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Abstract: This paper introduces the concept of intelligent control using Tikhonov regularization for
nonlinear coupled systems. This research is driven by the increasing demand for advanced control
techniques and aims to explore the impact of Tikhonov regularization on these systems. The primary
objective is to determine the optimal regularization term and its integration with other control
methods to enhance intelligent control for nonlinear coupled systems. Tikhonov regularization is
a technique employed to adjust neural network weights and prevent overfitting. Additionally, the
incorporation of ReLU activation function in the neural network simplifies thearchitecture, avoiding
issues like gradient explosion, and optimizes controller performance. Furthermore, sliding surfaces
are designed to improve control system stability and robustness. The proposed Tikhonov-tuned
sliding neural network (TSN) controller ensures both stability and superior system performance.
The methodology emphasizes the importance of determining optimal neural network weights and
regularization terms to prevent overfitting, facilitating accurate predictions in inverted pendulum
control system applications. To assess the functionality and stability of TSN, this paper employs
simulations and experimental implementations to control both the rotary inverted pendulum and
the arm-driven inverted pendulum. The results indicate that the proposed TSN methodologies are
effective and feasible.
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1. Introduction

Tikhonov regularization theory, introduced by Andrey Nikolayevich Tikhonov in
the 1950s, provides a systematic introduction to the theory and applications of regular-
ization [1]. It addresses problems with unstable or no solutions, offering an effective
mathematical framework to obtain stable and reliable solutions. The main idea is to in-
troduce a regularization term into the cost function, balancing the trade-off between data
fitting and solution stability. The regularization term, along with the data-fitting term,
contributes to minimizing the cost function. The data-fitting term measures the difference
between the solution and the observed data, while the regularization term constrains the
solution’s characteristics, such as smoothness, sparsity, or minimum energy. By adjust-
ing the regularization term, a balance can be achieved between data fitting and solution
stability [2–6].

The inverted pendulum is a highly typical nonlinear coupled system, and its study
remains continuously relevant in research. Various fields, including intelligent systems,
robotics, industry, and carbon reduction, can benefit from studying the inverted pendulum.
This paper proposes the use of Tikhonov regularization theory combined with intelligent
algorithms for the control of the inverted pendulum. The inverted pendulum is a clas-
sical nonlinear coupled system used to study oscillation and stability. It consists of a
rod with a mass attached to one end, allowing it to rotate and swing along an arc path
under the influence of gravity. The system’s dynamics are driven by gravity and the con-
straint force of the rod, resulting in various dynamic phenomena such as robotic motion,
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periodic motion, chaotic motion, and stability analysis. Due to its nonlinear nature, the
inverted pendulum poses challenges for control and stabilization [7–11]. Recent studies
have explored the decoupling control of nonlinear systems using Tikhonov regularization
theory. By introducing a regularization term, the decoupling of coupling relationships
between system state variables is achieved, enabling the design of separate controllers
for decoupling control [12–15]. Intelligent control systems for the inverted pendulum
often rely on combinations of adaptive control and robust control. The coupling nature of
the inverted pendulum system, where the motion of the rod influences the pendulum’s
position and angle, makes controlling and stabilizing the system more challenging [16–27].
To address the challenges posed by the inverted pendulum system, this paper proposes
the combination of a neural network with Tikhonov regularization theory for intelligent
decoupling control. Sliding mode control (SMC) is employed for decoupling control in
inverted pendulum systems to alleviate interactions among different variables. However,
SMC encounters challenges, including computational burden [18], slower convergence [20],
and singularity problems [22]. This paper introduces aTikhonov-tuned sliding neural
network (TSN) controller, which leverages sliding control for decoupling and incorporates
Tikhonov parameters to train a neural network. These parameters are then integrated into
the sliding surface to ensure system stability.

The problem statement of this paper revolves around achieving intelligent decoupling
control for the inverted pendulum by combining a neural network with Tikhonov regu-
larization theory. The primary objective is to develop an intelligent control approach that
effectively decouples the system while maintaining stability through the sliding neural
network which is adjusted by the Tikhonov regularization term. This research combines
theoretical advancements with practical implementation to contribute to the field of intel-
ligent control systems for the inverted pendulum, with potential applications in various
industries and fields.

The contributions of this paper build upon the related literature on Tikhonov reg-
ularization, establishing its connections with sliding mode control and neural networks
by using simulations and experiments. These foundations contribute significantly to the
paper’s first contribution, as regularization in Tikhonov regularization and sliding mode
control both aim to achieve robustness and stability in control systems. A critical aspect
of this paper’s approach involves the selection of appropriate regularization terms, nu-
merical simulations, and practical operations. This plays a crucial role in optimizing the
performance of sliding mode control using neural networks.

2. Tikhonov Regularization Theory

In a standard linear regression model, the objective is to minimize the prediction
mean squared error. However, if the data are limited or the number of features is large,
the model can become overly complex and start fitting noise in the training data. This
can lead to overfitting, where the model performs well on the training data but poorly on
new, unseen data. To address the overfitting issue, we employed Tikhonov regularization.
In this approach, we aimed not only to minimize the sum of squared errors but also to
incorporate a regularization term into the loss function. This regularization term penalized
large coefficient values [1–6].

For example, let us consider a linear regression model with two features (x, y), where
the model equation is as follows:

p = w1x + w2y + b (1)

where w1 and w2 are the coefficients of the features, b is the intercept term, and p is the
model output.
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In Tikhonov regularization, the loss function will include an additional term propor-
tional to the L2 norm of the coefficients:

loss =
1
N ∑ [(p_pred− p_actual)2 + λ(w2

1 + w2
2)] (2)

where N is the number of data points, p_pred is the predicted value, p_actual is the actual
value, and λ is the regularization term. The purpose of this Tikhonov equation is to
balance the accuracy of the predicted values with the complexity of the model. The first
term, the mean squared difference, measures the discrepancy between the predicted and
actual values, emphasizing the importance of accurate predictions. The second term, the
regularization term, helps to control the model’s complexity by penalizing large weight
values. The regularization term λ determines the trade-off between fitting the data well and
keeping the weights small. A higher λ value increases the regularization effect, promoting
smaller weights and potentially reducing overfitting. Conversely, a lower λ value gives
more weight to accurate predictions, allowing for larger weight values. By optimizing
this Tikhonov loss function, the goal was to find the best combination of weight values
that minimized the overall loss and achieved a balance between accurate predictions and
model complexity.

By including the regularization term, the model was encouraged to keep the coeffi-
cients (w1 and w2) small while still fitting the data. The values for w1 and w2 in the Tikhonov
equation were typically obtained through an optimization process. The specific approach
to obtaining these values depended on a gradient descent approach, which is an iterative
optimization algorithm that aims to find the minimum of a function. In the context of the
Tikhonov equation, gradient descent can be used to update the values of w1 and w2 by
iteratively adjusting them in the direction of the steepest descent of the loss function. The
regularization term λ controls the degree of regularization applied. A larger λ value leads
to smaller coefficient values and simpler models. In summary, Tikhonov regularization
penalizes large coefficient values in a linear regression model, helping prevent overfitting
and making the model more balanced, with better generalization ability.

To illustrate this concept, let us demonstrate the prediction of a sine function using
the Tikhonov regularization method. First, we generated data for the sine function and
defined a Tikhonov regularization function. This function utilized matrix operations to
compute the regression parameters, denoted as w. Subsequently, we set the regularization
term λ and constructed a design matrix X of size n. Utilizing Equation (2), we calculated
the minimum Loss to use the Tikhonov regularization function for prediction and stored
the results in y_pred. Finally, we plotted the original sine function and the predicted results
of Tikhonov regularization as the blue and red curves, respectively (refer to Figure 1).
Tikhonov regularization has been proven to be a valuable technique in control systems,
offering stability and reliable solutions for problems with unstable or nonexistent solutions.

When performing polynomial fitting, as the polynomial degree n was set to 5 or higher,
the polynomial fitting model became very flexible and could fit every point in the training
data, including the noise. This led to the black sine function curve on the graph almost
overlapping with the “λ = 0.01” red dash line, which is overfitting. However, such a model
may have poor predictive capability on new data because it focuses too much on specific
features of the training data and fails to capture the overall trend.

To address the overfitting issue, we could adjust the regularization term λ to a value
of 10, as shown by the purple dashed-double-dot line at the bottom. A larger value of λ
penalized the model’s parameters more strongly, reducing the risk of overfitting. We could
try adjusting the value of λ to find the optimal balance point, such as λ = 0.1, as shown by
the blue dot line in the middle, which could achieve a balance between fitting the training
data and the predictive performance on new data. Figure 1 shows the simulation results
of adjusting the value of λ to find the optimal equilibrium point, avoiding overfitting
and achieving the best prediction of the sine wave. The different λ yielded a different
system performance, as demonstrated in Figure 1. By varying the λ value, we could observe
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different levels of system stability, response time, overshoot, and other performance metrics.
This allowed for fine-tuning of the system’s behavior based on the specific requirements
of the application. Therefore, Figure 1 serves as a visual representation of how different λ
values impacted the system’s performance, providing valuable insights for selecting the
most suitable λ value in practical applications.
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3. Intelligent Algorithm Design

The inverted pendulum represents a classic control system problem, wherein a pole is
mounted onto a moving cart, and the objective is to keep the pole upright. The primary
task of the controller is to generate control signals based on the system’s state, including
the pole’s angle and the cart’s position, to maintain balance.

Typically, we would establish a mathematical model to describe the dynamics of the
inverted pendulum and use that model for controller design. Tikhonov regularization can
be applied to the parameter estimation problem in controller design. In this case, the cost
function could be formulated to minimize the error between the system output and the
desired output, while incorporating a Tikhonov regularization term to constrain the size
and complexity of the parameters. By adjusting the regularization term, a balance could
be achieved between fitting the observed data and ensuring the smoothness of the control
parameters. Therefore, the first step involved simplifying the nonlinear coupled system
into a linear system for design purposes, while the remaining nonlinear characteristics
were addressed by the sliding neural network controller. For the linear parts, LQR (linear
quadratic regulator) control could be used. For the nonlinear components, Tikhonov
regularization could be applied to tune the weights of the neural network. For sliding
mode control, the sliding surfaces contributed to the improved performance and robustness
of the inverted pendulum system. This enabled adaptation to uncertainties, noise, and
model errors through parameter estimation and facilitated the generation of suitable control
strategies to stabilize the inverted pendulum and enhance overall performance.

Therefore, this paper proposes the design method of the Tikhonov sliding neural
network (TSN) controller, as shown in Figure 2, which combines Tikhonov regularization
with a neural network to achieve intelligent control of the inverted pendulum. In this
section, a step-by-step explanation is provided of how to combine and compute Tikhonov
regularization, neural networks, and sliding mode control. The process starts by setting
the goal of achieving intelligent control for nonlinear systems through the application of
Tikhonov regularization within the framework of sliding mode control. A sliding mode
controller is then established to control the system by sliding its state onto a specific sliding
surface to achieve the desired control effect. Neural networks are introduced as a crucial
component to monitor and adjust the regularization terms in Tikhonov regularization,
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utilizing their learning and adaptive adjustment capabilities. Finally, the combination of
Tikhonov regularization, neural network, and sliding mode control is realized through
iterative computation and application of the controller, which involves integrating the
system’s inputs and outputs with the controller and adjusting the regularization terms and
neural network weights based on the specific circumstances.
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3.1. Linear Model

This subsection indeed serves as a foundation for introducing our proposed nonlinear
control method. In this subsection, we establish the groundwork by presenting classical
optimal control techniques.

Consider a mathematical linear model presented as follows:

.
x = Ax + Bu (3)

where A ∈ Rmxm and B ∈ Rm are system dynamics matrices, while x and u are all m-
dimensional vectors of time t. To introduce the controller into the system, we can represent
the control input as u = −Kx, where K ∈ Rmxm is the sought controller gain matrix.
Substituting u back into the dynamics model, we obtain the following:

.
x = Ax− BKx= (A− BK)x (4)

Below, we will briefly introduce one method to derive the solution for K. Suppose our
goal is to design a state feedback controller that keeps the angle of the inverted pendulum
near the target angle. According to the LQR theory [8,25], our control objective can be
defined as minimizing the cost function J:

J =
∫

[xTQx + uTRu]dt (5)

where Q and R represent the state weight matrix and control weight matrix, respectively,
both having a square dimension of m. We want to adjust the controller gain matrix K to
minimize J. The optimal solution can be derived through algebraic or differential methods
in optimal control theory. One common approach is to solve the algebraic Riccati equa-
tion [26]. By solving the following Riccati equation, we can obtain the optimal controller
gain matrix K:

ATP + PA− PBR−1BTP + Q = 0 (6)

where P is the symmetric positive definite state feedback gain matrix with a square di-
mension of ‘m’. Once it is determined, the controller gain matrix K can be selected using
the following formula, ensuring that the system described by Equation (6) has negative
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eigenvalues to maintain the stability of Equation (4). The detailed derivation process is
presented in Appendix A.

KLQR = R−1BTP (7)

Thus, the optimal state feedback controller can be expressed as:

uLQR = −KLQRx (8)

3.2. Nonlinear Model

From Equation (5), this approach optimizes the controller’s performance by minimiz-
ing the cost function J and guiding the system’s state towards the desired stable point.
However, in certain cases, it may be necessary to introduce a regularization term into the
controller design to address specific issues. For example, when the system’s model contains
uncertainties or noise, a sliding mode neural network can be employed to estimate the
controller’s parameters, thereby improving robustness and performance.

A canonical nonlinear system is represented as below:

.
x = f + Gu + d (9)

where x, f, u, and d are the state vector, dynamic with respect to x; control input vector;
and disturbance vector, respectively. Each of these vectors has a dimension of ‘m’ and
varies over time. G is an m-dimensional square system matrix. The unknown disturbance
is assumed to have a known limited norm bound, i.e., ‖d‖ ≤ db. The control law can be
deduced from Equation (9), and the expression is as follows:

u = G−1(
.
x− f− d) (10)

Then, according to the universal approximation theorem [25], there should be an
optimal control law, which is expressed as follows:

u∗ = G−1(
.
xd − f− d−Ke); (11)

by defining the tracking error vector and the error dynamic as below:

e∆xd − x. (12)

.
e = Ke + G(u∗ − u), (13)

where e ∈ Rm.
If we assume that u∗ is equal to u (as indicated in Equation (13)), we can then select an

appropriate value of K as defined in Equation (8) to ensure the convergence of e.
However, in practice, the f and d are always unknown, making the design u∗ of Equa-

tion (12) challenging. Many recent studies have attempted to address this problem, but they
encounter issues with complex manipulations and inadequate performance. In this paper,
we propose a simple approach to designing the controller. We utilize a Tikhonov-tuned
sliding mode neural network (TSN) controller to handle model-free problems, ensuring that
the states closely approach the desired region. Simultaneously, a sliding mode controller
is employed to maintain the system’s states on the sliding surface, eventually allowing u
to approximate u∗, leading to improved performance and making sure that the states are
converged. The designed controller is as follows:

u = uLQR + uTSN (14)

where uLQR represents an LQR linear controller discussed in Section 3.1, while uTSN denotes
a TSN controller. The proposed TSN control system is introduced in Figures 2 and 3 and
will be further elaborated in the following sections.
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3.3. Tikhonov-Tuned Neural Network (TNN) Architecture

Figure 3 depicts a four-layer Tikhonov-tuned neural network (TNN). It comprises
the input, activation, rule, and output layers. The energy function is minimized using the
gradient descent method to obtain optimal weights for the TNN. Signal propagation and
basic functions in each layer of the TNN are introduced as follows:

(a) Input Layer: In this layer, each node is associated with net input and net output
values, denoted as xi and yi,j, respectively.

neti = xi (15)

yi,j = fi,j(neti) = neti, i = 1, 2, · · · , m, and j = 1, 2, · · · , m (16)

where xi represents the i-th input to the node of Layer 1 and m is the number of input
variables. The link weights in this layer are all set to unity.

(b) Activation Layer: Each node in this layer performs an activation using the ReLU
(rectified linear unit) function, which is defined as ReLu(x) = max(0, x) [28]. The deriva-
tive of ReLU is 1 when the input number is greater than zero; otherwise, it is equal to 0.
ReLU will be used as the activation function for the j-th node of the i-th input.

netij = max(0, yi,j) (17)

(c) Rule Layer: The cardinality of this layer determines the count of fuzzy rules, and its
neuron count profoundly influences the rule complexity. Each individual node, represented
by ∏, plays a pivotal role as it multiplies the incoming signal, giving birth to the emergent
output specific to the j-th rule node. This dynamic interaction fosters diverse rule behaviors,
leading to intricate and versatile system responses. The formal expression is given by the
following equation:

yjk = Π
ij

netij, i = j = 1, 2, . . . , m (18)

(e) Output Layer: This comprises multiple nodes, each referred to as an output node,
responsible for performing the crucial defuzzification operation. Among these nodes, we
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have a particular one labeled as Σ which calculates the overall output by summing all
incoming signals. This summation process is denoted by the following equations:

netk = ∑
j

wjk yjk (19)

uk = fk(netk) = netk, k = 1, 2, · · · , m (20)

In Equations (19) and (20), we can further describe the components involved in this
calculation:

wjk: The link weight, representing the output action strength of the j-th column output
associated with the k-th rule.

yjk: The j-th input to the node of Layer 4.
m: The total number of output nodes.
uk: The k-th column output of the TNN controller.
ReLU activation has the property of avoiding the vanishing gradient problem and

promoting faster training by allowing gradients to flow when inputs are positive. As
a result, the TNN architecture can handle zero input values and propagate gradients
effectively, even in the absence of bias neurons.

Furthermore, Tikhonov regularization factors are incorporated into the TNN to ensure
stability. These regularization factors help prevent overfitting and improve the generaliza-
tion capability of the network.

3.4. Neural Network Controller Design

According to the gradient theory, we consider a single neuron to derive the equations
in the neural network. To tune the weights of the TNN, the energy function and cost
function of the Tikhonov are defined as follows to employ the gradient operation:

E1(u, w) =
1
2
(u∗ − u)2 (21)

E2(w) =
λ

2
w2 (22)

where λ is the Tikhonov regularization term and E2(w) is the cost function of the Tikhonov
function. Thus, the total energy function can be presented as follows:

E(u, w) = E1(u, w) + E2(w) (23)

The gradient calculus of E with respect to w can be obtained as follows:

∆wj = −η
∂E
∂wj

= −η(
∂E1

∂u
∗ ∂u

∂wj
+

∂E2

∂wj
) = (u∗ − u) ∗ yk + λwj (24)

where η is the learning rate. Similarly, the activation layer update law can be as follows:

∆wi = −ηΣ
i

∂E
∂wi

= −η(
∂E
∂yj
∗

∂yj

∂wj
) = yj∑

j
wj ∗ (u∗ − u) ∗ yj + λwi (25)

Up until this point, the derivations are complete, and the entire TNN design is now
finalized. The weight update laws for the activation layer and rule layer are presented
in Equations (24) and (25), respectively. These two layers play a crucial role in the TNN.
Additionally, the Tikhonov regularization term is incorporated to prevent overfitting.
Moreover, the model demonstrates the capability to predict the next state of the system and
generate appropriate control forces to address uncertainties and disturbances.

In the derivation process, the variable x is used. However, in the subsequent practical
application, the error variable e is substituted for x in calculations.
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3.5. Sliding Mode Controller Design

From Equation (12), according to the universal approximation theorem [25], suppose
there exists an optimal u∗ such that

u∗ = uLQR + ε (26)

where the term ε denotes the approximation error. uLQR is the LQR controller discussed in
the previous section.

By the substitution of (26) and (14) into (13), the error dynamics become

e . = Ke + G(ε− uTSN) (27)

where ε is assumed to be bounded by 0 ≤ ‖ε‖ ≤ ‖ζ‖, where ζ is a carefully selected
positive constant vector. The sliding mode controller aims to mitigate the influence of the
approximation error. In the forthcoming section’s demonstration, the TSN controller can be
achieved in the following manner:

uTSN = ‖ζ‖sign(GTPe) (28)

where ‘sign’ represents the sign function, which can be replaced with a saturation function
to mitigate chattering effects. Furthermore, P ∈ Rm×m is a symmetric positive definite
matrix.

3.6. Stability Analysis

According to the stability theorem of nonlinear systems [25], let us define the Lyapunov
function as follows:

V =
1
2

eTPe (29)

The derivative of the Lyapunov function can be expressed as follows:

.
V =

1
2
(

.
eTPe + eTP

.
e). (30)

From Equations (27) and (30), we arrive at the following equation:

.
V = 1

2 [e
TKTPe + εTGTPe− uT

TSNGTPe] + 1
2 [e

TPKe + eTPGε− eTPGuTSN ]

= −eTQe + εTGTPe− uT
TSNGTPe

(31)

where Q is a positive definite symmetric matrix and K is a Hurwitz matrix. Matrix Q can
be utilized to represent the common part of KTP and PK in Equation (31), which is given
by

Q = −1
2
(KTP + PK). (32)

Substituting Equation (28) into (31) will result in the following:

.
V = −eTQe + εTGTPe− uT

TSNGTPe

= −eTQe + εTGTPe− ‖ζ‖sgn(GTPe)
T

GTPe
≤ −‖e‖mineig(Q)‖e‖+ ‖ε‖

∥∥∥GTPe
∥∥∥− ‖ζ‖∥∥∥GTPe

∥∥∥
≤ −‖e‖mineig(Q)‖e‖+ (‖ε‖ − ‖ζ‖)

∥∥∥GTPe
∥∥∥ ≤ 0;

(33)

where mineig(Q) is the minimum eigenvalue of the matrix Q. We can select a large eigen
diagonal matrix and the positive vector ζ in the context of Lyapunov stability. The choice
of a large eigen diagonal matrix is indeed a key factor in ensuring the Lyapunov stability of
the system. In summary, the choice of a large eigen diagonal matrix is a deliberate strategy
to ensure the Lyapunov stability of the system, and the selection of the positive vector ζ is a
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critical part of this analysis, but it may vary depending on the context and specific stability
requirements of the problem at hand. Since the error vector e is measured using the 2-norm,
the right-hand side of Equation (27) remains bounded, ensuring a stable behavior for our
system. Additionally, based on Equations (29) and (33), we can find the Lyapunov function
V using the 2-norm and

.
V infinity norm, respectively. Applying Barbalat’s Lemma, which

guarantees the convergence of states, we confidently conclude that the error vector e will
approach zero, demonstrating the stability of the system.

The aforementioned design methods are summarized in Figure 4, with each block
marked with its corresponding equations.
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4. Simulation Result
4.1. Example 1: Cart Inverted Pendulum

By analyzing the linear quadratic regulator (LQR) theory, we could determine the
stability of the linear model and obtain the controller K. Consistently observing a negative
derivative in Lyapunov analysis indicates stability in the nonlinear system. Introducing
Tikhonov regularization λ allowed us to fine-tune the weights of the TNN in order to
prevent overfitting and achieve accurate predictions to compensate for the control forces of
the nonlinear system, especially in cases of coupled systems. The training objective was to
drive the sliding surface, influenced by various errors, to converge towards zero.

Consider the model of the inverted pendulum as below: [25]

.
x1 = x2
.
x2 = g sin(θ)−aml

.
θ

2
sin(2θ)/2−a cos(θ)u

4l/3−aml cos2(θ)

(34)

where a = (M + m)−1, x1 = θ is the angle from the vertical, and u is the control force
(Newton). The simulation model for an inverted pendulum was utilized as described below
and adhered to the specifications outlined in Table 1.
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Table 1. Simulation parameters of cart inverted pendulum.

l M m g θ Position

Length of
pendulum Mass of cart Mass of pendulum Acceleration

due to gravity
Initial angle from

the vertical Initial position

20 cm 1 kg 0.2 kg 9.8m/s2 −1.05 radians 0 cm

Based on the procedure outlined in Section 3.1, the linearized model around the
original point couldbe obtained as follows:

A =

[
0 1

17.3 0

]
B =

[
0
−0.21

] (35)

Subsequently, the values of K couldbe determined as K= [−258.12 −170.35]; then, the
eigenvalue of A− BK was [−1.0632 −34.7103]. As shown in Figure 2, the control system
employed a sliding neural network to handle the nonlinear coupling characteristics and
dynamically adjust the weights of the TNN to ensure both stability and predictability. After
comparing the LQR, sliding neuralnetwork (SN), and Tikhonovsliding neural network
(TSN) methods, as depicted in Figure 3, under the condition of requiring both the position
and the angle to be zero, it becameevident that the TSN method excelled in decoupling. The
weight factor values, presented in matrix format, were derived from the aforementioned
sections. These values were stored in a matrix, where each row represented a distinct factor
or variable, and each column corresponded to the relevant weight factor value. The optimal
regularization term λ was set to 0.1, and initial weightings were all set to 0.15. According
to Equation (28), the matrics of P = diag

[
10 10

]
, G = diag

[
1 1

]
, and ζ = diag

[
10 10

]
.

Performance indices serve as quantitative measures to evaluate the performance of the
simulation of an inverted pendulum system. These indices provide insights into various
aspects, including stability, tracking accuracy, control effort, settling time, and energy
efficiency. Figure 5 clearly demonstrates that the TSN controller outperformed both the
LQR and theSN controllers.
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4.2. Example 2: Rotary Inverted Pendulum

The rotary inverted pendulum represents a unique variant of the inverted pendulum,
distinct from the cart inverted pendulum, which is governed by the linear back-and-forth
motion of a cart. To assemble the rotary inverted pendulum, we affixed a connecting pivot
arm to a servo motor’s shaft, employing rotational torque to manage another connecting
pendulum fastened to its trailing end. When the connecting pendulum remained motion-
less, it hung vertically due to gravity. Upon applying a driving torque, it overcame gravity,
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assuming an upright vertical position. Consequently, it did not follow a linear path but
instead executed a circular rotation. The control principles for this system resemble the
control laws detailed in this paper. Both systems are interconnected, nonlinear systems,
where a single input governs two outputs. The connecting pivot arm’s position transi-
tioned from 0 degrees and eventually returned to 0 degrees. The pendulum’s position
oscillated from 0 degrees to either positive or negative 180 degrees, contingent on its
initial rotation direction, whether clockwise or counterclockwise. Figure 6 illustrates the
architectural diagram.
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The equation representing the rotary inverted pendulum model is provided below [29]:

.
x1 = x3.
x2 = x4

.
x3 = −0.5 sin 2x2

∆ (P2P4x2
4 + P4P5x3x4 + P2P3x2

3 cos x2 + P3P6)

+−0.5P4
∆ (−2P3x2

4 sin x2 + 2P7x3 − 2P8)
.
x4 = −0.5 sin 2x2

∆ (−P3x2
4 + P2P3x2

4 cos x2 + P3P5x3x4 cos x2 + P1P2x2
3 + P2

2 x2
3 sin 2x2)

+− cos x2
∆ (P3P7x3 − P3P8u) + −P6 sin x2

∆ (P1 − P2 sin2 x2)

(36)

where
[
x1 x2 x3 x4

]T
=
[
θ1 θ2

.
θ1

.
θ2

]T
, P1 = m2l2

1 + J1, P2 = m2c2
2, P3 = m2l1c2,

P4 = m2c2
2 + J2, P5 = m2l2

1 , P6 = m2c2g, P7 = k2
b/Rm, P8 = kt/Rm, and ∆ = P1P4 +

P2P4 sin2 x2 − P2
3 cos2 x2. For a comprehensive list of simulation and physical parameters,

please refer to Table 2.

Table 2. Simulation parameters of rotary inverted pendulum.

l1,l2 m1,m2 C1,C2 J1,J2 Kb,Kt Rm x1,x2 x3,x4

Length of
arm and

pendulum

Mass of arm
and

pendulum

Distance to
center of

mass of arm
and

pendulum

Inertial of
arm and

pendulum

Constants of
back-emf and

torque

Armature
resistance

Angular
displacement

of arm and
pendulum

Angular
velocity of
arm and

pendulum

16 cm 56 g and 22 g 8 cm 1.57 and 1.79
kg × cm2 0.01826 2.56 Ω 0◦, 120◦ 0◦/s, 0◦/s
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As shown in Example 1, following the procedure outlined in Section 3.1, we couldob-
tain the linearized model around the original point in the following manner:

A =


0 0 1 0
0 0 0 1
0 −7.12 −0.09 0
0 59.33 0.07 0


B =

[
0 0 7 −5.4

]T .

(37)

Utilizing the identical approach as illustrated in Example 1, we could obtain the feed-
back gain as K= [−9.8−114.4−6.22−15.48]. The optimal regularization parameter was con-
figured at λ=0.05, and initial weightings were all set as 0.1.According to Equation (28), the
matrics of P = diag

[
20 20 15 15

]
, G = diag

[
2 2 3 3

]
, and ζ = diag

[
1 1 5 5

]
.

The simulation began with initial conditions set to θ1 = 0◦ and θ2 = 120◦, and the results
are compared to those of LQR and SN in Figure 7.
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4.3. Example 3: Arm-Driven Inverted Pendulum

The arm-driven inverted pendulum is a robotic system consisting of two freely rotating
links. These links operate on a common plane, with the lower motor applying torque to
rotate the arm, which, in turn, drives the upper link. The primary objective of this system
is to maintain equilibrium, ensuring both poles remain upright and balanced without
toppling over. Due to the influence of gravity on both connecting rods and the fact that only
one force propels them, nonlinear characteristics interplay and mutually affect each other.
Consequently, controlling this system proves to be more challenging compared to a rotary
inverted pendulum, as it represents a highly coupled nonlinear system. It necessitates not
only preventing the driving link from falling but also ensuring the arm remains stable.
In this paper, we propose a method to address the issue of coupling in this system. The
architecture diagram of arm-driven inverted pendulum is shown in Figure 8.

.
x1 = x3.
x2 = x4.

x3 = 1
∆ [(P2∆1 − (P2 + P3 cos x2)∆2].

x4 = 1
∆ [P1 + P2 + 2P3∆2 cos x2 − (P2 + P3 cos x2)∆1]

(38)

where

∆ = (P1 + P2 + 2P3 cos x2)P2 − (P2 + P3 cos x2)
2

∆1 = P3x3x4 sin x2 −
k2

b
Rm

x3 + P3x4(x3 + x4) sin x2 − P4 cos x1 − P5 cos(x1 + x2) +
kb
Rm

e
∆2 = −P3x2

3 sin x2 − P5 cos(x1 + x2)

; (39)
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x1 x2 x3 x4

]T
=
[
θ1 θ2

.
θ1

.
θ2

]T
, P1 = m1c2

1 + m2l2
1 + J1, P2 = m2c2

2 + J2,
P3 = m2l1c2, P4 = (m1c1 + m2l1)g, and P5 = m2c2g. All parameters were identical to those
in example 2, specifically in Table 2. Following the same procedure as in example 2, we
linearized the model around the original point as shown in Equation (40).

A =


0 0 1 0
0 0 0 1
−19.9 9.8 −0.03 0
74.4 100.5 −0.03 0


B =

[
0 0 2.16 1.89

]T .

(40)

The feedback gain was determined as follows: K= [69.16, 141.81, 1.44, 9.78]. We
set the optimal regularization parameter to λ= 0.03, and initial weightings were all set
as 0.1. According to Equation (28), the matrics of P = diag

[
30 30 50 50

]
, G =

diag
[
20 20 30 30

]
, and ζ = diag

[
10 10 25 25

]
. The simulation was initiated with

initial conditions x1 = θ1,x2 = θ2, x3 =
.
θ1, and x4 =

.
θ2, which were defined as in Figure 8

and set to θ1 = 35◦ and θ2 = 30◦; the results were compared to those obtained using the
LQR and SN methods, as shown in Figure 9.
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Figure 9. (a) Results of 1θ ; (b) results of 2θ ; (c) control force. 

The simulation results reveal that both the cart and rotary inverted pendulums ex-
hibit low coupling, which makes it difficult to distinctly demonstrate the advantages of 
the TSN control law when compared to the other two control laws. However, in the case 
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The simulation results reveal that both the cart and rotary inverted pendulums exhibit
low coupling, which makes it difficult to distinctly demonstrate the advantages of the TSN
control law when compared to the other two control laws. However, in the case of the
arm-driven inverted pendulum system, which is a highly coupled nonlinear system, the
superiority of TSN becomes evident.

During the arm-driven inverted pendulum simulation, we observed that the LQR
control exhibited oscillations before converging to the steady state. In contrast, the SN
control law displayed a longer settling time and higher overshot in transient response,
making it less effective than the TSN control law. The key differentiator lies in TSN’s
utilization of Tikhonov’s regularization term, which enhanced the decoupling performance
by adjusting the weight of the neural network to improve prediction.

In the following section, we will conduct practical verifications of two types of inverted
pendulums: rotary and arm-driven. Subsequently, we will demonstrate the robustness and
decoupling performance of TSN, compared to implementing the other two methods, LQR
and SN. The LQR and SN controllers face difficulties in real empirical experiments due to
factors such as vibration and the precision of encoders. These factors can indeed render the
system unstable in the steady state.

5. Experimental Operation
5.1. Establishing the Experiment Setup Environment

First, the driver software usb20emurst 2.0 needed to be installed and the environment
needed to be set up. The actual setup utilized a mechanical module of a rotary inverted
pendulum (shown in Figure 10) produced by TeraSoft Inc, Taipei, Taiwan. [29], control
board, power supply, and emulator. Its control principle was the same as the simulation,
with the only difference being an initial swing-up motion. Once it reached the controllable
stage, which was when the angle transmitted by the encoder fell between controllable
regions, the proposed TSN decoupled control law was taken over by the controller. The
software used included TI (Texas Instruments, Dallas, TX, USA) Inc. CCS 2 (Code Composer
Studio 2) [30] and MathWorks Inc., The Natick Mall, MA, USA. MATLAB R14 RTW (Real-
Time Workshop R14) and Simulink R14 [31], while the hardware consisted primarily of a
driver board powered by the TI F2812 DSP chip. After powering on, the JTAG emulator
connection was reset for normal operation, as shown in Figure 11. Then, the Simulink
program interface was opened, as depicted in Figure 12. The system, through RTW,
automatically burned the code into the TI F2812 chip, as depicted in Figure 13.
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5.2. Experiment of Rotary Inverted Pendulum

In this experiment, we commenced our investigation by examining the lower coupling
effect on the rotary inverted pendulum. Upon activation of the inverted pendulum, it
rapidly stabilized, returning to its zero position and angle, as visually depicted in Figure 14.
Figure 14 comprises five subfigures: the leftmost one shows the initial photograph, while
the middle sections illustrate various stages of the pendulum’s motion, and the rightmost
one showcases its stable endpoint. Our results obtained from the TSN controller reveal that
the performance of the inverted pendulum control system is notably superior to that of
both the SN and the LQR controllers.
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While the differences in simulations were relatively small, in real experiments, the
disparities in performance are significant enough to be easily discerned through human
observation. We primarily focused on three key metrics: settling time, overshoot, and
steady-state error, all of which vividly demonstrated the effectiveness of our controller.
Table 3 conveniently summarizes these metrics, unequivocally highlighting the superiority
of our controller. It is worth noting, however, that the LQR controller for the lower coupling
system still encountered challenges when dealing with disturbances and uncertainties.
Even though LQR is a popular control method, it is most suitable for non-coupling linear
systems to maintain robustness, as its fixed gains are based on a linear model. In contrast,
SN and TSN controllers outperform LQR due to their adaptive and predictive capabilities,
while still retaining the advantages of LQR. TSN ranks as the top performer, followed by
SN and LQR.

Table 3. Comparative analysis of rotary inverted pendulum with LQR, SN, and TSN Controllers.

Controller Overshoot Settling Time Steady-State Error

LQR controller high 15 s 5 degrees
SN controller medium 10 s near 0 degrees

TSN controller low 6 s 0 degrees

5.3. Experiment of Arm-Driven Inverted Pendulum

In the context of arm-driven inverted pendulum control, it is evident from Section 4.3
that the LQR controller exhibited oscillations, while the SN controller displayed significant
overshoot. During the implementation phase, it became clear that the LQR controller was
inadequate for executing arm-driven inverted pendulum control, resulting in continuous
pendulum rotation and rendering the system uncontrollable. On the other hand, the SN
controller also struggled to attain a stable steady state and eventually lost control after
a prolonged period, causing the pendulum to rotate continuously. This issue could be
attributed to the limited robustness of the steady-state component, leading to divergence
in the presence of minor disturbances. These observations highlight the limitations of
conventional sliding mode control, with possible factors being the neural network’s lower
predictive accuracy or the hardware’s insufficient computational capability. Therefore, it is
imperative to address these issues when utilizing the SN controller.

In this paper, we propose a solution to these challenges by incorporating a Tikhonov
regularization term into the prediction of neural network weights, which effectively mit-
igates these problems. Additionally, we adopted the ReLu activation function, which
significantly reduced the computational load on the hardware. For a more comprehensive
understanding of arm-driven inverted pendulum operation, please refer to Figure 15, which
provides a visual representation. Furthermore, Table 4 presents a comparative analysis of
the LQR, SN, and TSN controllers.
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Figure 15. Photographs depicting the stages of arm-driven inverted pendulum experiments with
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Table 4. Comparative analysis of arm-driven inverted pendulum with LQR, SN, and TSN controllers.

Controller Overshoot Settling Time Steady-State Error

LQR controller fail fail fail
SN controller large unstable unstable

TSN controller low 16 s near 0 degrees

In conclusion, the feasibility and superiority of the TSN control methodology have
been confirmed through three simulations and two empirical experiments conducted in
real-world experimental operations in Sections 4 and 5.

In the two previous experiments, we measured the encoder’s angle change using the
RTDX sampling time. As illustrated in Figure 16, we observed the pendulum’s steady-state
behavior as it remained at a stable value of −180 degrees.
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Remark 1. Extensive simulation and practical experiments have confirmed the robust anti-
interference capabilities of the TSN controller when applied to the rotary pendulum. In cases
where weak coupling is present, relatively lax initial conditions are permissible. Conversely, when
handling the arm-driven pendulum, which exhibited significantly stronger coupling, it becomes
essential to establish initial conditions within a manageable range to achieve effective decoupling.
Additionally, this system is highly sensitive to interference, and excessive interference is not tolerable.

6. Conclusions

This paper proposed a method that combines the Tikhonov regularization algorithm
with sliding neural network control for nonlinear coupled systems. The purpose was to
explore methods for stabilizing an inverted pendulum, enabling it to exhibit AI (artificial
intelligence)-like stability and predictive capabilities in articulated actuators. Through
mathematical analysis, simulations, and practical implementations, the results demonstrate
compliance with stability and performance requirements, thus proving the feasibility and
superiority of this approach.

The Tikhonov regularization, sliding surface, and neural network methodology pro-
posed in this work differs from recent research in several aspects. Firstly, it provides a
comprehensive and integrated approach by combining multiple control methodologies,
leading to improved system performance and stability. Secondly, the use of the Tikhonov
regularization term helps in effectively adjusting the weights of neural networks and allows
for adaptive learning and real-time adjustments to enhance decoupling ability. Thirdly, the
incorporation of sliding mode control achieves desired control objectives and enhances the
controller’s capability of handling uncertainties and disturbances. Overall, this proposed
methodology offers a novel and effective solution for decoupling control in the inverted
pendulum system, showcasing its superiority and reliable robustness in decoupling.
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Appendix A. Derivation of the LQR

According to the LQR theory, the following derivations are given for defining and
minimizing the cost function J as follows:

J =
∫

[xTQx + uTRu]dt (A1)

where Q and R represent the state weight matrix and control weight matrix, respectively,
both having a square dimension of m. By solving the following Riccati equation, we can
obtain the optimal controller gain matrix K, and Equation (A1) becomes as follows:

J =
∫
[xTQx + xTKTRKx]dt

=
∫
[xT(Q + KT RK)x]dt

(A2)

given that
.
x = (A− BK)x and assuming the existence of a positive definite matrix P such

that:
d
dt xTPx = x .TPx + xTP x . = xT(A− BK)TPx + xTP(A− BK)x

= xT(ATP−KTBTP + PA− PBK
)
x

(A3)

Combining (A2) and (A3), we arrive at the following:

xT
(

ATP−KTBTP + PA− PBK
)

x = −xT(Q + KT RK)x (A4)
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This leads to the following equality:

ATP + PA + Q− PBK = KTBTP−KTRK (A5)

Now, to eliminate the need for the term R in Equation (A5), let us introduce the
following:

K = R−1BTP (A6)

Substituting (A6) into (A5), we derive the following Riccati equation:

ATP + PA + Q− PBR−1BTP = 0 (A7)
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