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Abstract: Realistic image composition aims to composite new images by fusing a source object into
a target image. It is a challenging problem due to the complex multi-task framework, including
sensible object placement, appearance consistency, shadow generation, etc. Most existing researchers
attempt to address one of the issues. Especially before compositing, there is no matching assignment
between the source object and target image, which often leads to unreasonable results. To address the
issues above, we consider image composition as an image generation problem and propose a deep
adversarial learning network via spatial position analysis. We target the analysis network segment
and classify the objects in target images. A spatial alignment network matches the segmented
objects with the source objects, and predicts a sensible placement position, and an adversarial
network generates a realistic composite image with the shadow and reflection of the source object.
Furthermore, we use the classification information of target objects to filter out unreasonable image
compositing. Moreover, we introduce a new test set to evaluate the network generalization for
our multi-task image composition dataset. Extensive experimental results of the SHU (Shanghai
University) dataset demonstrate that our deep spatial position analysis network remarkably enhances
the compositing performance in realistic, shadow, and reflection generations.

Keywords: image composition; spatial position analysis; generator; deep learning

1. Introduction

Image composition [1–3] aims to combine two different images or parts of images
into an image that conforms to human visual common sense. It is a very complex task,
involving a lot of details, such as image harmonization, object placement, object shadow
generation, etc. We focus on the methods of placing (a foreground object) the source object
onto the target image to make it look realistic. The main problems to be solved include
placing the source object into the target image and adjusting the position and size to make
it reasonable, coordinating the illumination and color between the source objects and the
target images, and generating shadows and reflections that the source object does not have.

The main issues in image composition can be divided into two categories, i.e., ap-
pearance inconsistency and geometric inconsistency. The appearance inconsistency mainly
includes (1) an unnatural boundary between the source object and the target image after
compositing; (2) inconsistency in color, illumination, and contrast between the source object
and the target image; (3) a lack of shadows and reflections in the target image as a backdrop.
Image normalization aims to adjust the color and lighting statistics of the source object
and target images to make them more compatible. In addition, shadow and reflection
generations aim to train deep learning-based networks to generate shadows and reflec-
tions to better integrate the source object into the target image. Geometric inconsistency
mainly includes (1) the size of the source object appearing too large or small in the target
image; (2) the position of the source object not being associated with other objects in the
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target image; (3) different perspectives between the source object and the target image;
(4) unreasonable occlusion. To address geometric inconsistency, geometric corrections are
performed on the source object, such as displacement, scaling, perspective transformation,
etc. Object placement performs geometric transformations on the source object to adapt
to the target image. The prediction through models aims to analyze the target image and
predict the position and size of the source object through a deep learning-based network.

The image composition task is decomposed into several sub-tasks to solve separately.
The object placement [4–6] task aims to find the reasonable location of the source object
in the target image and give the appropriate size. The image harmonization task [7–9] is
to solve the problem of color harmony between the source object and target image based
on reasonable placement and size assumptions. The image blending task [10,11] mainly
solves the problem of appearance inconsistency between the source object and the target
image, especially in boundary regions. In addition, there are some studies that address the
shadow and reflection [12–14] generations of the source object. MT-GAN [15] attempts to
utilize image generation methods to simultaneously address object placement, appearance
consistency, and shadow generation issues.

However, these studies were conducted on the premise that the two images are suitable
for composition, and there are few studies on whether the two images are actually suitable
for image composition. Before we perform the composition task, one important task is to
estimate whether the target image contains reasonable spatial positions that are suitable for
the placement of the source object. If not, then the two images are not suitable for image
composition. Therefore, we consider analyzing the spatial position of target images before
making synthetic images. One purpose of the analysis is to filter the images, and the other
is to choose a suitable location for source object placement. Hence, we propose a generation
method based on target image resolution to solve the above problems.

Our main contributions are listed as follows:

1. Deeply learned spatial position analysis for image composition—We propose a multi-
task deep learning network for target object screening. We first analyze the spatial
position of the target image, and then find an appropriate placement location for
the source object. Furthermore, the source object is generated in the position box to
obtain the image compositing result. Qualitative analysis shows that our method can
generate clear composite images for source objects with different shapes and patterns,
and quantitative analysis shows that the proposed framework achieves the highest
score of authenticity.

2. The largest multi-task image composition dataset with spatial position annotations—
We establish a large multi-task image composition dataset with 400 images with
position masks for spatial position analysis. Moreover, a new generalization test set
is collected as a supplement to the SHU dataset. It includes various target objects
suitable for placing the source object, including stools, chests of drawers, tables,
bedside cabinets, etc. We also add new annotations of source objects’ locations for
spatial position analysis.

2. Related Work

In this section, we will discuss the related works on image composition.
Image composition has attracted wide attention in recent years. It aims to cut the

source object from one image and process it or paste it seamlessly on another target image,
resulting in a composite image. So far, the image composition task has been explored from
a variety of perspectives. To complete a realistic-looking composite image, it is necessary
to address issues such as geometric inconsistency, appearance inconsistency, and shadow
and reflection generations. Deep learning-based methods have achieved widespread
application, with some researchers [16,17] utilizing CNN frameworks in their computa-
tional methods for recognition tasks in the biological field. Similarly, many deep learning
methods have emerged in image composition tasks. For example, Realism CNN [18] fine-
tuned the VGG network to distinguish the authenticity of images, which assists in making
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high-quality synthesis images and provides a criterion for evaluating the authenticity
of composite images. Tsai et al. [9] proposed an effective method to collect large-scale
and high-quality training data and designed an end-to-end deep convolutional neural
network that can capture the contextual and semantic information of composite images
during the coordination process. They proposed a solution to the image harmonization
task. Then, Cong et al. [7] provided a dataset (iHarmony4) suitable for image harmony
tasks and proposed an attention mechanism network to improve the effectiveness of image
composition. Afterward, some researchers [19,20] conducted a series of studies on the basis
of the iHarmony4 dataset, further improving the image composition effect.

During this period, the target placement task also made some progress with the emer-
gence of ST-GAN [21]. ST-GAN integrates the STN and GAN frameworks to find realistic
geometric corrections to the source object, so that it looks natural when composited into
the target image. On this basis, Chen et al. [1] proposed a similar shape object replacing
method. A GAN architecture with a pair of discriminators and a segmentation network
was used to adjust the color of the source object for automatic image compositing. A trans-
formation network and a refinement network were used to improve geometric consistency
and polish the boundary of the composite image, respectively. Spatial fusion GAN [22]
combines the spatial transformation network (STN) and style transformation network to
achieve realism in both geometric and appearance spaces of the synthesized image. Tripathi
et al. [5] presented a task-aware approach containing a trainable image synthesizer that
can assess the strengths and weaknesses of a network to generate meaningful training
samples. Subsequently, Zhang et al. [6] proposed PlaceNet, which can predict a diverse
distribution of reasonable locations for source object placement. This had the benefit of a
self-learning framework that could generate necessary training data without any manual
labeling. Li et al. [23] presented a fast OPA model including foreground dynamic filters,
background prior transfer, and composite feature simulation. Zhou et al. [24] proposed
a graph completion module (GCM) with a dual-path framework to address the object
placement problem. This GCM can fully exploit annotated composite images. In recent
years, encouraging progress has been made in object placement and image harmonization,
and novel solutions for shadow and reflection generations have emerged [12,13,25,26].

However, there are some limitations to the above methods. Image harmonization tends
to adjust the color and illumination statistics of the source object to make the whole image
harmonious, while shadow or reflection generation aims to generate plausible shadow or
reflection for the source object to make the image more realistic. But they need to specify
the location and size of the source object in advance. Object placement focuses on seeking
information such as the appropriate size, shape, and position of the source object, but lacks
the ability to adjust the appearance consistently.

Therefore, we propose a multi-task framework that can solve image harmonization,
object placement, and shadow generation in a one-stop manner. In addition, existing
image composition approaches do not judge whether the two images are suitable for
compositing; our approach is an exception. The proposed method filters data by analyzing
the target image.

3. Materials and Methods

In this section, we propose a spatial position analysis network (SPAN) for image
compositing, matching positions before generating images. The overall process of the
proposed SPAN is synthetically described in Figure 1. The network consists of five main
components, including a target analysis network, spatial alignment network, composite
generator, global discriminator, and local discriminator. Symbols and their representations
in this section are shown in Table 1.

As the first step of the SPAN, the target analysis network is used to analyze the target
image. It segments different objects in the target image and corresponds to different values
in semantic segmentation image Ia. Then, we concatenate the analyzed data Ia with the
source object Is and feed it to the spatial alignment network. The spatial alignment network
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predicts the locations of the source object based on the analysis results of the target image
and provides the most reasonable placement position. The position is represented by
the diagonal coordinates of the corresponding box, namely, the four numerical values of
the upper left corner coordinate and the lower right corner coordinate, e.g., (x0, y0, x1, y1).
These coordinate values are represented by a mask map Im and fed to the subsequent
composition generator. The values within the box are set to 1, and the values in other
positions are set to 0. Then, the target image It, source object Is, and position mask map
Im are concatenated and fed to the composite generator to predict the synthesized image
Ic. The whole image is obtained through the adversarial generative learning process, and
the generation process focuses on the region of the source object. Therefore, in addition to
identifying the authenticity of the whole image, attention should also be paid to the details
of the generated source object. We use two discriminators to train the generator: a global
discriminator and a local discriminator. The global discriminator identifies the authenticity
of the whole image between composite and real images. We extract the source objects from
the composite image and the real image and then feed them to the local discriminator to
verify the detailed authenticity of the generated source object. For all the experiments, we
use the Adam solver with a batch size of 1. We set the learning rate as 0.00005.

Figure 1. The architecture of the overall framework of the proposed spatial position analysis network
(SPAN) for image composition. The target analysis network is used to analyze the target image. The
spatial alignment network predicts the locations of the source object based on the analysis results of
the target image and provides the most reasonable placement position. Then, the composite generator
builds the synthesized image. The global discriminator identifies the authenticity of the whole image
between composite and real images, and the local discriminator verifies the detailed authenticity of
the generated source object.

3.1. Target Analysis Network

There are usually several different objects in an image. The relative size and position
of each object in a real image are consistent with common sense. If an object in the image
is placed in an inappropriate position, the whole image will look unreal. For example,
normally, the train is running on the track, but if the train appears on the road, the picture
will look fake.
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Table 1. Related mathematical symbols and their representation.

Symbol Representation

It target image
Is source object
Ia analyzed data; semantic segmentation data
Im mask map
Imr ground truth mask map
Ic composite image
Ir ground truth image
Icm source object cropped from the composite image
Irm source object cropped from the ground truth image
Lp position loss function
Lc compositing loss function
LDg, LGg global discriminator loss function
LDl , LGl local discriminator loss function
L f inal final loss function
Pp predicted position
Pg ground truth position
λp, λg super parameters

The target analysis network first pre-processes the input data by analyzing the in-
stances in the target image and labeling different target objects with different values. Then,
the analyzed data are fed to the subsequent network to assist in training the image com-
positing. Through iterative training, the network learns to find the suitable location and
scale of the target object that matches the source object. If the object attributes in the target
image match the source object, image compositing can be performed; if there is no match,
image compositing is not possible. The purpose is to filter the target images.

We adopt SegNeXt [27] as our target analysis network. We call the model parameters
pre-trained on the ADE20K dataset and fine-tune them on our target images based on a
semantic analysis task. The output of the target analysis network is the semantic infor-
mation, in which different values represent different target objects using a three-channel
RGB format.

3.2. Spatial Alignment Network

After the semantic analysis of the target image, the analyzed data (Ia) and the source
object (Is) are fed to the spatial alignment network to predict the location and size. Based on
the input information, the spatial alignment network predicts the mask map of the source
object, which corresponds to the position and scale distribution of the source object in the
target image to be embedded. The mask map is set to a rectangle, and the network gives
two coordinates of the diagonal of the rectangle: the coordinates in the upper left corner
and the lower right corner.

The analyzed data Ia are three-channel and the source object Is data are four-channel,
in RGBA format. We resize both groups of data to 256 × 256 and feed the concatenation
data to the spatial alignment network. The architecture is shown in Figure 2. Each blue
block represents a sub-sampling convolution layer following a normalized layer and a
ReLU activation function. The yellow block represents a ResNet module containing two
convolutional layers. The input data first go through three sub-sampling convolution
layers followed by three ResNet schemes for feature extraction. Next, the data go through
another three sub-sampling convolution modules. Finally, the data are flattened, and four
coordinate values are output through two fully connected layers. In order to facilitate the
data concatenation in the subsequent image composite generator, we introduce the position
mask map Im according to the coordinate values by aligning the predicted position of the
source object to 1 in a 256 × 256 all-zero map.
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In the spatial alignment network, we define the position loss using the MSE between
the predicted position Pp and the ground truth position Pg. The position loss function can
be expressed via Equation (1).

Lp = MSE(Pp, Pg) (1)

Figure 2. The architecture of the spatial alignment analysis network. (x0, y0) represent the diagonal
coordinates of the corresponding box of the upper left corner coordinate and (x1, y1) represent the
lower right corner coordinate. Set the value in the box to 1 and the other values to 0 to obtain the
mask image Im.

3.3. Composite Generator

Although the reasonable placement of the source object has been determined, the
resulting composite image may still be unrealistic. The reason for this is that the source
object and target images are collected under different lighting conditions and shooting
angles. Therefore, the source object should be further processed to make it consistent
with the color of the target image. We use a generative network for image compositing.
The generator takes the input data as a condition to generate a brand new image. The
output of the generator tends to be plausible as long as the input of the discriminator is a
real image. One original task of an adversarial generative network is generating real face
images based on random noise [28], which is almost independent of the initial input data.
So, the generated source objects are more easily integrated with the target image in terms
of shape and color.

We use the merge data, source object Is, mask map Im, and target image It as the input
of the composite generator. Where Is is 256 × 256 × 4, mask map is 256 × 256 × 1, and It is
256 × 256 × 3. So, the input data are 256 × 256 × 8.

The structure schematic of the composite generator is shown in Figure 3a. We borrow
the encoder–ResNet–decoder structure of the CycleNet [29] backbone network. We expect
the encoder attention map to pay more attention to the target image of the encoder feature.
The for this reason is that the source objects the of encoder feature may not be fully
harmonized yet. Inspired by the attention module in DoveNet [7], we add a feature
attention mechanism to the CycleNet. The encoder, ResNet, and decoder are represented
as blue, yellow, and green blocks, respectively.

Each blue block corresponds to a convolution module, containing a convolutional
layer, a regularization layer (InstanceNorm) [30], and a LeakyReLU activation function.
Each yellow block corresponds to a ResNet module. The green block corresponds to
a deconvolution module, containing a transposed convolution layer, a regularization
layer (InstanceNorm), and a ReLU activation function. The attention module is shown in
Figure 3b.

Firstly, we concatenate the corresponding encoder features (the output of the blue
block) with the decoder features (the output of the green block). Then, the full attention
maps containing the spatial attention and channel attention are learned. Specifically, we
apply a 1 × 1 convolution layer following Sigmoid activation on the concatenation. Next,
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we perform element-wise multiplication on the encoder (resp., decoder) attention map and
the encoder (resp., decoder) feature.

We compare the compositing image Ic and the ground truth image Ir at pixel level. The
L1 loss is used to promote the network to generate plausible images, and the compositing
loss function can be expressed as follows:

Lc = ||Ic − Ir||1 (2)

Figure 3. The architecture of the composite generator. The blue blocks correspond to the encoder
module, the yellow blocks correspond to the ResNet module, the green blocks correspond to the
deconvolution module, and the red blocks correspond to the attention module. (a) The architecture
of the composite generator. (b) The attention module in the composite generator.

3.4. Discriminator

The purpose of the composite generator is to generate realistic source objects in the
corresponding region in the mask map Im. Two discriminators are used to discriminate
the generated composite images. The global discriminator mainly focuses on the overall
characteristics of the composite image, making the entire image close to the real image.
Meanwhile, the local discriminator pays more attention to the details of the composite
image in the corresponding region of the mask map. In addition, the global discriminator
distinguishes the harmony of the whole image, and the local discriminator identifies the
consistency of the generated source object with the ground truth. The two discriminators
assist each other in the training process.

The global discriminator identifies the realism of the composite image. We feed the
ground truth image and the composite image to the discriminator with different annotations.
This can train the discriminator’s ability to distinguish authenticity, and continuously
improve the generator’s ability to synthesize realistic images. The architecture of the
global discriminator is shown in Figure 4, with fixed input data of 256 × 256. There are
five convolution modules. The first one contains a convolution layer and a LeakyReLU
activation function, and the subsequent three convolution modules contain a convolution
layer, a regularization layer (InstanceNorm), and a LeakyReLU activation function. The
last convolution module consists of only one convolution layer.

Figure 5 shows the architecture of the local discriminator, which is almost the same as
the global discriminator. The difference is that the size of the input data is related to the
mask map, which is not fixed. Specifically, due to the small size of some source objects, the
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local discriminator may experience a size smaller than 1 during the down-sampling process.
So, we increase the degree of padding in the convolution layer to avoid this situation in the
local discriminator.

Figure 4. The architecture of the global discriminator with fixed input data of 256 × 256.

The loss function of the global discriminator is shown as follows:

LDg = E[max(0, 1− Dg(Ir))] + E[max(0, 1 + Dg(Ic))]

LGg = −E[Dg(G(It, Im, Is))] (3)

We minimize LDg to train global discriminator Dg, which is encouraged to produce
large scores for real images and small scores for generated images. In the same way, we
minimize LGg to train G, and the generated samples are expected to fool global discriminator
Dg into taking them for large scores.

The loss of the local discriminator is given by the following:

LDl = E[max(0, 1− Dl(Ir, Im))] + E[max(0, 1 + Dl(Ir, Im))]

LGl = −E[Dl(G(It, Im, Is), Im)] (4)

We train Dl by minimizing LDl , and train G by minimizing LGl .
Overall, the final loss function for training the whole network is shown in the following:

L f inal = Lc + λpLp + λg(LGg + LGl ) (5)

where λp and λg are super parameters. We set λp as 1, and λg as 0.1 in our experiment.

Figure 5. The architecture of the local discriminator. The input data are not fixed and are related to
the mask map.
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4. Results

We evaluate the SPAN model on the SHU dataset, and achieve optimal performance
in the literature. All training and testing of the proposed model was completed based on
the PyTorch framework.

4.1. Experiment Setup

Our SPAN method contains three sub-networks: the target analysis network, the
spatial alignment network, and the composite generator. The target analysis network uses
the parameters pre-trained on the ADE20K dataset, while the spatial alignment network
and the composite generator are trained and evaluated on the proposed multi-task image
composite dataset, named the SHU dataset.

ADE20K dataset is a publicly available dataset published by the Computer Vision
team at the Massachusetts Institute of Technology (MIT) in 2016. This dataset fully marks
the targets in the image, with more than 3000 object categories, which can be used for
semantic segmentation, instance segmentation, scene analysis, and other tasks. Currently,
the data publicly provide 25,574 training images and 2000 validation images. We utilize the
SegNeXt network parameters, which are obtained by training on this dataset.

The SHU dataset is proposed by MT-GAN and contains a total of 7756 images across
eight source object categories, including 6206 images in the training set and 1550 for the
test. The source objects are different in color, texture, and pattern. The data are taken in
different scenes with diverse angles, distances, and lighting conditions. The paired samples
are a target image without the source object and a ground truth image with the source
object under the same photographic conditions. Each ground truth sample also marks the
RoI containing the source object and corresponding shadows. In this paper, the spatial
alignment network inputs the source object region, excluding the shadow part. Thus, we
add a bounding box annotation containing only the source objects. The spatial alignment
network and the composite generator are trained and tested on the SHU dataset, of which
20% is used for the test set and 80% for training. Further, we add new test data to test
the generalization of the network, called the generalization test set (GTS), to distinguish
them from the previous test set (PTS). The images in the PTS exhibit different angles and
different lighting conditions compared to the training data, but the same scene. To test
the compositing effect of our method in multiple brand-new scenarios, we collect a total
of 400 images from 15 completely different scenes in the GTS, using different angles and
distances to those used with the PTS. Considering that the GTS needs to be adapted for
image composition with source objects, we adopt a similar shooting method with the
SHU dataset. The difference between the SHU dataset and other datasets is that there are
multiple paired images corresponding to a source object. Each pair of data contains a target
image (without the source object) and a ground truth image (with the source object) under
the same shooting condition. To our knowledge, there are currently no other datasets with
large quantities of paired sample data in different scenes. In addition, we name the eight
categories of source objects, which are shown in Figure 6.

Figure 6. The eight categories of source objects and corresponding names (S1, S2, S3, S4, S5, S6,
S7, S8).
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4.2. Results Comparison with Other Methods

We evaluate our method and report the results of the comparison with other methods,
including quantitative results, qualitative results, ablation study results, and the objective
estimation of other objects of the SHU dataset. We used mean squared error (MSE), peak
signal-to-noise ratio (PSNR), intersection over union (IoU), the user study, and the objective
estimation score [18] as the evaluation metrics.

4.2.1. Quantitative Experimental Results

We compare our approach with other deep learning-based approaches. Table 2 shows
the comparison of the composite results of source object S1. Following MT-GAN [15],
we use MSE, PSNR, and the objective estimation score of the compositing images. The
objective estimation scores are tested on the PTS and GTS, respectively. In addition, in
order to obtain the objective estimation of the spatial alignment network, we introduce IoU
to evaluate the accuracy of mask map generation and obtain a Mask-IoU score.

With the structure of the network backbone anchored, we first try a two-stage approach,
in which the spatial alignment network and the composite generator are trained separately.
Then, we attempt an end-to-end approach, in which the spatial alignment network and
the composite generator are trained simultaneously. Importantly, the spatial alignment
network is trained with only one constraint of the bounding box in a two-stage method.
Meanwhile, in the end-to-end method, there are two more constraints for training, e.g., the
global image ground truth constraint and adversarial constraint. We can see that the end-
to-end method is superior to other methods. Specifically, the end-to-end method is 46.99%
higher than the two-stage method in terms of the Mask-IoU score.

Our method achieves the best performance in both PTS score and GTS score, but is
slightly worse than MT-GAN and DoveNet in terms of MSE and PSNR. The reason for
this is the insufficient accuracy of the generated target position resulting in the deviation
between the generated and the ground truth position of the source target.

Table 2. Comparison results of objective estimation with other methods. The best results are denoted
in boldface.

Method MSE ↓ PSNR ↑ Mask-IoU Score ↑ PTS Score ↑ GTS Score ↑
Arbitrary Composite 423.98 20.86 - 0.1510 0.1391

ST-GAN [21] 200.87 23.52 - 0.6429 0.4639
AGCP [31] 198.40 24.56 - 0.6887 0.4954

DoveNet [7] 92.80 27.83 - 0.9021 0.6861
MT-GAN [15] 82.30 29.51 - 0.9453 0.7561

Ours (two-stage) 115.45 28.00 0.6103 0.9751 0.8688
Ours (proposed) 103.51 28.69 0.8971 0.9958 0.8933

Samples of the mask map are shown in Figure 7. We can see that the differences
between the predicted mask maps and the generated source objects and their corresponding
ground truths are mainly in size, while the position, color, texture, pattern, and shadow
are very realistic. This resulted in our method not achieving optimal results for MSE and
PSNR. However, the position and size of the source object are reasonable. Moreover, the
objects far from the camera are smaller, while those closer are larger. Thus, the composite
images still look authentic.

4.2.2. Qualitative Experimental Results

Figure 8 shows samples of our composite results of the eight categories of the source
objects, which demonstrate that the composite images are very similar to the real images
in terms of location, size, shape, texture, color, shadow, and detail. This indicates that our
method can generate realistic compositing images for different source objects in different
scenes. Particularly, both the geometric pattern details and the characters are consistent
with the ground truth source objects. For glossy color source objects, our method can



Electronics 2023, 12, 4413 11 of 16

generate appropriate luster results through integration with the target images. In addition,
we can achieve satisfactory shadows of the source objects.

Figure 7. Samples of the mask map. Ir represents the ground truth image, Imr represents the ground
truth mask map, Ic represents the compositing image, and Im represents the predicted mask map.

Figure 8. Samples of composite results of the previous test set (PTS). We test the compositing effect of
8 source objects and different target images. Is represents the source object, It represents the target
image, Ic represents the compositing result, and GT represents the ground truth image.

Figure 9 shows that the source objects have been resized and placed on the matching
target objects, making the composite images appear reasonable. In addition, the network
adjusts the angle of the source objects. Taking the composite image of source object s1 as an
example, the white lid of the cup has an inclination angle. This indicates that the source
object in the composite image has an angle adjustment in the Z-axis direction relative to the
original source object.
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Figure 9. Samples of composite results of the GTS. We test the compositing effect of 8 source objects
and different target images. Is represents the source object, It represents the target image, and Ic

represents the compositing result.

We use data augmentation to avoid overfitting. We annotate the bounding boxes of
the source objects in each real image, and randomly crop the samples while ensuring the
inclusion of the source objects.

4.3. Ablation Study

We investigate the effectiveness of each learning objective in our method, and Table 3
shows the results. Because of the inherent deviation between the predicted position of the
source object and the ground truth, the non-uniqueness of the reasonable location of the
source object in the composite image, and no ground truth on the generalization dataset,
we utilize score evaluation when measuring the compositing effect.

In Table 3, we can see that the objective evaluation score is lower without the spatial
alignment network in the PTS and the GTS. The scores rise noticeably after adding a global
discriminator. The addition of a spatial alignment network significantly surges the score of
the GTS, indicating an enhanced authenticity and visibility of the compositing images. The
local discriminator mainly improves the detail and clarity of the generated source object.
Our proposed method reaches the highest score of objective authenticity and also reaches a
peak in the GTS score.

Table 3. Comparison results of the SHU dataset with different learning objectives. The best results
are denoted in boldface.

Method PTS Score ↑ GTS Score ↑
Lc 0.3563 0.0601

Lc + LGg 0.9279 0.5960
Lc + Lp + LGg 0.9821 0.7417

Lc + Lp + LGg + LGl 0.9958 0.8933

To pursue the optimal performance of our method, we conduct the key parameter
study. When adjusting the weight of one loss function, the weights of others are fixed.
Firstly, when λp = 1, we set λg as four different options: 0.001, 0.01, 0.1, and 1. As shown in
Table 4, the optimal result is under λg = 0.1. The PTS scores are similar in other cases, but
the GTS scores fluctuate wildly. Then, when λg = 0.1, we set λp as five different options:
0.1, 0.5, 1, 5, and 10. Table 5 shows that the optimal performance occurs under λp = 1.
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Table 4. Comparison results of the SHU datasets with different values of the key parameter λg, which
is used to keep the balance of the loss functions. λg is set to 0.1 in training. The best results are
denoted in boldface.

λg PTS Score ↑ GTS Score ↑
0.001 0.9787 0.6086
0.01 0.9923 0.8231
0.1 0.9958 0.8933
1 0.9943 0.8555

Table 5. Comparison results of the SHU datasets with different values of the key parameter λp, which
is used to keep the balance of the loss functions. λp is set to 1 in training. The best results are denoted
in boldface.

λp PTS Score ↑ GTS Score ↑
0.1 0.9826 0.8564
0.5 0.9936 0.8754
1 0.9958 0.8933
5 0.9947 0.8807
10 0.9921 0.8641

4.4. The Objective Estimation of Other Source Objects of the SHU Dataset

We conduct the objective estimation of the PTS score and GTS score on other source
objects of the SHU dataset. In addition, we perform a user study to further evaluate the
perceptual quality of our method, the results of which are shown in Table 6. For different
source objects, the PTS score of objective evaluation is higher than 0.9 points, and the GTS
score of objective evaluation is higher than 0.8 points. The user study scores have strong
subjectivity, since different observers and different environments affect the score results.
We can see that the ground truth samples receive scores between 0.7821 and 0.7124. The
mean relative error between the PTS score of different source objects and the ground truth
is 16.24%. The mean relative error between the GTS score of different source objects and
the ground truth is 22.40%.

Table 6. Comparison results of the evaluation of different source objects. The error of the same
evaluation metric for different source objects does not exceed 0.1, indicating that the proposed
method achieves similar results in image compositing tasks with different source objects.

Is
Objective Evaluation User Study

PTS Score ↑ GTS Score ↑ Ground Truth Score ↑ PTS Score ↑ GTS Score ↑
S1 0.9958 0.8933 0.7205 0.6128 0.5630
S2 0.9313 0.8281 0.7304 0.6032 0.5652
S3 0.9219 0.8140 0.7135 0.5937 0.5562
S4 0.9653 0.8981 0.7469 0.6265 0.5648
S5 0.9385 0.8672 0.7173 0.6586 0.5913
S6 0.9537 0.8749 0.7821 0.6071 0.5714
S7 0.9150 0.8075 0.7124 0.5965 0.5632
S8 0.9886 0.8927 0.7549 0.6202 0.5826

User study: This user study involves 30 participants. During this study, each par-
ticipant was shown 240 samples, consisting of the ground truth, the composite image in
the PTS, and the GTS in a 1:1:1 ratio. They watch for 3 s and rate the authenticity of each
sample. Participants were asked to rate the results based on two levels: 1 for real and 0 for
fake. Firstly, we obtain the scores of each source object from participants. Then, we sum
them and divide them by the number of participants. The average scores (higher the better)
are calculated via Equation (6).
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Sav =
1

Np

Np

∑
j=1

(
1

Ns

Ns

∑
i=1

x) (6)

where x is the score of the images of each source object from participants, Ns is the number
of samples of each source object, Np is the number of participants, and Sav is the average
score of images with the corresponding source object.

5. Conclusions

In this work, we supplemented the multi-task image composition dataset, including
position masks for spatial position analysis and a generalization test set for generalization
ability testing. We also propose a novel image composition method using spatial position
analysis. The target analysis network can effectively segment and classify target objects.
The purpose is to filter the target image and choose suitable samples for image composition.
According to the target analysis results, the spatial alignment network effectively matched
the source object with the target image, and predicted regions with appropriate position and
reasonable size. As the experimental results of the SHU dataset and our newly proposed test
set show, the trained network achieves good performance in terms of the image composition
task, and generates realistic composite images. However, there are some limitations. When
compositing a new source object, it is necessary to collect a lot of relevant data and train
the model again. That is to say, our method relies on training data, and obtaining a more
realistic source object compositing result requires targeted data support. In the future,
we will aim to optimize the model. Furthermore, we would like to apply spatial position
analysis to improve video compositing performance.
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