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Abstract: Homography estimation for infrared and visible images is a critical and fundamental task
in multimodal image processing. Recently, the coarse-to-fine strategy has been gradually applied
to the homography estimation task and has proved to be effective. However, current coarse-to-fine
homography estimation methods typically require the introduction of additional neural networks to
acquire multi-scale feature maps and the design of complex homography matrix fusion strategies. In
this paper, we propose a new unsupervised homography estimation method for infrared and visible
images. First, we design a novel coarse-to-fine strategy. This strategy utilizes different stages in the
regression network to obtain multi-scale feature maps, enabling the progressive refinement of the
homography matrix. Second, we design a local correlation transformer (LCTrans), which aims to
capture the intrinsic connections between local features more precisely, thus highlighting the features
crucial for homography estimation. Finally, we design an average feature correlation loss (AFCL) to
enhance the robustness of the model. Through extensive experiments, we validated the effectiveness
of all the proposed components. Experimental results demonstrate that our method outperforms
existing methods on synthetic benchmark datasets in both qualitative and quantitative comparisons.

Keywords: homography estimation; coarse-to-fine; infrared image; visible image

1. Introduction

Due to the advancement of multi-sensor technology, multimodal images have received
wide attention and applications in image processing. Homography estimation represents
the projection transformation between two images, an essential technique for the fusion
and alignment of multimodal images [1–3]. Although homography estimation methods are
relatively mature under single image conditions, their complexity and challenges increase
when dealing with infrared and visible images. Therefore, in-depth research on this specific
scenario is critical, especially in application areas such as multi-sensor data fusion [4–6],
environmental monitoring [7], disaster emergency response [8,9], scene classification [10],
laser imaging [11], and 3D hand pose estimation [12].

Traditional methods typically employ extractors [13–15] to extract key points and
descriptors from the image, followed by matching algorithms to obtain the corresponding
points, and direct linear transform (DLT) [16] with outlier rejection [17–19] to estimate
the homography matrix. This approach has been widely adopted in a single imaging
modality, such as visible images, resulting in relatively established solutions. When dealing
with scenes containing both infrared and visible images, however, traditional methods
face challenges such as unstable feature extraction and reduced matching accuracy. This
is because these two imaging modalities have different physical properties and visual
characteristics, e.g., differences in spectral range and illumination conditions [20,21]. These
problems constrain the effectiveness and accuracy of traditional methods in this particular
scenario.
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Traditional methods highly rely on the quality of feature points, whereas deep learning
methods exhibit improved robustness and accuracy due to end-to-end automated feature
learning. DeTone et al. [22] carried out a seminal study, introducing deep learning into
homography estimation, using a VGG-like network architecture that outputs the displace-
ment vectors of the four corners to compute the homography matrix further. In recent
years, there have been numerous research efforts to optimize performance further, some
focusing on coarse-to-fine strategies [23–28]. These strategies typically rely on feature pyra-
mids [23–25], Siamese networks [26], or more complicated deep neural networks [27,28]
such as ResNet50 and Swin Transformer, to obtain multi-scale feature maps. Then, the
multi-scale feature maps are used sequentially to progressively estimate and refine the
homography matrix, as shown in Figure 1a. However, a limitation of these approaches
is their tendency to necessitate the introduction of additional neural network structures
to extract the multi-scale feature maps and the need to manually design complex fusion
strategies for the homography matrices at different scales.
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Figure 1. (a) Traditional coarse-to-fine strategies. These strategies mainly rely on feature pyramids, 
Siamese networks, or other complex deep neural networks to obtain feature maps at different scales, 
leading to the progressive refinement of the homography matrix. (b) Proposed coarse-to-fine 
strategy. Each stage in our regression network is considered a component of different scale levels in 
the coarse-to-fine strategy to obtain multi-scale feature maps. In particular, a homography matrix is 
obtained at each scale and applied to the current scale’s source feature map. This warped feature 
map then serves as the initial input to the next stage. 

In this work, we introduce a novel approach for coarse-to-fine homography 
estimation, as shown in Figure 1b. Unlike traditional methods, we obtain multi-scale 
feature maps through different stages in the regression network, thus avoiding 
introducing an additional neural network structure. First, we input the high-resolution 
feature maps output from the first stage of the regression network into the homography 
estimation module for initial coarse estimation, which does not contain a convolutional 

Figure 1. (a) Traditional coarse-to-fine strategies. These strategies mainly rely on feature pyramids,
Siamese networks, or other complex deep neural networks to obtain feature maps at different scales,
leading to the progressive refinement of the homography matrix. (b) Proposed coarse-to-fine strategy.
Each stage in our regression network is considered a component of different scale levels in the
coarse-to-fine strategy to obtain multi-scale feature maps. In particular, a homography matrix is
obtained at each scale and applied to the current scale’s source feature map. This warped feature
map then serves as the initial input to the next stage.

In this work, we introduce a novel approach for coarse-to-fine homography estimation,
as shown in Figure 1b. Unlike traditional methods, we obtain multi-scale feature maps
through different stages in the regression network, thus avoiding introducing an additional
neural network structure. First, we input the high-resolution feature maps output from
the first stage of the regression network into the homography estimation module for initial
coarse estimation, which does not contain a convolutional layer. At this stage, we perform
channel concatenation of the projected target feature map F1

c and the unprojected target
feature map F1

r and feed them into the homography estimation module to obtain the
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homography matrix H1
vr. H1

vr to the source feature map F1
v produces the warped source

feature map F1′
v , which makes the features in the source feature map closer to the features in

the target feature map. F1′
v and F1

r are used as inputs in the next stage to obtain the feature
maps F2

v , F2
c , and F2

r with halved resolution, which are used to compute the homography
matrix. Similarly, we sequentially use the feature maps with further halved resolution in
subsequent stages to obtain the homography matrix, aiming at a progressive refinement of
the homography matrix. In these stages, we compute the homography matrices between
the warped source and the target eigenmaps so that the homography matrices obtained
in the current stage are all refinements of the homography matrices of the previous stage.
Finally, the final homography matrix is obtained by multiplying the homography matrices
produced in each stage. This strategy promotes a gradual approximation between the
source and target feature maps in each stage, leading to a progressive refinement of the
homography matrix and avoiding the need for complex matrix fusion strategies.

While FCTrans [29] has employed a cross-image attention mechanism to explore fea-
ture correlations between infrared and visible images, it has not adequately considered
the internal feature relationships of individual images. This may lead to the model insuf-
ficiently understanding a single image’s complex structure and local information, thus
ignoring features crucial for homography solving. To tackle this problem, we propose a
local correlation transformer, termed as LCTrans. The LCTrans introduces a self-attention
layer before the cross-image attention layer, thereby capturing the correlations between
local features more accurately. Meanwhile, each submodule in LCTrans also serves as a
component at different scales in the coarse-to-fine strategy, aiming to obtain multi-scale
feature maps to compute the homography matrices at the corresponding scales.

Besides, we note that the feature correlation loss (FCL) [29] is obtained by summing
the triple losses of all FCTrans blocks. When the number of FCTrans blocks changes
significantly, the value of FCL changes correspondingly, leading to a decrease in model
robustness. To address this issue, we propose an improved average feature correlation loss,
called AFCL. AFCL is obtained by averaging the triple losses of all LCTrans blocks, which
makes the model more robust compared with FCL.

Extensive experimental and ablation studies have validated the effectiveness of all
new components. In summary, the main contributions of this study can be summarized as
follows:

• We propose a novel coarse-to-fine strategy that obtains multi-scale feature maps
through different stages in the regression network, thus avoiding the additional
introduction of neural network structures and eliminating the need to design complex
homography matrix fusion strategies.

• We design a local correlation transformer with a self-attention layer to highlight
important features for homography estimation. Each of its submodules also serves
as a component at different scales in the coarse-to-fine strategy, aiming to obtain
multi-scale feature maps.

• We design an improved average feature correlation loss, which increases the robustness
of the model by computing the average of the triple loss over all LCTrans blocks.

We organize the remainder of the paper as follows. In Section 2, we provide an
overview of the research work related to our method, including traditional homography
estimation, deep homography estimation, and the coarse-to-fine strategy in the deep
method. Section 3 elaborates on the proposed coarse-to-fine strategy and LCTrans alongside
a detailed depiction of the model’s loss function. Section 4 presents the experimental results
and demonstrates the effectiveness of the proposed components through ablation analysis.
Some discussions are presented in Section 5. Finally, Section 6 provides some conclusions.

2. Related Works

In this section, we provide a brief overview of related work on our method, including
traditional homography estimation, deep homography estimation, and the coarse-to-fine
strategy in deep homography estimation.
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2.1. Traditional Homography Estimation

Traditional homography estimation methods can be broadly divided into three main
steps. First, feature points need to be detected in the image using feature point extrac-
tors, including scale invariant feature transform (SIFT) [13], speeded up robust features
(SURF) [14], oriented FAST and rotated BRIEF (ORB) [15], binary robust invariant scalable
keypoints (BRISK) [30], accelerated-KAZE (AKAZE) [31], KAZE [32], locality preserving
matching (LPM) [33], grid-based motion statistics (GMS) [34], boosted efficient binary
local image descriptor (BEBLID) [35], learned invariant feature transform (LIFT) [36], Su-
perPoint [37], second-order similarity network (SOSNet) [38], and order-aware networks
(OANs) [39]. Second, a set of corresponding feature point pairs is found by a feature-
matching algorithm. To robustly estimate the homography matrix, it is common to employ
robust estimation algorithms with outlier rejection, such as random sample consensus
(RANSAC) [17], marginalizing sample consensus (MAGSAC) [18], and MAGSAC++ [19].
Finally, a DLT [16] is solved for the homography. Although these methods have proven
effective in visible light scenes, they still exhibit sensitivity to image noise and viewpoint
changes. In particular, the performance of these methods can be challenged in multimodal
images, such as infrared and visible images, due to significant modal differences.

2.2. Deep Homography Estimation

Deep homography estimation methods can be categorized into two classes: supervised
and unsupervised. Supervised methods typically rely on datasets with ground-truth labels
for network training. DeTone et al. [22] were the pioneers of applying deep learning to
the task of homography estimation, and their proposed method outperforms traditional
approaches in robustness. However, supervised methods rely on a large amount of ground-
truth labels, increasing the time and cost of data preparation. In contrast, unsupervised
methods do not require pre-labeled ground-truth labels and are usually optimized by
minimizing the photometric loss between two images. Nguyen et al. [40] proposed an
unsupervised deep learning homography estimation algorithm that trains the network by
minimizing the pixel-level intensity error. In addition, Zhang et al. [41] introduced a content-
aware mask during the estimation process, which aims to reject outlier regions, making
the network more focused on regions that can be successfully aligned by homography. As
research has progressed, some novel strategies have emerged. For instance, Ye et al. [42]
proposed a distinctive homography estimation method based on a weighted sum of eight
predefined homography flow bases, contrasting with the traditional strategy of using four
offset vectors. Nie et al. [43] designed a multigrid deep homography network capable of
global and local multigrid homography estimation to address the parallax issue in images
better.

It is noteworthy that the above methods are primarily designed for visible image
pairs. However, when these methods are applied to infrared and visible images, some
algorithms may have difficulty converging during training. Recently, this issue has received
significant attention from researchers. Debaque et al. [44] presented a supervised and
unsupervised deep homography model and verified its viability on infrared and visible
datasets. Luo et al. [45] proposed a detail-aware deep homography estimation network
to preserve more detailed information in infrared and visible images. To alleviate the
impact of feature differences on homography estimation, they also proposed a multi-scale
generative adversarial network-based method to self-optimize the homography matrix [46].
In addition, Wang et al. [29] proposed a feature correlation transformer method to explicitly
guide feature matching in homography estimation tasks for infrared and visible images. In
this paper, we present a novel coarse-to-fine method that aims to refine the homography
matrix progressively.

2.3. Coarse-to-Fine Strategy in Deep Homography Estimation

In homography estimation tasks, the coarse-to-fine strategy is a prevalent practice.
This strategy usually relies on feature pyramids [23–25], Siamese networks [26], or other
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complex deep neural networks [27,28] to obtain feature maps at different scales. In general,
the initial prediction of the homography matrix is based on lower-resolution feature maps,
which are further optimized using higher-resolution feature maps. First, feature pyramids
are utilized in [23–25] to produce feature maps at three scales. The method at each scale
utilizes the previous scale’s homography matrix to warp the current scale’s source feature
map, and then the homography matrix of the corresponding scale is obtained based on
the warped source map and target feature map. Second, [26] used a Siamese network
to obtain multi-scale feature maps. The approach warps the source image by using the
previous scale’s homography matrix at each scale to obtain the warped source image. The
warped source image and target image are then fed into the Siamese network to generate
feature maps at the corresponding scales. Finally, [27,28] obtain multi-scale feature maps
through different stages in the deep neural network structure. The strategy of [28] is
similar to that of [23–25], but it adopts a different approach to obtaining the multi-scale
feature maps. However, the strategy of [27] is slightly different in that it does not apply the
previous scale’s homography matrix to the current scale’s source feature map. While the
above methods adopt a similar coarse-to-fine strategy, they usually require the design of
additional neural network structures to acquire the multi-scale feature maps and complex
fusion strategies to deal with the homography matrices at each scale. To tackle these
challenges, we introduce a novel coarse-to-fine strategy.

3. Method

In this section, we present an overview of the proposed homography estimation
method. Subsequently, we delineate the novel coarse-to-fine strategy and elucidate its two
constituent components: the LCTrans submodule and the homography estimation module.
Finally, we show some details of the loss function.

3.1. Overview

In this paper, we introduce a new coarse-to-fine homography estimation method.
Given a pair of grey-scale image patches Iv and Ir of size H ×W × 1, as inputs to the
network, we predict a homography transformation from Iv to Ir, denoted as Hvr. First, we
utilize the visible shallow feature extraction network fv(·) and the infrared shallow feature
extraction network fr(·) [29] to transform Iv and Ir into the fine-feature mappings Fv and
Fr, respectively. Then, Fv and Fr are input into LCTrans to obtain the different scales of
the homography matrices. Specifically, the various stages (submodules) of LCTrans are
considered components of different scale levels in the coarse-to-fine strategy, aiming to
generate multi-scale feature maps of size H

2k × W
2k × 2k−1C where k denotes the scale level,

k = 1, 2, 3. In different scales, we feed the projected and unprojected target feature maps
into the homography estimation module after cascading them on the channels to obtain the
homography matrices in the corresponding scales. Finally, we multiply the homography
matrices at different scales to obtain the final homography matrix Hvr. We also introduce a
discriminator (D) to optimize the final homography matrix further. Similarly, by swapping
the input order of the image patches Iv and Ir, we obtain the homography matrix Hrv.
Figure 2 illustrates the network structure of the proposed method.

3.2. Coarse-to-Fine Strategy

In this study, we adopted a coarse-to-fine strategy to refine the homography matrix.
We consider the outputs of different stages (submodules) in LCTrans as feature maps at
different scales. We first make a coarse estimate using the highest-resolution feature map.
Subsequently, we use lower-resolution feature maps sequentially to progressively refine
the homography matrix. This is intended to guarantee the introduction of more global
information at each successive step, thus gradually improving the estimate’s accuracy.
Each scale comprises two fundamental components, the LCTrans submodule and the
homography estimation module, where the LCTrans submodule contains six LCTrans
blocks.
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∼
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∼
F

l

v. In the
LCTrans submodule, we explicitly guide the feature matching by constantly querying the
feature correlation between the source and target features, thus projecting the source image
into the target image in the feature dimension. Then, the LCTrans submodule outputs
the source feature map Fl+6

v , the projected target feature map Fl+6
c , and the unprojected

target feature map Fl+6
r in the k-th scale. Finally, the feature map

[
Fl+6

r , Fl+6
c

]
is constructed

by concatenating Fl+6
r and Fl+6

c in the channel dimension. This feature map is fed to the
homography estimation module to obtain 4 offset vectors (8 values). By utilizing the
DLT [16], we further compute the homography matrix Hk

vr. The homography matrix is
used to warp the source feature map Fl+6

v to obtain the input Fl+6′
v at the next level, i.e.,

Fl+6′
v = Warp

(
Fl+6

v , Hk
vr

)
(1)

where Warp(·) is implemented by a spatial transformation network (STN) [47].
As the position information between Fl+6′

v and Fl+6
c is no longer the same, we only

input Fl+6′
v and Fl+6

r into the patch merging module to obtain the feature maps
∼
F

l+6

v and
∼
F

l+6

r of size H
2k+1 × W

2k+1 × 2kC. We need to project the source image into the target image

in the feature dimension, so we make a deep copy of
∼
F

l+6

r to get
∼
F

l+6

c . By feeding
∼
F

l+6

v ,
∼
F

l+6

r , and
∼
F

l+6

c into the submodule under the (k + 1)-th scale, we can obtain the feature
maps Fl+12

v , Fl+12
c , and Fl+12

r , which in turn produces the homography matrix Hk+1
vr . In this

process, we compute the homography matrix between the warped source and the target
feature maps such that the homography matrix obtained at the current stage is a refinement
of the homography matrix of the previous stage. Similarly, the homography matrices can
be obtained at all scales.

Traditional coarse-to-fine strategies typically apply the current scale’s homography
matrix to the next scale’s source feature map, resulting in the need to design complex fusion
strategies for homography matrices at different scales. In contrast, our strategy applies the
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current scale’s homography matrix to the current scale’s source feature map, resulting in
a warped source feature map that is used to generate the next scale’s source feature map.
The core idea of our strategy is to gradually refine the homography matrix by making the
source and target feature maps progressively closer at each scale. Hence, we do not need to
design a complicated fusion strategy and simply multiply all the homography matrices
Hk

vr to obtain the final homography matrix Hvr. The process can be expressed as:

Hvr = H1
vr × H2

vr × H3
vr (2)

3.2.1. Local Correlation Transformer

FCTrans [29] recently achieved the homography estimation task for infrared and visible
images through explicitly guided feature matching. Inspired by this work, we propose a
further optimized framework, local correlation transformer (LCTrans), as shown in Figure 2.
The framework aims to highlight important features more efficiently and thus improve
the performance of homography estimation. The LCTrans framework consists of four
main components: the patch partition module, the linear embedding module, the LCTrans
submodule, and the patch merging module. Specifically, the different stages (submodules)
in LCTrans are components of different scale levels from coarse-to-fine strategy. Each
LCTrans submodule contains six LCTrans blocks, and the structure of two consecutive
LCTrans blocks is shown in Figure 3.
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tive LCTrans blocks for the source feature map and the unprojected target feature map. W-SA and
SW-SA are self-attention modules with regular and shifted window configurations, respectively. W-
CIA and SW-CIA are cross-image attention modules with regular and shifted window configurations,
respectively. In particular, there is a patch merging module between the two submodules to halve the
size of the feature map. Thus, the inputs to the first LCTrans block in the submodule are denoted

as
∼
F

l−1

r ,
∼
F

l−1

c , and
∼
F

l−1

v , while the inputs to the remaining LCTrans blocks are denoted as Fl−1
r , Fl−1

c ,
and Fl−1

v .

The LCTrans block is built by adding a (shifted) window self-attention module before
the (shifted) window cross-image attention module in the FCTrans block while leaving the
structure of the remaining layers unchanged. This design approach emphasizes significant
features within the image, leading to a higher precision in homography estimation. Specifi-
cally, we first input Fl−1

r , Fl−1
c , and Fl−1

v of size H
2k × W

2k × 2k−1C into the LayerNorm (LN)
layer, respectively, and capture the relationships between the internal features of the image
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by the W-SA module, as shown in Figure 3a,b in the first LCTrans block. Second, a regular
window partitioning strategy and a feature patch partitioning strategy are adopted to
divide the feature map uniformly into windows of size M×M containing M

2 ×
M
2 feature

patches. The feature patch size is 2× 2, and the number of windows is H
2k M ×

W
2k M . We

flatten these windows in the feature patch dimension to obtain a window of size N × D,
where N is M2

4 , and D is 4. This window of size N×D is then fed into the W-SA module, as
shown in Figure 4. Within this module, we obtain Qsi, Ksi, and Vsi through three separate
linear layers. Our self-attention mechanism can be formulated as follows:

Fl
si = so f tmax

(
QsiKT

si√
d

+ B

)
Vsi, i ∈ {r, c, v} (3)

where d indicates the dimensions of Qsi and Ksi, and B represents the relative position
bias of size N × N and Fl

si stands for the output of the W-SA module. A bias matrix,
B̂ ∈ R(M−1)×(M−1), is parameterized, and the values in B are taken from B̂.
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Then, we take Fl
sv and Fl

sc of size N × D as inputs to the W-CIA module to find the
correlation between the source and target feature maps within the window, as shown in
Figure 3a. To address the issue of vanishing gradients, we introduce residual connections
following the W-CIA module. This procedure can be described as:

yl
c = so f tmax

(
QcvKT

cc√
d

+ B
)

Vcc

F̂l
c = yl

c + Fl−1
c

(4)

where Qcv is obtained by applying one linear layer to Fl
sv; Kcc and Vcc are produced by

applying two separate linear layers to Fl
sc, respectively; d denotes the dimensions of Qcv and

Kcc; and B represents the relative positional bias, which is the same as in the self-attention
module. yl

c and Fl−1
c before summing, the yl

c should first be resized to H
2k × W

2k .
As the LCTrans block of Fl−1

r and Fl−1
v does not contain a W-CIA module, we add a

residual connection after the W-SA module to alleviate the gradient vanishing, i.e.,

F̂l
i = Fl

si + Fl−1
i , i ∈ {r, v} (5)

Finally, we feed F̂l
r , F̂l

c , and F̂l
v sequentially into the LayerNorm (LN) layer and the MLP

module to generate the corresponding feature maps Fl
r , Fl

c , and Fl
v. Similarly, we include a

residual connection after the MLP module to address the issue of gradient vanishing. This
process can be written as:

Fl
i = MLP

(
LN
(

F̂l
i

))
+ F̂l

i , i ∈ {r, c, v} (6)
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where LN(·) indicates the operation of the LayerNorm layer and MLP(·) represents the
operation of the MLP module.

The second LCTrans block is processed similarly to the above with one difference,
i.e., it employs a shift window partitioning strategy [48].

3.2.2. Homography Estimation Module

At each scale level, the unprojected and projected target feature maps are connected
in the channel dimension to serve as inputs to the homography estimation module. Our
homography estimation module has a more straightforward structure and does not include
convolutional layers, unlike the complex homography estimation module in the traditional
coarse-to-fine strategy. The module comprises a LayerNorm layer, a global pooling layer,
and a fully connected layer. The homography estimation module ultimately produces four
offset vectors and acquires the homography matrix through DLT [16]. The whole process
can be described by h(·), i.e.,

Hk
vr = h

([
F6k

r , F6k
c

])
(7)

where F6k
r and F6k

c denote the unprojected and the projected target feature maps output by
the homography estimation module at the k-th scale level, respectively.

3.3. Loss Function

In this section, we describe the loss functions of the generator and the discriminator in
detail. The proposed AFCL is explained in the loss function of the generator.

3.3.1. Loss Function of the Generator

The generator’s loss function has four components: feature loss, average feature
correlation loss (AFCL), adversarial loss, and homography loss. The feature loss [29]
aims to promote the feature maps of the warped and target images to have similar data
distributions and can be calculated as follows:

L f (Iv, Ir) = max
(
||F′v − Fr||1 − ||Fv − Fr||1 + 1, 0

)
(8)

where Fr represents the infrared feature map, Fv denotes the visible feature map, and F′v
stands for the warped visible feature map.

The FCL [29] is obtained by summing the triple losses of all FCTrans blocks. However,
as the number of FCTrans blocks increases, the FCL can increase significantly, decreasing
robustness. Therefore, we introduce a novel constraint called average feature correlation
loss (AFCL), which averages the triple loss of all LCTrans blocks in our method to increase
the robustness of the model. AFCL is defined as follows:

Ll
f c

(
Fl

v, Fl
c , Fl

r

)
= max

(∥∥∥Fl
c − Fl

v

∥∥∥
1
−
∥∥∥Fl

r − Fl
v

∥∥∥
1
+ 1, 0

)
L f c(Fv, Fr) =

1
N

N
∑

l=1
Ll

f c(Fl
v, Fl

c , Fl
r )

(9)

where N refers to the number of LCTrans blocks, which is set to 18 in the experiment;
Ll

f c

(
Fl

v, Fl
c , Fl

r

)
stands for the triplet loss produced by the l-th LCTrans block; Fl

v, Fl
c , and Fl

r

denote the source feature map, the projected target feature map, and the unprojected target
feature map produced by the l-th LCTrans block, respectively.

The adversarial loss [29] aims to minimize the difference between the warped and the
target feature map, which can be expressed as:

Ladv(F′v) =
N

∑
n=1

(
1− logDθD

(F′v
)
) (10)
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where logDθD
(·) represents the probability that the warped feature map is similar to the

target feature map. N indicates the batch size. The homography matrix Hrv can be obtained
by exchanging the input order of Ia and Ib. Following this operation, we can define and
compute the loss L f (Ir, Iv), L f c(Fr, Fv), and Ladv(F′r), similarly.

The homography loss [29] enforces Hvr and Hrv to be inverse matrices to each other
and is written as:

Lhom = ‖Hvr Hrv − E‖2
2 (11)

where E stands for the third-order identity matrix.
In summary, the generator’s loss function can be defined as:

LG = L f (Iv, Ir) + L f (Ir, Iv) + λ
(

L f c(Fv, Fr) + L f c(Fr, Fv)
)
+ µ

(
Ladv

(
F′v
)
+ Ladv

(
F′r
))

+ ξLhom (12)

where λ, µ, and ξ refer to the weights of each item set, which are 0.5, 0.005, and 0.01,
respectively.

3.3.2. Loss Function of the Discriminator

The discrimination aims to distinguish the warped feature maps from the target feature
maps, and its loss function is as follows:

LD = LD
(

Fr, F′v
)
+ LD

(
Fv, F′r

)
(13)

where LD(Fr, F′v) and LD(Fv, F′r) represent the losses between the target and the warped
source feature maps.

The loss between the warped visible feature map and the target infrared feature map
can be calculated as [29]:

LD(Fr, F′v) =
N

∑
n=1

(a− logDθD
(Fr)) +

N

∑
n=1

(b− logDθD
(F′v)) (14)

where a denotes the label of the target feature map, whose value is set as a random number
from 0.95 to 1; b represents the label of the warped source feature map, whose value is set
as a random number from 0 to 0.05; logDθD

(Fr)); and logDθD
(F′v) stand for the classification

results of the discriminator to the target and the warped source feature maps, respectively.
Similarly, another loss, LD(Fv, F′r), can be calculated by swapping the input order of Iv and Ir.

4. Experiments

In this section, we commence with a concise introduction to the dataset and experi-
mental particulars. Subsequently, we provide a comprehensive exposition of the evaluation
metrics employed in the experiments. Next, we conduct a comparative analysis, pitting our
method against existing approaches using a synthetic benchmark dataset to substantiate
its superior performance. Finally, we validate the efficacy of the proposed components
through ablation studies.

4.1. Dataset and Experimentation Details

We have evaluated our method using a synthetic benchmark dataset [29,45,46]. This
dataset consists of 49,738 training samples and 45 test samples, each containing unaligned
infrared and visible image pairs of size 150× 150. In particular, the test set offers the
infrared ground-truth image IGT for each image pair, allowing us to show the channel
mixing results of the warped and ground-truth images in qualitative comparisons. For
a more accurate assessment, the test set also provides four sets of truth-matched corner
coordinates for each image pair.

During the training phase, we randomly cropped the image pairs into image patches
of size 128 × 128 as input to the network to increase the training data. Our network
implementation was founded on the PyTorch (version number: 1.10.0) framework and
trained on a computer equipped with an NVIDIA GeForce RTX 3090 (NVIDIA, Santa Clara,
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CA, USA) graphics card. The adaptive moment estimation (Adam) [49] optimizer was
employed throughout the training process, initializing the learning rate at 1× 10−4 with a
learning rate decay factor of 0.8 per epoch. To guarantee stable and efficient training of the
generative adversarial network, we selected a batch size of 50. For the network parameter
configuration of LCTrans, we set the window size to M = 16, the feature patch size to 2,
the channel number in the first stage to C = 18, and the layer numbers in the submodule to
{6, 6, 6}.

4.2. Evaluation Metric

To assess the effectiveness of our method, we utilize the corner error [23,26] as an
evaluation metric. The corner error is calculated by computing the average l2 distance
between the corner points transformed by the estimated and ground-truth homography
matrices. A lower error value indicates a better homography estimation performance. The
corner error [23,26] can be defined as follows

$c =
1
4∑4

i=1‖xi − yi‖2 (15)

where xi and yi are corner point i transformed by the estimated homography and the
ground-truth homography, respectively.

4.3. Comparison with Existing Methods

In this section, we first briefly introduce the comparison method. Then, we perform a
qualitative and quantitative comparison between the proposed method and the comparison
method, respectively, to demonstrate the performance of our method.

4.3.1. Comparative Methods

To comprehensively evaluate the performance of the proposed methods, we compare
them with existing methods, including traditional feature-based and deep learning-based
methods. Within the feature-based methods, we have selected eight methods for com-
parison, which are a combination of four feature extraction algorithms and two robust
estimation algorithms. The feature extraction algorithms include SIFT [13], ORB [15],
BRISK [30], and AKAZE [31], while the robust estimation algorithms include RANSAC [17]
and MAGSAC++ [19]. In addition, the deep learning-based methods include the following
four methods: CADHN [41], DADHN [45], HomoMGAN [46], and FCTrans [29].

4.3.2. Qualitative Comparison

First, we compared the proposed method with the feature-based method, and the
qualitative comparison results are shown in Figure 5. In Figure 5, “Nan” represents
algorithmic failure, i.e., the method fails to compute the homography matrix successfully.
Notably, both SIFT [13] and AKAZE [31] suffered an algorithmic failure in two examples,
as shown in Figure 5d,e,j,k. While the other feature-based algorithms did not fail in these
two examples, they still exhibited image distortion and ghosting to varying degrees. The
common features between infrared and visible images suffer from high uncertainty; thus,
feature-based methods’ performance is generally low. In contrast, our method presents
considerable advantages in solving the homography estimation problem of infrared and
visible images, significantly outperforming feature-based methods.
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for all other visualization results. 

Second, we conduct a qualitative comparison of the proposed method with the deep 
learning-based method, and the results are shown in Figure 6. While CADHN [41], DADHN 
[45], and HomoMGAN [46] perform well, green ghosting can still be seen in specific detail 
areas, including the edges of the door frame, the surface texture of the door, and the contours 
of the individual’s body, as shown in Figure 6a–c. In contrast, FCTrans [29] slightly 
outperforms CADHN [41], DADHN [45], and HomoMGAN [46] in these two examples. 
However, our method performs best and effectively reduces the ghosting phenomenon. 

Figure 5. Comparison with feature-based methods. (a) visible image; (b) infrared image; (c) ground-
truth infrared image; (d) SIFT [13] + RANSAC [17]; (e) SIFT [13] + MAGSAC++ [19]; (f) ORB [15] +
RANSAC [17]; (g) ORB [15] + MAGSAC++ [19]; (h) BRISAK [30] + RANSAC [17]; (i) BRISAK [30] +
MAGSAC++ [19]; (j) AKAZE [31] + RANSAC [17]; (k) AKAZE [31] + MAGSAC++ [19]; and (l) the
proposed algorithm. To achieve the above visualization results, we mix the blue and green channels
of the warped infrared image with the red channel of the ground-truth infrared image, where the
unaligned pixels appear as yellow, blue, red, or green ghosts. Notably, this approach is also used for
all other visualization results.

Second, we conduct a qualitative comparison of the proposed method with the deep
learning-based method, and the results are shown in Figure 6. While CADHN [41],
DADHN [45], and HomoMGAN [46] perform well, green ghosting can still be seen in
specific detail areas, including the edges of the door frame, the surface texture of the
door, and the contours of the individual’s body, as shown in Figure 6a–c. In contrast,
FCTrans [29] slightly outperforms CADHN [41], DADHN [45], and HomoMGAN [46]
in these two examples. However, our method performs best and effectively reduces the
ghosting phenomenon.

4.3.3. Quantitative Comparison

We report quantitative results for all compared methods in Table 1, where rows 3–10
are traditional feature-based methods, and rows 11–14 are deep learning-based methods.
Notably, we introduce a reference term I3×3 in row 2, representing identity transformation.
The computed corner error reflects the original distance difference between point pairs.
To present a thorough and hierarchical evaluation of the performance, we classify the test
results into three difficulty levels based on the corner error: easy (top 0–30%), moderate
(top 30–60%), and hard (top 60–100%). The average corner errors of all test images and
the failure rate of the algorithm are shown in the last two columns of Table 1 where the
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failure rate is the number of test images in which the algorithm fails as a percentage of the
total number of test images. In particular, “Nan” within the table indicates that no corner
error data are available for that difficulty level. This is because the method experienced
numerous failures in the test set, resulting in the absence of data at that level.
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Figure 6. Comparison with deep learning-based methods. From left to right: (a) CADHN [41];
(b) DADHN [45]; (c) HomoMGAN [46]; (d) FCTrans [29]; and (e) the proposed algorithm. We use
red and yellow boxes to highlight error-prone regions and zoom them in for clearer comparison and
analysis.

Table 1. Quantitative results of the proposed algorithm and all compared methods.

(1) Method Easy Moderate Hard Average Failure Rate

(2) I3×3 4.59 5.71 6.77 5.79 0%
(3) SIFT [13] + RANSAC [17] 50.87 Nan Nan 50.87 93%
(4) SIFT [13] + MAGSAC++ [19] 131.72 Nan Nan 131.72 93%
(5) ORB [15] + RANSAC [17] 82.64 118.29 313.74 160.89 17%
(6) ORB [15] + MAGSAC++ [19] 85.99 109.14 142.54 109.13 19%
(7) BRISAK [30] + RANSAC [17] 104.06 126.8 244.01 143.2 24%
(8) BRISAK [30] +MAGSAC++ [19] 101.37 136.01 234.14 143.4 24%
(9) AKAZE [31] + RANSAC [17] 99.39 230.89 Nan 159.66 43%

(10) AKAZE [31] + MAGSAC++ [19] 101.36 210.05 Nan 139.4 52%

(11) CADHN [41] 4.09 5.21 6.17 5.25 0%
(12) DADHN [45] 3.84 5.01 6.09 5.08 0%
(13) HomoMGAN [46] 3.85 4.99 6.05 5.06 0%
(14) FCTrans [29] 3.75 4.70 5.94 4.91 0%

(15) Proposed algorithm 3.66 4.65 5.77 4.80 0%

The black bold number indicates the best result.

From Table 1, we can see that our method achieves optimum performance. The
average corner error decreases significantly from 4.91 to 4.80 compared with the second-
best algorithm, FCTrans [29]. All feature-based methods present algorithmic failures, with
average corner errors generally exceeding 100. Although the average corner error for
SIFT [13] + RANSAC [17] is 50.87, which is superior to the other methods, its failure rate is
the highest. This demonstrates that feature-based methods often have difficulty extracting
or matching enough feature points in infrared and visible scenes, leading to algorithm
failure or poor performance.

In contrast, the deep learning-based method significantly outperforms the feature-based
method, with lower corner errors and no algorithmic failures. Specifically, CADHN [41],
DADHN [45], HomoMGAN [46], and FCTrans [29] have exhibited superior performance on
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the test dataset, with average corner errors of 5.25, 5.08, 5.06, and 4.91, respectively. However,
the proposed method performs better regarding difficulty levels and average corner error and
significantly outperforms the other deep learning-based methods.

4.3.4. Failure Cases

Although the proposed method outperforms the other methods in the averaged corner
error over all test images, it still performs poorly on some test images. Frequent algorithmic
failures occur in feature-based methods, whose corner error is significantly higher than in
deep learning-based methods. Hence, we have only conducted a failure case analysis for
deep learning-based methods, and we present the corresponding visualization outcomes in
Figure 7. To compare more intuitively, Table 2 lists the corresponding corner errors of each
algorithm in the two cases.
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them in for clearer comparison and analysis.

Table 2. Comparison of corner errors for failure cases. Row 2 corresponds to the corner error of the
test image in row 1 of Figure 7. Row 3 corresponds to the corner error of the test image in row 2 of
Figure 7.

CADHN DADHN HomoMGAN FCTrans Proposed Algorithm

5.21 5.04 5.10 5.24 5.25
6.99 7.11 7.04 6.43 6.57

The black bold number indicates the best result.

Row 1 of Figure 7 shows that the DADHN [45] has less ghosting, and its visualization
results are slightly better than the other algorithms. By comparing all the corner errors in
row 2 of Table 2, we can see that DADHN [45] has the lowest corner error. However, the
corner errors of the proposed method and FCTrans [29] are significantly higher than the
rest of the algorithms, and both have comparable corner errors. This phenomenon could be
ascribed to the necessity of both methods to search for the correlation between the source
and target feature maps within a window. The presence of noise in the image significantly
affects this process, leading to reduced performance in homography estimation.

As shown in row 2 of Figure 7, the proposed algorithm has slightly more ghosting than
the others. Based on the results in row 3 of Table 2, FCTrans [29] demonstrates the smallest
corner error while the proposed algorithm has the second smallest corner error. The lower
quantity of common features between the source and target images in the second failure
case is the reason for this outcome. The proposed method and FCTrans [29] are explicitly
guided toward feature matching, making them more capable of model fitting than the other
algorithms, so their corner errors are relatively small. Moreover, the proposed algorithm
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adopts a coarse-to-fine strategy and obtains the final homography matrix by multiplying
the homography matrices at three scales. If the feature matching accuracy at one scale is
insufficient, it will lead to insufficient accuracy of the homography matrix at that scale,
which, in turn, will seriously degrade the performance of overall homography estimation.
In contrast, FCTrans [29] does not adopt the coarse-to-fine strategy and uses more network
layers to find the correlation between the source and target feature maps to obtain the
homography matrix. Thus, FCTrans [29] has lower corner errors than the proposed method
when there are insufficient common features of image pairs.

4.4. Ablation Studies

We conducted a series of ablation studies to verify the proposed components’ ef-
fectiveness. We focused on the following perspectives: the coarse-to-fine strategy, the
self-attention mechanism, the submodule layer numbers, and the proposed AFCL.

4.4.1. Coarse-to-Fine

In the proposed method, we employ different stages (submodules) in LCTrans to
obtain a multi-scale feature map, resulting in a stepwise refinement of the homography
matrix. To demonstrate the effectiveness of the proposed coarse-to-fine strategy, we rely
only on the last submodule to estimate the homography matrix, i.e., Hvr = H3

vr. The
experimental results are shown in row 2 of Table 3. By comparing row 7 with row 2, we see
that the average corner error increases from 4.80 to 4.96. This indicates the effectiveness of
the coarse-to-fine strategy in achieving a progressive refinement of the homography matrix.

Table 3. Results of ablation studies. Each row represents the result of a specific modification of our
method. See the main text for further details.

(1) Modification Easy Moderate Hard Average

(2) w/o. coarse-to-fine 3.95 4.78 5.86 4.96
(3) w/o. self-attention 3.73 4.77 5.78 4.86
(4) Change to {2,2,6} 3.97 4.98 6.15 5.14
(5) Change to {6,2,2} 3.79 4.83 5.88 4.93
(6) Change to FCL 3.95 5.08 6.15 5.16

(7) Proposed algorithm 3.66 4.65 5.77 4.80
The black bold number indicates the best result.

4.4.2. Self-Attention

In the LCTrans block, we introduce self-attention to highlight the internal critical
features of the image to improve the accuracy of homography estimation further. To verify
self-attention effectiveness, we remove the self-attention layer in the LCTrans block in our
experiments, and the results are shown in row 3 of Table 3. Comparing rows 7 and 3,
we see that the average corner error increases from 4.80 to 4.86. Furthermore, to further
demonstrate the efficacy of self-attention, we visualize the first channel of the output feature
maps for each submodule, as shown in Figure 8. Compared with row 1 of Figure 8, the
features presented in row 2 are significantly sparser. This demonstrates that self-attention
helps capture feature relationships within the image more efficiently, thus highlighting
features critical for homography estimation.

4.4.3. Layer Numbers

In the LCTrans framework, the output feature maps of different submodules are used
to compute the homography matrix at different scales. To further analyze the effect of the
submodule layer number on the homography estimation accuracy, we performed a series
of ablation experiments. Specifically, we set the layer numbers of the submodules to {2,
2, 6}, {6, 2, 2}, and {6, 6, 6}, respectively, and compared their performance in homography
estimation, as shown in rows 4, 5, and 7 of Table 3.
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Figure 8. Ablation study of self-attention. Row 1 represents the results after the model removes
self-attention. Row 2 is the result of the model, including self-attention. From left to right: (a) infrared
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submodule; and (c) infrared feature maps produced by the third submodule. To facilitate visualization,
the first channel of each submodule’s output feature map is selected and normalized so that the range
of its pixel values is uniformly distributed between 0 and 255.

When the layer numbers were set to {2, 2, 6}, we observed the highest average of
its corner error. This implies that when the layer numbers in the first submodule are
relatively small, the model is likely to fail to adequately capture the basic structure and key
information in the image, leading to an inaccurate initial estimation of the homography
matrix, which further affects the overall performance. To overcome this limitation, we
have increased the layer numbers in the first submodule to 6, e.g., the number of layers
is set to {6, 2, 2}. By comparing row 4 with row 5, the average corner error decreases
from 5.14 to 4.93. Nevertheless, by further comparing row 7 with row 5, we find that
the average corner error increases from 4.80 to 4.93. This indicates that while the {6, 2,
2} setting succeeds in capturing more low-level features by increasing the layer numbers
of the first submodule, the lower subsequent layer numbers lead to difficulties in fully
extracting high-level features or more complex relationships. In contrast, the {6, 6, 6} setting
maintains an overall deeper structure, ensuring that the model is able to fully extract and
refine features at all levels.

4.4.4. AFCL

To verify the effectiveness of AFCL, we replace AFCL with FCL in our experiments, as
shown in row 6 of Table 3. By contrasting rows 6 and 7, it becomes evident that the corner
error average decreases significantly from 5.16 to 4.80. Therefore, this result suggests that
the network can be trained more effectively by averaging all triple losses. Notably, the
average corner error in row 6 is the highest of all the ablation studies, further demonstrating
the effectiveness of AFCL.

5. Discussion

In this study, we proposed a novel coarse-to-fine homography estimation strategy. The
traditional coarse-to-fine strategy usually relies on additional neural network structures and
artificially designed fusion strategies to obtain multi-scale feature maps and to fuse homog-
raphy matrices at different scales. While these approaches achieve superior performance,
they undoubtedly increase the complexity of the network. Our strategy effectively reduces
this complexity, simplifies the network structure, and outperforms existing methods in
infrared and visible image scenes. By adopting this strategy, the model becomes easier to
understand and implement and may provide a new solution idea for other related tasks.
Moreover, our method also optimizes FCTrans [29] and FCL [29]. First, a local correlation
transformer is designed, which highlights features important for solving homography
estimation by adding a self-attention layer. Second, an average feature correlation loss is
designed, which can effectively improve the robustness of the model.

Although the proposed method shows some superiority on synthetic benchmark
datasets, through in-depth analysis and experimental validation, we find that the model’s
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performance still suffers from degradation when faced with specific challenging scenarios,
e.g., more image noise and fewer common features between the source and target images.
Specifically, the proposed method needs to find the correlation between the source and
target feature maps within a window, so noise in the image can easily cause inaccurate
feature matching, affecting the accurate estimation of the homography matrix. In situations
with fewer common features, the proposed method improves the model fit by explicitly
guiding feature matching, but the feature extraction capability at each scale is limited, which
affects the accuracy of the homography matrix. Moreover, the generalization capability of
our method on real datasets needs to be further improved.

To address the model’s limitations in some specific contexts, we aim to enhance the
model by pursuing the following measures. First, we will further study more robust
feature matching and correlation estimation methods to cope with image noise, such as
adding noise suppression layers or adopting feature extraction and matching strategies
more resistant to noise interference. Second, we plan to further optimize the LCTrans
structure by introducing more contextual information or adjusting the work of the attention
mechanism to improve the model’s performance in scenarios with insufficient common
features. Finally, considering the diversity and complexity of real-world scenarios, we
plan to introduce more real-world data for model training and validation to improve the
model’s generalization ability.

6. Conclusions

In this paper, we have proposed a novel coarse-to-fine strategy for the homography
estimation task of infrared and visible images. Compared with traditional methods, the
proposed strategy obtains the multi-scale feature maps through different stages of the
regression network instead of an additional neural network and avoids complex matrix
fusion operations. Furthermore, we designed a local correlation transformer to highlight
the critical features for solving homography estimation by introducing a self-attention layer
where each submodule serves as a component of a different scale level in the coarse-to-
fine strategy. To enhance the robustness of the model, we designed an average feature
correlation loss. Extensive experimental results have demonstrated the effectiveness of all
the newly proposed components, and the performance of our method outperforms existing
methods in both quantitative and qualitative comparisons. Compared with the second-best
method, FCTrans, the average corner error of the proposed method on the synthetic dataset
decreases from 4.91 to 4.80.

However, the proposed method still has some limitations. For example, the method
does not perform as well as some comparative methods on some of the test images in some
challenging scenarios (image pairs with fewer common features or more image noise),
and there is still room for improvement in its generalization ability on real-world datasets.
Future research will focus on exploring more robust feature matching and correlation esti-
mation methods, further optimizing the structure of the local correlation transformer, and
considering introducing more real-world data for enhanced model training and validation
to improve the model’s generalization ability.
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The following abbreviations are used in this manuscript:
LCTrans Local Correlation Transformer
AFCL Average Feature Correlation Loss
DLT Direct Linear Transformation
FCL Feature Correlation Loss
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
ORB Oriented FAST and Rotated BRIEF
BRISK Binary Robust Invariant Scalable Keypoints
AKAZE Accelerated-KAZE
LPM Locality Preserving Matching
GMS Grid-Based Motion Statistics
BEBLID Boosted Efficient Binary Local Image Descriptor
LIFT Learned Invariant Feature Transform
SOSNet Second-Order Similarity Network
OANs Order-Aware Networks
RANSAC Random Sample Consensus
MAGSAC Marginalizing Sample Consensus
STN Spatial Transformation Network
W-SA Self-Attention with Regular Window
SW-SA Self-Attention with Shifted Window
W-CIA Cross-Image Attention with Regular Window
SW-CIA Cross-Image Attention with Shifted Window
Adam Adaptive Moment Estimation
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