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Abstract: Over the past few decades, advances in satellite and aerial imaging technology have made
it possible to acquire high-quality remote sensing images. As one of the most popular research
directions of computer vision, remote sensing object detection is widely researched due to the wide
application in military and civil fields. The algorithms based on convolutional neural network have
made great achievements in the field of object detection. However, plenty of small and densely
distributed remote sensing objects against complex background pose some challenges to object
detection. In this work, an efficient anchor-free based remote sensing object detector based on
YOLO (You Only Look Once) is constructed. Firstly, the backbone network is simplified for the high
efficiency of detection. In order to extract the features of densely distributed objects effectively, the
detection scales are adjusted based on the backbone network. Secondly, aiming at the shortcomings
of CBAM, the improved CJAM (Coordinate Joint Attention Mechanism) is proposed to deal with
object detection under complex background. In addition, feature enhancement modules DPFE (Dual
Path Feature Enhancement) and IRFE (Inception-ResNet-Feature Enhancement) as well as PRes2Net
(Parallel Res2Net) are proposed. We combine CJAM with the above modules to create DC-CSP_n,
CSP-CJAM-IRFE, and CJAM-PRes2Net for better feature extraction. Thirdly, a lightweight auxiliary
network is constructed to integrate the low-level and intermediate information extracted from remote
sensing images into the high-level semantic information of the backbone network. The auxiliary
network allows the detector to locate the target efficiently. Fourthly, Swin Transformer is introduced
into the "Neck’ part of the network so that the network can effectively grasp the global information.
The mAP on DOTA1.5 and VEDALI datasets, which both contain a large number of small objects,
reached 77.07% and 63.83%, respectively. Compared with advanced algorithms such as YOLO V4,
YOLO V5s, YOLO V5], and YOLO V7, our approach achieves the highest mAP.

Keywords: remote sensing; object detection; anchor-free; YOLO; attention mechanism; CNN

1. Introduction

In contrast to object recognition, it is necessary for object detection not only to deter-
mine the types of the objects but also to obtain the coordinates of the objects. So, object
detection is more complex and challenging. From the whole point of view, the tasks of
object detection can be seen as the fusion of object location and object recognition. In
traditional object detection tasks, the mainstream approaches are usually as follows:

(1) Searching for regions of interest (ROIs);

(2) Extracting the features of ROIs;

(3) Transmitting the features to the classifiers.

Although the models of handcrafted feature design have obtained good results in
object detection, there is an insurmountable bottleneck in accuracy. Within the last decade,
the rapid advancement of deep convolutional neural networks (DCNN) [1-6] has revolu-
tionized object detection. The whole new computing model and increase in computational
power have made CNN-based object detection feasible.
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As a significant milestone of CNN, the introduction of region-based CNN (R-CNN) [7]
marked a pivotal breakthrough in the field of object detectors. Subsequently, a plethora
of CNN-based object detection models have emerged, reflecting the rapid and prolific
growth in this field. The approaches represented by R-CNN are called two-stage algo-
rithms since their detection procedures contain two steps: (1) acquire regions of interest;
(2) calculate the category and position of each bounding box. Based on the fundamentals of
R-CNN, researchers have proposed a number of improved models such as Fast R-CNN [8],
Faster R-CNN [9], Mask R-CNN [10], etc. The other main type of frameworks are called
one-stage algorithms, represented by YOLO (You Look Only Once) series such as YOLO
V1-V6 [11-16] as well as SSD series such as SSD [17], DSSD [18], and FSSD [19]. Usually,
two-stage algorithms pay more attention to accuracy while one-stage algorithms focus on
the detection efficiency.

Remote sensing object detection is widely used in military, navigation, location, and
tracking of vehicles and vessels, etc. Due to the huge amount of images and the variety
of objects in remote sensing images, the introduction of CNN is necessary and preferred.
Unfortunately, there are big differences between traditional object detection and remote
sensing object detection. Upon investigation, it becomes apparent that the sizes of remote
sensing objects are highly varied, setting them apart from conventional objects. The angles
and heights of the imaging equipment as well as the light conditions of the scenes vary
greatly compared to conventional objects. Specifically, according to a number of studies,
remote sensing object detection usually faces the following problems:

(1) Scale diversity: In remote sensing images, there are usually multi-scale objects,
and the diversity of scales is not only reflected in different categories of objects, but also
in the same category of objects. Aiming at this problem, the current research direction is
feature fusion.

Li et al. [20] improved the R(3)Det by using the feature pyramid network to further
enrich the feature information of multi-scale objects. The improved algorithm is robust
for complex backgrounds, but the backbone network creates difficulties in extracting deep
semantic information. In view of this defect, Zhang et al. [21] realized the fusion of multi-
scale information through attention network, which enhanced the ability to extract deep
semantic information. However, the redundancy of the structure is high, and it is not
easy to implement. Teng et al. [22] used a simplified network to encode and design an
adaptive anchor to deal with scale changes of objects in remote sensing images. This
method can effectively extract semantic information, but it is difficult to deal with rotating
object detection.

(2) Distribution density: Due to the wide coverage of remote sensing images, some
objects are in a state of dense distribution, which makes it difficult for a feature extraction
network to distinguish different objects. In response to this problem, researchers have
focused on feature enhancement.

Zhou et al. [23] used the backbone network of CSP structure to achieve high-precision
detection. Although the algorithm has a high accuracy, the mAP is still lower than expected
when facing some small objects. Hou et al. [24] enhanced the feature extraction of the
network by CBAM, and the use of attention mechanism improves the feature extraction
capability of the network. However, the detection performance is still insufficient when
facing small objects.

(3) Shape diversity: The object in optical remote sensing image is also reflected in the
shape diversity, that is, the shape of the object in different categories is often very different.
To solve this problem, the prevailing approaches are to improve the anchor and network.

The improvement strategy of anchor is usually to increase the number and categories
of anchor boxes [25-28]. However, the effect is not obvious.

In the aspect of network improvement, deformable convolution stands as a significant
breakthrough. Xu et al. [29] used a backbone network consisting almost entirely of de-
formable convolution to detect multi-shaped objects. Ren et al. [30] improved Faster RCNN
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by deformable convolution. Deformable convolution is not satisfactory for performance
improvement and increases the complexity of network.

(4) Background complexity: Due to its wide coverage, remote sensing images contain
a large number of objects of various categories, while the marked object categories to
be detected are relatively small. As a result, the background accounts for most of the
entire image area. Remote sensing objects are often surrounded by a complex background.
Researchers often address this problem by enhancing object features while weakening the
background information.

Wang et al. [31] proposed an improved cascade algorithm to accurately locate remote
sensing objects. Cheng et al. [32] proposed a CNN-base diversified context information
fusion algorithm to improve the detection accuracy under a complex background.

Although a series of algorithms have been proposed for remote sensing object detec-
tion, their performance is still not satisfactory. In this paper, an efficient remote sensing
object detector with an anchor-free mechanism is proposed to achieve the balance be-
tween high-precision detection and real-time detection. The contributions of this paper are
as follows:

(1) In order to reduce the computing load of the network, a lightweight network is
proposed in this paper.

(2) Aiming at the difficulty of feature extraction of densely distributed remote sensing
objects, the detection scales are adjusted on the basis of lightweight network. The detection
scales are expanded so that the network can effectively separate the features of densely
distributed objects.

(3) In order to improve the overall performance of the network for remote sensing
object detection under complex background, a new attention mechanism called CJAM is
proposed based on CBAM.

(4) In addition, the feature enhancement modules DPFE and IRFE are proposed to
improve the feature extraction capability of the network and make the network adapt to
the detection of multi-shaped objects.

(5) In order to improve the overall receptive field of the network, an improved
PRes2Net is proposed to replace the SPP in YOLO V4.

(6) In order to improve the sensitivity of the network to global information, Swin
Transformer is integrated into the ‘Neck’ part of the network.

(7) In order to enhance the localization of an object, a small auxiliary network is
proposed to realize the fusion of different levels of feature information.

The remainder of this paper is organized as follows: Section 2 introduces the principle
and development of YOLO. Section 3 describes the methodology of our approach. Section 4
exhibits the experimental results. Section 5 presents the discussion. Finally, Section 6
provides the conclusion and prospects for future work.

2. The Proposal and Development of YOLO

Similar to as SSD, YOLO is a typical one-stage detector that does not have the process
of region proposal. In contrast to two-stage detectors, YOLO treats the process of target
detection as a regression problem. The core idea of YOLO is to feed the entire image into
the network and acquire the location and classification information of the targets directly.
The output of YOLO is the tensor containing the location, classification information, and
confidence score. Therefore, it can detect multiple targets. Since the framework and the
process of detection is concise, it gains faster detection speed. However, the number of the
output grid cells is limited to 7 x 7. YOLO has poor performance on small target detection.
In addition, only one target can be detected by one grid cell, YOLO does not have the ability
to deal with densely contributed targets.

To solve these problems, the improved version YOLO-V2 was proposed. YOLO-V2
adopts a series of measures: (1) it YOLO-V2 improves the accuracy by introducing BN
(Batch Normalization). (2) The size of the input is replaced from 224 x 224 to 448 x 448.
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(3) The concept of the anchor box is adopted. With these adopted measures, the performance
of YOLO-V2 is distinctly improved.

The performance of YOLO-V2 for detecting small targets especially densely distri-
bution small targets, still has drawbacks that are unsatisfactory. Therefore, YOLO-V3
was proposed, based on YOLO-V2. The most important improvements are as follows:
(1) YOLO-V3 adopts FPN (Feature Pyramid Network) to predict bounding boxes at three
scales. (2) A brand new deep convolutional neural network named Darknet 53 was adopted
as the backbone network of YOLO-V3. As its name implies, it contains 53 layers. Darknet53
adopts successive 1 x 1 and 3 x 3 convolutional kernel and uses skip connections, in-
spired by ResNet. YOLO-V3 obtains a clear advantage compared to YOLO-V2 in detecting
small targets.

Based on YOLO V3, more advanced versions such as YOLO V4-V6 have been succes-
sively proposed. As a type of classic target detection model, YOLO shows good perfor-
mance in speed and accuracy.

3. Materials and Methods

Although YOLO-V4 has achieved great achievements on object detection, there are
still limitations regarding specific tasks. In remote sensing images, a complex environment
often results in lower detection accuracy. In addition, dense distribution and illumination
interference will also affect the performance of object detection. In this paper, we aim to
realize three objectives: (1) To improve the accuracy in detecting remote sensing objects,
surpassing the performance of existing state-of-the-art detectors. (2) To effectively detect
densely distributed objects and small objects under complex background. (3) Finally, to
consider both accuracy and detection speed.

3.1. The Lightweight Feature Extraction Network

The structure of CSPDarkNet53 employed by YOLO-V4 is concise. However, CSPDark-
Net53 has its inherent disadvantages in detecting very small objects or densely distributed
objects. There are 3 detection scales in the network. If the input size is 416 x 416, the sizes
of the detection scales will be 52 x 52, 26 x 26, and 13 x 13, respectively. That is to say, the
features of the 3 detection scales are down sampled by 8x, 16 x and 32X, respectively. So,
the size of the objects that can be detected is limited. After being down sampled by 8x, the
size of the object feature that is less than 8 x 8 will take up less than 1 pixel, and the object
will not be detected effectively. Similarly, if the center distance between the 2 objects is
less than 8 pixels, the features of them will be located in 1 grid cell. The defects mentioned
above make it difficult for the network to detect very small and densely distributed objects.
Although the existing YOLO models enhance the performance of object detection, they still
exhibit limitations in detecting small-sized, densely distributed remote sensing objects. For
the backbone networks of the existing YOLO models, high-sampling feature maps will
lead to network redundancy, which is unnecessary. In this section, the convolutional layers
of size 13 x 13 are removed. Then, the sizes of the detection layers after streamlining the
structure of backbone network are changed from 13 x 13, 26 x 26, and 52 x 52 to 26 x 26,
52 x 52, and 104 x 104. The streamlined network can effectively separate the features of
small and densely distributed objects. The simplified transitional backbone network is
shown in Figure 1.
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Figure 1. The structure of transitional backbone network. The arrows point to three detection scales:
Scale 1, Scale 2, and Scale 3. Their sizes are 26 x 26,52 x 52, and 104 x 104, respectively.

3.2. Coordinate Joint Attention Mechanism

Remote sensing images often contain complex backgrounds. In order to address this
problem, we consider introducing attention mechanism [33-36] into the feature extraction
network to suppress background information and strengthen object feature information.

When the human eye encounters a scene, it quickly focuses on certain areas of the
scene after a quick search to make timely and accurate response measures. This mechanism
is referred to as the visual attention mechanism.

Researchers have proposed the idea of visual attention mechanism in deep learning
by drawing on the feature of human intuition. The attention mechanism simulates the
uneven distribution of human eye attention. By weighting the coding information, more
valuable computing resources are allocated in a biased way to obtain more useful coding
information. When training the network, the distribution of weights is constantly changing
in the direction that the loss function decreases. The network learns the importance of
different information until it converges and finally completes the object detection task.

So far, the attention mechanism models adopted by a large number of networks are
the channel attention mechanism represented by SENet [37], ECA [38], and CBMA [39]
or their improved models. SENet and ECA calculate the attention between channels by
two-dimensional global pooling and achieve good results at a relatively low computational
cost. However, the channel attention mechanism only takes into account the information
between coded channels and ignores the importance of location information. The CBAM
attempts to mine location information by reducing the channel dimension of the input
tensor and then calculates spatial attention using convolution. However, it only obtains the
local relation of the location and cannot model the remote dependence, which is important
for object detection.

To overcome the shortcomings of CBAM, a new attention mechanism model is pro-
posed. By incorporating local information into CBAM, it can mitigate local information
loss caused by 2D global pooling. In the newly proposed attention mechanism, the channel
attention mechanism is divided into 1D pooling processes to effectively integrate spatial
coordinate information into the attention mappings. The proposed attention mechanism is
called coordinate joint attention mechanism (CJAM) and the structure is shown in Figure 2.
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Figure 2. The structure of CJAM.

To be specific, in order to convert the input feature mappings into a vertical direction
and horizontal direction, 1D global average pooling is adopted. After that, two feature
mappings with directional information are decoded into two attention maps by two 1 x 1
convolution kernels. Each attention map can capture the long distant dependencies along a
particular direction in the feature map. Thus, the coordinate information can be saved.

In the channel attention mechanism, global pooling compresses global spatial infor-
mation into channel information. This makes location information difficult to retain, which
will adversely affect the acquisition of object location information in object detection tasks.
Therefore, we decompose global pooling into the vertical and horizontal mappings men-
tioned above. Each channel is encoded by two kernels: (1, W) and (H, 1). For input X, the
output of c-th channel, where the height is /1, can be shown in Equation (1).

Zhn) = = Y xe(hi) 1)

Similarly, the output of the c-th channel, where the width is w, can be shown in
Equation (2).

22 = ¥ xelw)) @

The above two equations generate direction-aware feature mappings in different direc-
tions. This allows the attentional mechanism model to acquire long distant dependencies
when it goes along a particular direction while reserving precise location information in
the other direction. Then, similar to the SE attention mechanism and CBAM attention
mechanism, CJAM also performs the squeeze and excitation steps on the channels. The
difference is that CJAM eliminates the full connection layer and adopts two 1 x 1 convo-
lutions, respectively, for channel compression. Then the channels are expanded by two
1 x 1 convolutions, respectively, and the obtained weight parameters are multiplied with
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the feature graph to obtain the coordinate attention feature graph. This process can be
expressed in Equations (3)—(7).

fi=6(Fi(z") 3)
fr=0(E(2")) “)
g =0o(F(f)) 5)
g¥ = o(Ea(f2)) ©)
Ye(i, ) = Xe(i, ) x 2 (0) x g€ () @)

In Equations (3) and (4), F; and F, represent the transformation function of 1 x 1
convolution. ¢ represents activation function ReLU. f; and f, represent the horizontal and
vertical eigenvectors of encoding spatial information acquisition. In Equations (5) and (6),
F3 and F, represent the transformation function of 1 x 1 convolution. ¢ represents acti-
vation function Sigmoid. ¢" and g® are the same tensor as the number of input channels
obtained after two convolution and activation functions. In Equation (7), the input X
and the two tensors g", ¢ are multiplied together to get the output of the coordinate
attention mechanism.

In addition, CJAM also incorporates the spatial attention mechanism. By multiplying
the matrix obtained through the spatial attention mechanism and the output, the final
output of CJAM can be expressed as:

Yfinas = 0(Conv; 3 (0(Convy 3 ([AvgP(Y) @ MaxP(Y)])))) X Y 8)

In Equation (8), Avg and Max represent the average and maximum pooling, respec-
tively. @ represents the addition of the corresponding parameters. Convf’ig’ represents
atrous convolution, where the kernel is 3 x 3 and the dilation rate is 2. ¢ represents the
activation function Sigmoid.

CJAM, which is proposed in this paper, is composed of two parts: coordinate attention
mechanism and spatial attention mechanism. In view of the defect that the channel atten-
tion mechanism in CBAM can only obtain local relation of position, the channel attention
mechanism in CJAM is split into two parts along the horizontal and vertical directions.
Through average pooling and convolution on the x and y axes, respectively, the information
between different channels can be obtained effectively. Additionally, the position infor-
mation is more sensitive, which is beneficial to the accurate location of the object position
information in the object detection task.

3.3. DC-CSP_n Feature Enhancement Module in Backbone Network

In Section 3.1, the backbone network is simplified, and the sizes of the detection layers
are adjusted. Although the transitional backbone network in Figure 2 is able to separate
the features effectively, the performance of feature extraction is confined due to the smaller
number of convolutional layers. Improving the performance of CNNs remains a pressing
topic for researchers, and this work is no exception.

Inspired by Dual Path Network (DPN) [40], the feature enhancement module DPFE is
proposed. In addition, combining CSP structure and CJAM in Section 3.2, DC-CSP_n is
proposed for feature enhancement. Figure 3 exhibits the structure of DPFE and DC-CSP_n.
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Fm(DPFE)3 Fm(Dense)2
Fm(DPFE)4
Fm(DPFE)1
o
Input
Fm(DPFE) A
/’ Output
Fm(DPFE)5
Residule
Fm(DPFE)2 Fm(Res)2
(a) DPFE

Input
\J
3x3Conv

1x1Conv

(b) DC-CSP_n
Figure 3. The structure of DPFE and DC-CSP_n.

In Figure 3a, DPFE consists of two parts: residual structure and densely connection
structure. Both parts use 1 x 1 and 3 x 3 convolution kernels. Fm(DPFE)5, Fm(DPFE)4,
Fm(Res)2, and Fm(Dense)2 can be expressed as:

Fm(DPFE)5 = H1X1,3X3[Fm(DPFE)4] )
Fm(DPFE)4 = Fm(Res)2 ® Fm(Dense)2 (10)
Fm(Res)2 = Fm(DPFE)2 & Hj 1 3..3[Fm(DPFE)1] (11)
Fm(Dense)2 = Fm(DPFE)3 ® Hj 1 353 [Fm(DPFE)2] (12)

In Equations (9)—(12), Hyx13x3[-] represents the transformation function of 1 x 1 and
3 x 3 convolution. ® and ® represent the “Add” and ‘Concat’ operations, respectively.

In Figure 3b, based on DPFE, the CJAM attention mechanism is integrated, and
the DC-CSP_n module based on CSP structure is built to improve the performance of
feature extraction.
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3.4. CSP-CJAM-IRFE Feature Enhancement Module in Detection Layers

Remote sensing objects are often characterized by the diversity of shapes. For multi-
shape object detection, a lot of studies focus on adding deformable convolution into the
network. Due to the complexity of the calculation, deformable convolution brings some
negative effects on training and parameter number control. To solve this problem, a strategy
of feature extraction and fusion using convolution kernels of different sizes is adopted
based on the principle of Inception [41-43]. For 3 x 3 and 5 x 5 convolution of size, they
are splitinto 3 x 1 and 1 x 3 convolution as wellas 5 x 1 and 1 x 5 convolution. This
method greatly reduces the computation amount on the premise of constant receptive
field. Adding convolution kernels of different shapes to the network can assist the network
in learning the object feature information of different shapes. In addition, The Atrous
Convolution Module (ACM) is proposed for the decomposition of k x k convolution kernel.
We call this network integrating Inception and ResNet as IRFE (Inception-ResNet-Feature
Enhancement Module). The structure is shown in Figure 4.

_>| ACM, 4 |_>| ACM,,

| Input I =I ACM, 5 |—>| ACM;,,

Lo, o o
—>| 1x1Conv
(a) Overall Structure
y

Input Input

v w ' v I
| vk | ko= | | ok s | | o | [ 3] [exa, s
| [
v Concat y Concat
Output Output
(b) ACM,,, (c) ACM,,,

Figure 4. The structure of IRFE.

IRFE proposed in this section adopts the method of increasing the width to improve
the performance. In addition, large convolution kernels of size k x k are decomposed,
and ACM is used to combine convolution kernels of different sizes. In Figure 4b, there
are 3 parallel convolution operations: 1 x k convolution, 1 X k atrous convolution, where
the dilation rate is 3, and 1 x k atrous convolution, where the dilation rate is 5. In
Figure 4c, there are also 3 parallel convolution operations: a convolution of size k x 1, atrous
convolution, where the kernel is k x 1 and the dilation rate is 3, and atrous convolution,
where the kernel is k x 1 and the dilation rate is 5.

The fusion of convolution kernels of different shapes and sizes into IRFE can make the
network adapt to the detection of multi-shape objects. In addition, by integrating IRFE, the
CSP structure, and CJAM, CSP-CJAM-IRFE feature enhancement module is constructed,
and its structure is shown in Figure 5.
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1x1Conv

L]

Output

Figure 5. The structure of CSP-CJAM-IRFE.

3.5. CJAM-PRes2Net Receptive Field Amplification Module

The backbone networks in YOLO V4 and YOLO v5 adopt SPP (Spatial Pyramid
Pooling) [44] for receptive field amplification. SPP uses different convolution kernels for
convolution, and then channels are spliced to enhance the receptive field. Compared to
SPP, Res2Net performs better. Therefore, Res2Net will be adopted as the receptive field
enhancement module in this paper.

In order to reduce the computing load to a certain extent, a parallel combination of
1 x 3 and 3 x 1 convolution kernels is adopted. In this paper, Parallel Res2Net (PRes2Net)
constructed by parallel convolution is used to replace the original SPP. The structure of
PRes2Net is shown in Figure 6.

Input
I I —
{ } N ae
1x3Conv 3x1Conv

| | 5 X Mﬁl > ys vl 5
I EH 1x1 — 11 £
Concat - X -PE >y @)

Xi \

Output || l

(a) PConv (b) PRes2Net

Figure 6. The structure of PRes2Net.

In Figure 6a, parallel convolution (PConv) decomposes the 3 x 3 convolution kernel
into two different shapes: 1 x 3 and 3 x 1, which not only reduces the computational
load, but also obtains the same receptive field as the 3 x 3 convolution. Figure 6b shows
an improved PRes2Net whose internal convolution kernels P1, P2, and P3 are parallel
convolution in Figure 6a. The overall receptive field of the network is further improved by
increasing the sizes of convolutional kernels, which are 3 x 3,5 x 5,7 x 7, respectively.
In addition, we adopt the combination of 1 x k and k x 1 convolution instead of k x k
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convolution. The output of the internal branches of the improved PRes2Net is shown
as follows.

yi=x1

Y2 = xp x (PConv,_3)

y3 = (x3 + xp * (PConv,—3)) * (PConv,—s)

Vs = (x4 + (x3 + x2 % (PConv,—3)) * (PConv,—5)) * (PConv,—7)

(13)

In Equation (13), * represents convolution operation. PConv,_; represents parallel
convolution kernels of size 1 x k and k x 1. We combine CJMA with the improved
PRes2Net to form a residual attentional module. Figure 7 exhibits the structure of improved
CJAM-Res2Net.

Coni

CBM —— Conv BN Mish

CBM

Figure 7. CJAM-PRes2Net.

The improved CJAM-Res2Net combines PRes2Net and CJAM. First, the channel is
adjusted by two CBM modules of 1 x 1 kernel and is divided into two branches. The
output from the first branch is fed into PRes2Net and then into CJAM. Merging the output
of the two branches and then through a CBM module of 1 x 1 kernel, the final output will
be obtained. The CJAM-PRes2Net module proposed in this section can not only gradually
expand the overall receptive field of the network, but also integrate the advantages of
CJMA attention mechanism.

3.6. The Application of Swin Transformer Application

Transformer [45] is of great significance for object detection. Inspired by this, inte-
grating Transformer into CNN can improve the performance of object detection. Ordinary
convolution is limited by convolution kernels and cannot perceive information outside the
convolution kernels. With the adopted self-attention mechanism, Transformer Encoder can
perceive global information. Therefore, compared to CNN, Transformer has a better ability
to capture global information. In this section, we borrow the ideas from Transformer and
incorporate Swin Transformer [46] into the ‘Neck’ part of the network.

Figure 8 shows the structure of the Swin Transformer. It mainly consists of four
parts, which are: LN (Layer Normalization), W-MSA (Window based Multi-head Self-
Attention), SW-MSA (Shifted Window based Multi-head Self-Attention), and MLP (Multi-
Layer Perceptron). LN is responsible for the normalization of information between channels.
In view of the complexity of multi-head self-attention calculation in Transformer, W-MSA
improves the calculation mode and uses self-attention calculation to process each window
to reduce the computing load. SW-MSA improves performance by exchanging information
through self-attention mechanisms between windows.
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S z
MLP MLP
A
Figure 8. The structure of the Swin Transformer.
The output of each part of the Swin Transformer can be expressed as:
~I ~1-1 ~I-1
z =Twwmsa(Tin(z )+ z (14)
I ~I ~I1
z = Tvep(Tin(z ) + 2z (15)
~I+1
z = Tswmsa(Tin(Z)) +2 (16)
~I+1 ~I4+1
2 = Tyvp(Tin(z ) + 2 (17)

In Equations (14)-(17), Z and z refer to the output of W-MSA and SW-MSA. Tw.-msa,
Twmep, Tin, and Tswovsa represent the transformation of W-MSA, MLP, LN, and SW-MSA
modules, respectively.

In this section, Swin Transformer is integrated into the ‘Neck” part of the network, and
the Swin Transformer module is introduced to help the network perceive global information.

3.7. The Tiny Independent Auxiliary Network

The detection effect of existing detectors is still lower than expected when facing
some small objects. In addition, most one-step detectors focus on improving the backbone
networks for better performance of feature extraction. For the tasks of small object detec-
tion, low and intermediate level information is needed to describe the object information
(contour, shape, etc.). Furthermore, high-level semantic information is also necessary for
the separation of objects and backgrounds.

As previously discussed, when detecting multi-scale objects, low and mid-level in-
formation as well as high-level semantics information is needed. FPN fuses high-level
information with high-resolution features. Despite this, this kind of top-down feature
pyramid network can achieve good results in feature representation, as it only infuses
high-level semantic information to the former layers. In this section, the key emphasis
in work is fusing high-level information to formal layers and fusing lower and mid-level
features to the later ones.

In this section, a tiny independent auxiliary network (TIAN) is built. We take the
down sampled image as the input of TIAN. Then the down sampled image generates three
feature maps with several convolutional layers. The three feature maps output by TIAN
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can effectively construct the low- and mid-level information of the image. The features are
then injected into each detection layer. The structure of TIAN is shown in Figure 9 below.

Input
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Figure 9. The structure of TIAN.

The existing object detection framework usually adopts a deep convolutional network
to produce strong semantic feature information. Semantic information is required for
accurate object depict. Low- and mid-level feature information (such as outline and shape
of the object) is important. In order to make up for the loss of low- and mid-level feature
information from the backbone network, TIAN uses down sampling operations instead of
convolutional layer for scale compression. The structure of the auxiliary network (TLIAN)
proposed in this section is concise. The output features of it are responsible for producing
low- and mid-level information and they are then fused in the detection layers of the
backbone network. Firstly, the input image is adjusted to the same size as the first detection
layer by down sampling. Then the auxiliary network produces the other two scales by two
convolutional layers, respectively. At last, the output features of the auxiliary are fused to
the detection ends of the backbone network.

3.8. Anchor-Free Mechanism

The CNN-based algorithms for object detection can be divided into anchor-based
and anchor-free algorithms. The key difference between these approaches lies in whether
or not they adopt the ‘anchor box’ to extract object candidate boxes. The anchor-free
mechanism is not a new concept. YOLO V1 is the earliest model to adopt the anchor-free
mechanism. However, its inherent disadvantage is that each grid can only detect one
object, which makes the performance of the network difficult to improve. Since version
V2, YOLO has introduced the concept of anchors, continuously improving the detection
accuracy. However, anchor-based algorithms need to set the anchors manually or through
clustering, which makes it necessary to set the anchors with different size proportions
and sizes according to the specific situation of the datasets. In addition, the operation of
pre-setting many anchors makes the process time-consuming. In this section, we adopt an
anchor-free mechanism for better universality of the detector.

When detecting objects, many object detectors, whether one-stage or two-stage, adopt
decoupling heads based on classification and positioning. During the development of
YOLO, the detection end keeps coupling, and its structure is shown in Figure 10a.

YOLO realizes the classification task and regression task with 1 x 1 convolutional
layers, which brings adverse effects to the detection and recognition of objects for the
network. Inspired by the structure of detection ends of FCOS [47] and YOLOX, the anchor-
free mechanism is adopted in this work. The tensor of each original detection end for the
calculation of object position information and classification information are split into two
parts to realize the classification task and regression task, respectively. The structure of the
anchor-free detection end is shown in Figure 10b.
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Figure 10. The detection end of anchor-based mechanism and anchor-free mechanism. (a) Anchor-
based mechanism; (b) anchor-free mechanism.

For each detection end, the network will predict three results. The final prediction
results are Reg(h, w,4), Obj(h, w,4), and Cls(h, w, classes), respectively. In the above three
prediction results, Reg is used to obtain the regression parameters for accurate location
information. Obj is used to determine whether the point is included in the object. Cls
is used to determine the category information of the object. After combining the three
prediction results, the obtained output tensor is: Output(h, w,4 + 1 + classes). Compared
with the original coupling detection end, the number of the parameters is reduced, which
makes the network run faster.

3.9. Overall Framework of the Model

In this paper, BICAM-Detector is proposed to detect densely distributed small targets
under a complex background in remote sensing images. Firstly, a lightweight network
is adopted, and the sizes of the detection end are adjusted to adapt to the detection
of densely distributed objects. Secondly, a new coordinate joint attention mechanism,
CJAM, is proposed. CJAM is integrated with DPFE and IRFE for further performance
improvement. Thirdly, the internal connection structure of Res2Net is improved and
combined with the CJMA module as the final output module of the backbone network,
thereby expanding the receptive field of the network. Fourthly, in order to further improve
network performance and enhance the network’s ability to grasp global information, Swin
Transformer is adopted. Fifthly, a small independent auxiliary network is proposed to
extract the low and intermediate information in the image to improve the localization
ability of the network. Finally, inspired by FCOS and YOLOX, we adopt the anchor-free
mechanism in the detection ends to reduce the dependence of clustering to obtain anchors
from the dataset, making it more general. In Figure 11, we exhibit the backbone network
and overall architecture of BiICAM-Detector.

Figure 11a shows the backbone network of our approach. Among them, CSP_1 and
CSP_2 are residual modules with a CSP structure. DC-CSP_3 is the residual module
that integrates DPFE and CJAM. Figure 11b shows the connection mode of the TIAN.
First, the feature maps extracted from the backbone network are added to the outputs
of TIAN. The feature map is then added with the features of the previous layer by 3 x 3
convolution transformation. Finally, the output of the current layer is obtained after 3 x 3
convolution transformation. Figure 11c shows the improved PANet, which further adds
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the Swin Transformer modules on the basis of the original ‘Neck” part to improve the
overall performance of the network. Figure 11d is the overall structure of our approach.
It is generally composed of four parts. The backbone network is responsible for feature
extraction. TIAN is responsible for the extraction of middle- and low-level features. The
bidirectional connection structure is responsible for the fusion of the features from TIAN
and backbone network. “Neck’ is responsible for the fusion of features at different levels.
The detection ends are responsible for the output of the detection results.

| Input |—>| CSP 1 |—>| CSP_2 |—>| DC-CSP 3 |—>| DC-CSP 3 |—>| CJAM-PRes2Net |—>| Output |

Input Input

A 4

3x3Conv 3x3Conv
% v v
1x1Conv 1x1Conv 1x1Conv

Y

| I

|
: Residual |>xn |
| |
| I

DC-CSP n

(a) Backbone Network

The output of previous layer

(b) Bidirectional Connection

Output: Cls
Concat —| Swin Transformer I > Output: Reg
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/' . .

C lution+D. 1
onvolution+Downsampling Output: Cls
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Convolution+Upsampling Convolution+Downsampling Output: 10U

A
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(c) PANet with Swin Transformer

Figure 11. Cont.
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Figure 11. The structure of the BICAM-Detector.

4. Results

This section first introduces the experimental environment and datasets. Subsequently,
a large number of comparative experiments are carried out on the two datasets and the
proposed algorithm is compared with other state-of-the-art algorithms. Finally, ablation
experiments are conducted to further verify the effectiveness of the improved strategies.

4.1. Experimental Environment and Datasets

In order to verify the performance of our approach, some typical remote sensing
datasets are selected, and we conduct a large number of experiments on them. We compare
our approach with other outstanding models. The experimental environment and the
initialization parameters are shown in Tables 1 and 2, respectively.

Table 1. The experimental environment.

Configuration Parameter
Framework Pytorch-GPU-1.8.1, Python3.8
Computer system Linux
CPU 15 vCPU Intel(R) Xeon(R) Platinum 8338C CPU@2.60 GHz
GPU RTX 3090

Table 2. The initialization parameters.

Size Batch Momentum Learning Rate Epoch
416 x 416 8-16 0.9 0.001-0.00001 500

In this work, we employ two remote sensing datasets including the DOTA1.5 [48]
and VEDAI [49] datasets. The DOTAL1.5 (Dataset for Object detection in Aerial Images)
dataset is issued by Wuhan University. Compared to the DOTA1.0 dataset, DOTAL.5 labels
16 categories of objects including numerous small objects. It is therefore more challenging
for the detector. The images of the DOTA dataset are big in size, so we cut the images and
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process the annotation file simultaneously. The training, validation, and test set ratio of the
above two datasets is 7:2:1. Table 3 compares the distributions of DOTA1.0 and DOTAL.5.

Table 3. The object distributions of DOTA1.0 and DOTA1.5.

Category Number of Objects Category Number of Objects
DOTA1.0 DOTA1.5 DOTA1.0 DOTA1.5
Plane 8372 7527 Basketball court 543 438
Baseball diamond 931 874 Storage tank 6343 6313
Bridge 7112 7174 Soccer ball field 421 385
Ground track field 642 645 Roundabout 1209 1229
Small vehicle 17,094 72,576 Harbor 5089 4157
Large vehicle 9246 12,830 Swimming pool 2001 1676
Ship 9112 10,227 Helicopter 479 507
Tennis court 2290 2021 Container crane - 111

The VEDAI dataset is a type of aviation dataset. The resolution is 512 x 512, and it
contains 1246 images with 8 categories of objects. There are a large number of objects with
similar or weak features that are difficult to distinguish. Table 4 exhibits the distribution
of VEDAL

Table 4. The object distribution of VEDAIL

Category Car Truck Tractor Camping Car
Number of objects 1230 276 166 350

Category Boat Van Pickup Plane
Number of objects 153 92 845 31

4.2. Evaluation Indicators

In the tasks of object detection or object classification, four classification results are
given to evaluate the performance of the results. Table 5 presents their confusion matrix.

Table 5. The confusion matrix.

Actual Predicted Confusion Matrix
Positive Positive P
Negative Positive FpP
Positive Negative EN
Negative Negative N

In Table 5, if the sample is positive and predicted positive, the result will be categorized
as TP. If the sample is negative but predicted positive, the result will be categorized as
FP. If the sample is positive but predicted negative, the result will be categorized as FN. If
the sample is negative and predicted negative, the result will be categorized as TN. With
Table 5, precision and recall can be defined as follows.

.. TP
Precision = TP L EP (18)
TP

In fact, considering precision or recall separately is one-sided. They are the two
indicators that check and balance each other. In order to balance the two indicators, AP
and mAP are adopted. AP (Average precision) is defined as:



Electronics 2023, 12, 4448 18 of 28

1
AP, = /O Pi(R;).dR; (20)

where k; refers to precision of the i-th category, R; refers to recall of the i-th category. P;(R;)
is the function with R; as its independent variable and P; as its dependent variable. mAP
(Mean Average Precision) is defined as:

C
Y. AP
MmAP = 1=1C (21)

It measures the accuracy of object detection for all ¢ categories.

4.3. Experimental Results and Analysis

In order to verify the superiority of our model in detecting remote sensing objects, we
carried out experiments on DOTA1.5 and VEDAL In addition to classical algorithms, this
paper also compares the most advanced remote sensing target detection algorithms, such
as RTMDet [50] and SuperYOLO [51]. All comparison algorithms are open source.

(a) Experimental results on DOTA1.5

The DOTA1.5 dataset contains more objects than the DOTA1.0 dataset. The compara-
tive experimental results of our approach and other comparison models on this dataset are
exhibited in Table 6 and Figure 12.

Table 6. The experimental results on the DOTA1.5 dataset.

Method Plane Baseball Diamond Bridge Ground Track Field = Small Vehicle  Large Vehicle
Faster RCNN 71.45 7491 45.73 66.57 55.83 60.86
EfficientDet-D0 70.37 78.95 48.97 64.85 52.81 65.97
EfficientDet-D1 72.54 77.25 56.68 68.09 63.87 62.87
YOLO V4 81.74 78.67 59.13 71.32 62.30 81.17
YOLO V5s 77.59 76.69 59.72 71.27 56.85 79.37
YOLO V5l 79.52 75.21 60.36 73.53 57.39 70.28
YOLO V7 81.84 78.29 62.34 80.61 63.65 82.08
RTMDet 80.57 89.68 56.94 77.52 74.38 81.63
BiCAM-Detector 86.17 82.63 61.58 78.62 69.81 78.81
Method Ship Tennis court Basketball Storage tank Socc.er ball Roundabout
court field
Faster RCNN 71.80 85.97 69.05 58.72 49.17 64.92
EfficientDet-DO0 77.09 85.37 68.58 62.74 55.27 68.28
EfficientDet-D1 78.52 84.76 75.83 63.87 58.26 65.87
YOLO V4 83.53 87.08 77.63 76.64 61.86 74.89
YOLO V5s 77.42 82.14 76.34 75.47 58.18 70.65
YOLO Vil 76.73 81.53 78.47 76.52 60.21 73.15
YOLO V7 76.86 83.24 81.06 79.21 62.58 74.28
RTMDet 82.97 86.38 80.27 76.21 67.83 75.81
BiCAM-Detector 85.62 89.97 83.52 81.52 65.20 78.51
Method Harbor Swimming pool Helicopter Container crane mAP
Faster RCNN 71.27 66.82 47.09 30.79 61.93
EfficientDet-D0 67.82 69.35 52.16 34.80 63.96
EfficientDet-D1 73.68 72.35 56.74 38.75 66.87
YOLO V4 77.40 74.84 63.46 49.75 72.59
YOLO Vb5s 75.71 72.30 63.85 51.29 70.30
YOLO Vsl 80.64 75.28 65.28 57.45 71.35
YOLO V7 81.74 78.67 63.68 62.81 74.56
RTMDet 80.97 79.36 65.54 60.08 76.01

BiCAM-Detector 82.57 80.78 68.07 59.81 77.07
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Figure 12. The PR curves of BiCAM-Detector and the comparison algorithm on the DOTA1.5 dataset.

(b) Experimental results on VEDAI

The VEDAI dataset contains a large number of weak and small objects, imposing high
requirements on the detector. The comparative experimental results of our approach and
other comparison models on this dataset are exhibited in Table 7 and Figure 13.

Table 7. The experimental results on the VEDAI dataset.

Method Plane Car Truck Tractor Camping Car Boat Van Pickup mAP
Faster RCNN 85.04 55.43 47.61 44.28 71.52 37.84 11.57 50.47 50.47
EfficientDet-D0 83.16 64.45 33.07 37.78 53.37 38.71 9.65 42.57 45.35
EfficientDet-D1 89.75 58.74 48.43 43.55 68.76 35.70 14.87 53.13 51.62
YOLO V4 95.70 69.57 57.67 46.72 73.08 47.73 29.21 57.06 59.60
YOLO V5s 93.15 67.20 52.86 42.39 75.17 45.11 19.29 51.79 55.87
YOLO V51 94.85 70.51 51.46 41.80 74.39 39.16 28.09 60.17 57.55
YOLO V7 98.74 72.63 59.51 60.09 69.27 57.81 21.70 48.61 61.05
SuperYOLO 97.52 76.93 51.46 59.70 74.81 52.85 34.57 56.78 63.08
BiC AM-Detector 99.51 82.14 44.50 57.37 82.57 55.06 31.28 58.22 63.83
1.0
0.8 1
¢ 1
= 0.6 T
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Figure 13. The PR curves of BiCAM-Detector and comparison algorithm on the VEDAI dataset.
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The experimental results shown in Tables 6 and 7 have verified the superiority of our
approach. The BiCAM-Detector achieves the optimal mean average precision with the
comparison algorithms in both datasets. On the DOTA1.5 dataset, the mAP of our approach
is 77.07%, and our approach achieves the highest accuracy in 12 out of 16 categories.
Compared with advanced YOLO series algorithms such as YOLO V4, YOLO V5s, YOLO
V5land YOLO V7, the mAP of our approach is improved by 4.48%, 6.77%, 5.72%, and 2.51%,
respectively. Compared with RTMDet, our approach can still achieve better performance.
The mAP of our approach is improved by 1.06%. VEDAI dataset poses a greater challenge
to the performance of detectors, as it contains a large number of objects with small sizes.
The mAP of each detector is significantly reduced compared to the mAP on the DOTA1.5
dataset. The BiICAM-Detector proposed in this paper can still have good performance on
VEDALI with a mAP of 63.83%. The highest AP is obtained in 5 of the 8 categories. In
addition, compared with YOLO V4, YOLO V5s, YOLO V5], and YOLO V7, the mAP of our
approach is improved by 4.23%, 7.96%, 6.28%, and 2.78% respectively. In contrast to the
advanced SuperYOLO, the mAP of our approach is slightly improved by 0.75%. According
to the PR curves in Figures 12 and 13, our approach achieves best performance on DOTA1.5
and VEDAI, which proves the superiority of our approach.

In Figure 14, we present the partial detection results of BICAM-Detector on two
datasets. The samples contain various types of scenes and many small objects. As can
be seen from Figure 14, our approach can not only effectively detect densely distributed
objects, small objects, and multi-shaped objects in remote sensing images, but also have
good adaptability to complex environments.

In addition, in order to highlight the superiority of our approach in small object
detection in remote sensing images, we select YOLO V7 for comparison. The comparison
results are shown in Figure 15.

As shown in Figure 15, compared with YOLO V7, our approach has better perfor-
mance, which further verifies the superiority of our approach in detecting small remote
sensing objects.

In addition, Table 8 shows the comparison of real-time performance between our
approach and other algorithms.

Table 8. The real-time performance of each model.

Model Weight (M) D?:;g:“ Input Size ]éePt;)c/tIl{?rr;(SZ%(;gc;l mAP
YOLO V4 244.7 3 416 x 416 355 72.59
YOLO V5s 27.8 3 416 x 416 67.8 70.30
YOLO V51 179 3 416 x 416 52.6 71.35
YOLO V7 144 3 416 x 416 47.3 74.56

BiCAM-Detector 54.2 3 416 x 416 429 77.07

Table 8 has verified that the BiCAM-Detector achieves the highest mAP under the
conditions of the same input size and number of detection layers. The FPS of our approach
is 42.9, which is higher than that of YOLO V4. Although the detection speed is lower than
other comparison algorithms, the performance in mAP is superior.
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(b5) truck and van (b6) tennis court

Figure 14. The detection results of DOTA dataset. (al-a6) The detection results on the DOTA1.5
dataset and (b1-b6) the detection results on the VEDAI dataset.
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(ab) (b5)

Figure 15. Comparison of the partial detection results between BiCAM-Detector and YOLO V7.
(al-a5) The detection results of YOLO V7, and (b1-b5) the detection results of YOLO V7.

4.4. Ablation Experiments

In order to verify the effectiveness of various improvement strategies proposed in this
paper, we take DOTAL.5 as the experimental dataset and use different combinations of
improvement strategies. The procedure for setting up the ablation experiments is as follows:
We use the network with only backbone reduction as the Baseline and set it as Experiment 1.
In Experiment 2, DC-CSP_n is added to the backbone network. In Experiment 3, CJAM-
PRes2Net is adopted. In Experiment 4, CSP-CJAM-IRFE is used. In Experiment 5, Swin
Transformer is added to the ‘Neck’ of the network. The anchor-free mechanism is adopted
in Experiment 6. TIAN is added in Experiment 7.

The Baseline, which uses a streamlined backbone network, has the highest detection
speed of 66.4 FPS, but its accuracy of 62.48% is lower. The use of CSP-CJAM-DPFE and
CSP-Res2Net in the backbone network improves the mAP by 4.57% and 2.52%, respectively.
The introduction of CSP-CJAM-IRFE improved the accuracy by 1.52%. The use of the
Swin Transformer improved the accuracy by 2.38%. However, the detection speed will be
greatly reduced from 55.3 FPS to 47.7 FPS. At the detection end, the anchor-free detection
mechanism is adopted, which slightly improves the accuracy by 0.36%, and the FPS is
increased from 47.7 to 52.4. In addition, Experiment 7 proves that the TIAN auxiliary
network proposed in this paper can greatly improve the performance of the network, and
the mAP is increased by 2.50%. In general, the experimental results in Table 9 have proved
the effectiveness of each improvement.

Table 9. The results of the ablation experiments on the DOTA1.5 dataset.

Detection Speed

Experiment Number Improvement Strategy mAP (FPS)
1 Baseline 62.48 66.4
2 +DC-CSP_n 67.05 61.3
3 +CJAM-PRes2Net 69.57 56.8
4 +CSP-CJAM-IRFE 71.81 55.3
5 +Swin Transformer 74.19 47.7
6 +Anchor-Free 74.55 524
7 +TIAN 77.05 429

In order to verify the effectiveness of the CJAM, Table 10 compares the performance of
CJAM with CBAM and E-ACAM.
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Table 10. The comparison of different attention mechanisms.
Experiment Number Attention Mechanism mAP Detecg:(;;;)s peed
1 CBAM 74.67 38.6
2 E-ACAM 7548 43.7
3 CJAM 77.05 429

From Experiments 1 and 2 in Table 10 it can be seen that, compared with CBAM,
CJAM proposed in this paper improves the mAP of the network by 2.38%. Compared
with E-ACAM, CJAM improves the mAP of the network by 1.57%. From the perspective
of detection speed, the detection speed of the network using CBAM is the lowest, with
only 38.6 FPS. The CJAM proposed in this paper reaches the second-best detection speed,

second only to E-ACAM, but the mAP is higher than it. Figure 16 shows the heatmaps of
some samples.

(a3) (b3) (c3)

Figure 16. The comparison of heatmaps between CBAM and CJAM. (al-a3) The original image,
(b1-b3) the heatmaps of CBAM, and (c1-¢3) the heatmaps of CJAM.
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In Figure 16, the heatmaps of CJAM can cover the area of a small object more perfectly
than the heatmaps of CBAM. Combined with the test results in Table 10 and Figure 16, the
superiority of CJAM is proved.

In order to test the performance of the auxiliary network TIAN, Figure 17 selects some
samples and shows the Grad-CAM of their bottom layers. The bottom layer can pay more
attention to the small objects.

(b1) (D)

(b2) (c2)

(b3) (c3)

Figure 17. The Grad-CAM images. (al—-a3) is the original image, (b1-b3) is the Grad-CAM images of
the network without TIAN. (c1-c3) is the Grad-CAM images of the network with TIAN.

It can be seen in Figure 17, with TIAN added to the network that the detector can pay
more attention to the small objects. The performance of the network to locate small objects
is superior.

5. Discussion

The experimental results have verified the superior performance of BICAM-Detector.
The number of objects in the datasets we select is large, and the two datasets contain a
large number of densely distributed and small-sized objects. The shapes of the objects
is also diverse. The comparison experiments in Tables 6 and 7 show that compared with
other excellent algorithms, such as YOLO V4, YOLO V5s, YOLO V5, and YOLO V7, the
algorithm proposed in this paper has the highest mAP.
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The comparison results show that the algorithm in this paper has better detection effect
than YOLO V7 when facing small objects with dense distribution. In addition, for multi-
directional objects, the algorithm in this chapter can also maintain a good detection effect.

In addition, ablation experiments have been carried out. The simplified backbone
network can maintain a high detection speed, but the mAP is low. The analysis shows
that the performance of the lightweight backbone network is limited. Although a series
of improvement measures reduce the detection speed to a certain extent, mAP is greatly
improved. The improved CJAM proposed in this paper gains the highest mAP and the
detection speed is sub-optimal in the comparison attention mechanisms. The results of
the heatmap comparison have also verified the excellent performance of CJAM on object
feature extraction. Furthermore, the Grad-CAM images shows that the TIAN proposed in
this paper can locate small objects effectively.

Based on the above discussion, our approach can maintain a good balance between
accuracy and speed in detecting remote sensing objects. The performance of our approach
is better than other advanced models.

6. Conclusions and Future Prospects

In the past few decades, CNN-based object detectors have made great progress. How-
ever, remote sensing object detection usually faces the problems of scale diversity, shape
diversity, distribution density, and background complexity. The above problems bring
difficulties in detecting remote sensing objects. In this paper, an efficient remote sensing
object detector is proposed. A lightweight network is used for higher detection efficiency.
The detection scales are adjusted to adapt to the detection of densely distributed objects.
CJAM is proposed based on CBAM for better performance when facing a complex environ-
ment. DPFE and IRFE are adopted for feature enhancement and sensitivity to object scale
diversity. In addition, TTAN and Swin transformer are added for object location and the
improvement of the performance. The test results on DOTA1.5 and VEDAI datasets show
that the proposed algorithm achieves 77.7% and 63.83%, respectively on mAP, which has
better performance compared to other advanced detectors. Moreover, the detection speed
of our approach is also satisfactory.

At present, remote sensing object detection still has a large room for development, and
the future development directions are mainly as follows: (1) The backbone network is of
great concern for feature extraction. Therefore, its structural breakthrough is the key, and
the backbone network designed for the features of remote sensing image will be the focus
of future research. (2) When dealing with very large datasets, accurately labeling objects is
an extremely labor-intensive task. Therefore, high-precision weakly supervised detectors
will be a promising development direction. (3) For the densely distributed objects, the
horizontal bounding boxes will limit the performance of object detection. Therefore, the
oriented bounding boxes are more suitable for the detection of densely distributed objects.
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