of 90.34%, and Figure 10 shows that the average accuracy
of the F1 values is 0.84 at score threshold = 0.5, on the custom dataset, the F1 score is no
worse than the average of the model trained on the VOC dataset (0.72), and the model can
adapt to different categories, demonstrating its ability to generalize.

(b)

Figure 8. (a) Shows the FPS detection effect of the GC-YOLO model; (b) shows the FPS detection
effect of the original model. The detection rates of the two graph algorithms have been compared,
and the modified algorithm consistently maintains high performance without any reduction in
detection rates.

The trained model is tested in real scenarios, and the results of the test scenarios are
shown in Figure 11. For intelligent wheelchair obstacle detection in the blind zones on both
sides of the wheelchair in a senior living community environment, side safety is judged
mainly based on the display of incomplete targets. The four images reflect wheels, legs,
feet, and potholes in low vision, and the first three images judge obstacle targets based on
human targets with incomplete displays in low vision.

mAP

wheel
foot
leg

pothole

Classes

cat

dog

bottle

T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
AP

Figure 9. Average accuracy of the GC-YOLO model on the custom set (mAP = 90.34%).
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Figure 10. F1 of the GC-YOLO model on the homebrew set (score threshold = 0.5).

(a) Identify the target through spe- (b) Indoor experimental trials.
cific regions, including the wheels.

-

| = i+ "‘9 & )
(c) Data within the elderly commu- (d) From a low angle, the algo-

nity, illustrating the algorithm’s de-  rithm’s efficacy in detecting pot-

tection efficacy. holes.

Figure 11. The four panels show the real scene model detection effect. Distinctive colors serve to
discern and display diverse categories: green boxes denote legs, purple boxes symbolize wheels,
yellow boxes indicate feet, and red boxes represent potholes.

The above experimental results show that compared with YOLOv5s, YOLOv4-
mobilenetv3 and other lightweight model algorithms, the real-time performance of the
GC-YOLO model is as stable as that of the native YOLOV5s, but it has been improved in
the number of parameters, GFLOPS, mAP, and the evaluation of the F1 value, and it also
has a very good performance in the custom dataset to perform the safety supervision of the
blind zones of intelligent wheelchair detection.

6. Conclusions

In this paper, we propose a lightweight target detection algorithm GC-YOLO based
on YOLOvV5. By improving the network, the model is able to achieve good detection
performance while being lightweight, balancing the relationship between lightweight and
detection performance. In intelligent wheelchairs for the elderly community that have
a good lightweight performance, the research found that the model has good detection
performance in blind spot obstacle detection to avoid potential safety threats. In future
work, the algorithm will deploy on Nvidia Jetson Nano, and cameras will install on both
sides of the wheelchair to detect each side independently. Subsequent experiments will
aim to further improve and optimize the system. However, limitations may arise during
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the experimental process, as well as during the maintenance and retraining of the model
after deployment on the mobile terminal. When major environmental changes occur, the
model’s performance may diminish. In our future studies, we will explore the integration of
multi-modal or unsupervised learning approaches to improve the model’s responsiveness
to environmental fluctuations and continue our research in this area.
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