
Citation: Grossi, M.; Alfonsi, F.;

Prandini, M.; Gabrielli, A. A Highly

Configurable Packet Sniffer Based on

Field-Programmable Gate Arrays for

Network Security Applications.

Electronics 2023, 12, 4412. https://

doi.org/10.3390/electronics12214412

Academic Editor: Paul Leroux

Received: 12 September 2023

Revised: 17 October 2023

Accepted: 24 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Highly Configurable Packet Sniffer Based on
Field-Programmable Gate Arrays for Network
Security Applications
Marco Grossi 1,2 , Fabrizio Alfonsi 1,3, Marco Prandini 4 and Alessandro Gabrielli 1,3,*

1 Department of Physics and Astronomy “Augusto Righi” (DIFA), Alma Mater Studiorum—Università di
Bologna, 40126 Bologna, Italy; marco.grossi8@unibo.it (M.G.); fabrizio.alfonsi@bo.infn.it (F.A.)

2 INFN CNAF, 40127 Bologna, Italy
3 INFN Bologna, 40127 Bologna, Italy
4 Department of Computer Science and Engineering, Università di Bologna, 40126 Bologna, Italy;

marco.prandini@unibo.it
* Correspondence: alessandro.gabrielli@unibo.it; Tel.: +39-051-209-5052

Abstract: Web applications and online business transactions have grown tremendously in recent
years. As a result, cyberattacks have become a major threat to the digital services that are essential
for our society. To minimize the risks of cyberattacks, many countermeasures are deployed on
computing nodes and network devices. One such countermeasure is the firewall, which is designed
with two main architectural approaches: software running on standard or embedded computers, or
hardware specially designed for the purpose, such as (Application Specific Integrated Circuits) ASICs.
Software-based firewalls offer high flexibility and can be easily ported to upgradable hardware, but
they cannot handle high data rates. On the other hand, hardware-based firewalls can process data at
very high speeds, but are expensive and difficult to update, resulting in a short lifespan. To address
these issues, we explored the use of an (Field-Programmable Gate Array) FPGA architecture, which
offers low latency and high-throughput characteristics along with easy upgradability, making it a
more balanced alternative to other programmable systems, like (Graphics Processor Unit) GPUs or
microcontrollers. In this paper, we presented a packet sniffer designed on the FPGA development
board KC705 produced by Xilinx, which can analyze Ethernet frames, check the frame fields against a
set of user-defined rules, and calculate statistics of the received Ethernet frames over time. The system
has a data transfer rate of 1 Gbit/s (with preliminary results of increased data rates to 10 Gbit/s)
and has been successfully tested with both ad hoc-generated Ethernet frames and real web traffic by
connecting the packet sniffer to the internet.

Keywords: network security; packet sniffer; packet classification; FPGA; embedded systems

1. Introduction

The Internet of Things (IoT) has interconnected embedded technologies, causing
networks to become more complex due to the growth of web applications and business
transactions. Consequently, networks have become more susceptible to cyberattacks, which
can lead to unauthorized access, denial of service, and theft or alteration of sensitive
data [1–3]. Cyberattacks pose a threat in various fields, such as Industry 4.0 [4–6] and
healthcare [7–9].

Firewalls and packet sniffers are two common types of network security systems that
can be used to prevent cyberattacks and protect computer networks. Firewalls work by
monitoring and controlling incoming and outgoing network traffic based on pre-defined
rules, while packet sniffers analyze network traffic in real time to detect and isolate potential
threats. With the increasing complexity of computer networks and the growing number of
cyberattacks, it is becoming more important than ever to have effective network security

Electronics 2023, 12, 4412. https://doi.org/10.3390/electronics12214412 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12214412
https://doi.org/10.3390/electronics12214412
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1316-9035
https://orcid.org/0000-0002-3962-5513
https://orcid.org/0000-0001-5346-7841
https://doi.org/10.3390/electronics12214412
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12214412?type=check_update&version=2

Electronics 2023, 12, 4412 2 of 22

measures in place. These devices aim to detect any malicious traffic by either comparing
packets with known attack samples (the signature-based approach) or by identifying
abnormal traffic that does not match with known legitimate packets (the anomaly-based
approach). Our prototype was designed using the signature-based approach, but we also
acknowledge the possibility of using other methods to prevent cyberattacks.

The difference between a firewall (or intrusion prevention system, IPS) and a packet
sniffer (or intrusion detection system, IDS) is that an IPS possesses, either physically
or logically, two ports. When the network data enter one port, these are transparently
transferred to the output of the other port if no threats are detected or blocked otherwise [10].
An IDS, on the other hand, works in passive mode, reading all data received at its input port,
and sending alarm messages to a remote server when potential threats are detected [11,12].
For home or business networks, where the speeds rarely exceed 1 Gbps, firewalls and packet
sniffers can be effectively implemented in software running on a server. In 2017, Nivedita
and Kumar proposed an innovative approach for a firewall using a hybrid frame of Netfilter
for Linux web servers [13]. In 2016, Nivethan and Papa proposed a new methodology
that extended existing Linux-based firewalls to protect the US smart grid, specifically for
systems that use the DNP3 protocol. The aim of this approach was to prevent cyberattacks
and ensure the security of the smart grid, which is becoming increasingly important in
today’s interconnected world [14]. In 2022, Tirumala and colleagues conducted a study on
the hardware capabilities of Raspberry Pi network interfaces to handle high volumes of
incoming traffic for protecting small- and medium-sized enterprises and smart homes [15].
In 2015, Phalguni and Krishna presented a software firewall for the application layer
running on an ARM9-based single-board computer based on the Iptables/Netfilter frame
in Linux [16]. In 2013, Oluwabukola et al. proposed Psniffer, a packet sniffer software
application for network security in Java [17]. In 2008, Phang et al. presented V6SNIFF,
an efficient packet sniffer capable of analyzing Ipv6 packets [18]. In 2017, Goyal et al.
conducted a comparative study between the two most popular packet sniffing software
tools (Tcpdump and Wireshark) [19].

Firewalls and packet sniffers that are based on software running on a standard com-
puter are generally reliable in most situations. However, when the amount of data being
transferred and the transfer speed increase beyond a certain threshold, these systems may
lose their effectiveness. In such situations, it is preferable to use a hardware implementation
since it can guarantee real-time operations and much higher data throughputs. It is com-
mon for commercial firewall and packet sniffer products to be based on application-specific
integrated circuits (ASICs), which are highly optimized devices designed and manufac-
tured for a specific application. They offer top performances in terms of speed, power
consumption, and production cost per unit. However, ASICs are also known for their
complex design and high non-recurrent design costs, which make them ideal for high pro-
duction volumes. Field-programmable gate arrays (FPGAs) are more suitable for products
designed for small production volumes and research projects. These semiconductor devices
feature quick design steps and negligible non-recurrent engineering costs. In 2019, Niemiec
et al. conducted a survey addressing the open research challenges that need to be tackled
for the adoption of FPGAs in accelerating virtualized network functions [20]. In 2011,
Wicaksana and Sasongko presented a prototype of a hardware stateless firewall designed
using Cyclone II FPGA working at 91 MHz [21]. According to these authors, the implemen-
tation only included packet classification, and due to the absence of an efficient FIFO buffer,
it hinders high-speed data transfer. In 2017, Lin et al. presented an Ethernet firewall based
on a FPGA that achieves a data throughput of 950 Mbit/s. The FPGA can be interfaced to
ARM devices to realize a management server [22]. In 2012, Prajapati and Khare proposed a
framework for a firewall hardware on a FPGA designed in Verilog that can handle IPv4
and IPv6 network data [23]. In 2020, the same authors presented a reconfigurable firewall
based on a Xilinx Virtex-6 FPGA. This firewall achieves a throughput of 142 Gbit/s at a
clock rate of 442.6 MHz for a minimum packet size of 40 bytes [24]. Mohammed and Ueno
proposed a FPGA-based firewall in 2018, which was based on a Xilinx Kintex-7 XC7K325T

Electronics 2023, 12, 4412 3 of 22

device. The proposed firewall exploits content addressable memory to achieve a much
better performance than a Linux firewall based on Iptables [25]. In 2021, Hilgurt presented
a brief overview of various approaches, methods, and techniques used for designing a
FPGA-based IDS [26]. In 2022, Stój et al. introduced an Ethernet packet sniffer based on a
Xilinx Kintex-7 FPGA platform, which was designed for network intrusion detection in
Industry 4.0 [27]. In 2013, Pal et al. proposed E-Sniff, a small special-purpose embedded
system for capturing and logging network data based on a Cyclone II FPGA [28]. In 2005,
Song and Lockwood published a paper on an efficient packet classification system for
network intrusion detection using a FPGA that achieved a data rate of 2.5 Gbit/s [29]. Faria
et al.’s FPGA-based Ethernet sniffer for real-time networks, which they proposed in 2009,
can be interfaced via USB to a host computer for the generation of graphics and statistical
data [30]. In 2016, Fiessler and colleagues proposed a hybrid packet classification approach
called HyPaFilter. This approach handles simple operations in hardware designed with a
FPGA, while complex operations are dealt with using a Linux-based software firewall [31].
In 2010, Ezzati et al. proposed a packet classification engine based on artificial neural net-
works that achieves a 97% accuracy in the classification of TCP/IP packets [32]. The authors
of the paper proposed a method that they deemed suitable for FPGA implementation. They
carried out Matlab simulations and synthesized the VHDL code, but they did not develop
an operative system.

In this work, an Ethernet packet sniffer based on a FPGA was proposed. This system
was intended for applications in data protection for universities and research institutes.
As discussed by Ulven and Wangen in 2021, data breaches and cyberattacks represent a
severe problem in higher education institutions and universities [33]. Since we estimate a
low number of produced devices, this system was designed on a FPGA, which allows for
quick development and negligible non-recurrent engineering costs. Moreover, this system
has been designed for easy reconfigurability, where the rules to discriminate between
safe and potentially dangerous data can be decided by the user and uploaded via serial
communication using a PC.

2. Paper Structure

This paper describes a hardware-based packet sniffer that was built using Verilog and
a Xilinx KC705 development board (AMD-Xilinx, USA). This system is highly customizable
and has been tested for a data transfer rate of 1 Gbit/s, with some preliminary results ob-
tained for a data transfer rate of 10 Gbit/s. Users can configure rules to distinguish between
safe and potentially dangerous Ethernet frames using software designed in LabVIEW (ver.
2023 Q3). This system also provides statistics on the network traffic being analyzed. This
paper is structured as follows: Section 3 presents the format of an Ethernet frame and the
most important fields for identifying potential threats. Section 4 describes the packet sniffer,
including its signal characteristics and simulation behavior. Section 5 presents the test
results for the designed packet sniffer, compared with results obtained using Wireshark, a
popular packet-sniffing software. Section 6 presents the preliminary results for extending
the project to higher data rates (10 Gbit/s). In Section 7, the characteristics of the proposed
packet sniffer are compared with similar systems developed on a FPGA from the literature.
Finally, Section 8 presents the conclusions.

3. Ethernet Frame Format

Ethernet is a widely used networking technology that finds its application in local area
networks (LANs), metropolitan area networks (MANs), wide area networks (WANs), and
other fields, such as industry, avionics, telecommunication, and multimedia. The Ethernet
technology was introduced in 1980, and the first standardization was conducted in 1983 by
IEEE 802.3 [34]. The data transfer rate of Ethernet has evolved from the initial 2.94 Mbps
up to 100 Gbps [35]. In Ethernet networking, the data are described according to different
levels of abstraction in the OSI model [36]. At level 2 (data link layer) of the OSI model, the
data are described in the form of frames. The format of an Ethernet II frame is displayed in

Electronics 2023, 12, 4412 4 of 22

Figure 1. It always starts with a preamble and a start frame delimiter (SFD), and it ends
with a frame checksum (FCS), a four-byte CRC that detects any corrupted data in the frame.
The header of the Ethernet frame consists of the following fields: a destination and source
media access control (MAC) address, a VLAN tag (an optional field), and the protocol type
of level 3 (network layer), while the payload represents the data of the network layer. The
packet formats of two of the most important protocols of the network layer, ARP, and IP,
are presented in Figures 2 and 3, respectively. The IP header also includes the protocol of
the level 4 layer (transport layer), whose data are present in the IP payload. Three different
protocols of the transport layer were considered, namely TCP, UDP, and ICMP, and their
packet formats are presented in Figures 4–6, respectively.

Electronics 2023, 12, 4412 4 of 24

OSI model, the data are described in the form of frames. The format of an Ethernet II frame
is displayed in Figure 1. It always starts with a preamble and a start frame delimiter (SFD),
and it ends with a frame checksum (FCS), a four-byte CRC that detects any corrupted data
in the frame. The header of the Ethernet frame consists of the following fields: a
destination and source media access control (MAC) address, a VLAN tag (an optional
field), and the protocol type of level 3 (network layer), while the payload represents the
data of the network layer. The packet formats of two of the most important protocols of
the network layer, ARP, and IP, are presented in Figures 2 and 3, respectively. The IP
header also includes the protocol of the level 4 layer (transport layer), whose data are
present in the IP payload. Three different protocols of the transport layer were considered,
namely TCP, UDP, and ICMP, and their packet formats are presented in Figures 4, 5 and
6, respectively.

Figure 1. The format of an Ethernet II frame. The length of each field of the frame is reported as the
number of bytes.

Figure 2. The format of an ARP packet. The length of each field of the frame is reported as the
number of bytes.

Figure 3. The format of an IP packet. The different fields of this packet are presented in rows of 32
bits.

Figure 1. The format of an Ethernet II frame. The length of each field of the frame is reported as the
number of bytes.

Electronics 2023, 12, 4412 4 of 24

OSI model, the data are described in the form of frames. The format of an Ethernet II frame
is displayed in Figure 1. It always starts with a preamble and a start frame delimiter (SFD),
and it ends with a frame checksum (FCS), a four-byte CRC that detects any corrupted data
in the frame. The header of the Ethernet frame consists of the following fields: a
destination and source media access control (MAC) address, a VLAN tag (an optional
field), and the protocol type of level 3 (network layer), while the payload represents the
data of the network layer. The packet formats of two of the most important protocols of
the network layer, ARP, and IP, are presented in Figures 2 and 3, respectively. The IP
header also includes the protocol of the level 4 layer (transport layer), whose data are
present in the IP payload. Three different protocols of the transport layer were considered,
namely TCP, UDP, and ICMP, and their packet formats are presented in Figures 4, 5 and
6, respectively.

Figure 1. The format of an Ethernet II frame. The length of each field of the frame is reported as the
number of bytes.

Figure 2. The format of an ARP packet. The length of each field of the frame is reported as the
number of bytes.

Figure 3. The format of an IP packet. The different fields of this packet are presented in rows of 32
bits.

Figure 2. The format of an ARP packet. The length of each field of the frame is reported as the
number of bytes.

Electronics 2023, 12, 4412 4 of 24

OSI model, the data are described in the form of frames. The format of an Ethernet II frame
is displayed in Figure 1. It always starts with a preamble and a start frame delimiter (SFD),
and it ends with a frame checksum (FCS), a four-byte CRC that detects any corrupted data
in the frame. The header of the Ethernet frame consists of the following fields: a
destination and source media access control (MAC) address, a VLAN tag (an optional
field), and the protocol type of level 3 (network layer), while the payload represents the
data of the network layer. The packet formats of two of the most important protocols of
the network layer, ARP, and IP, are presented in Figures 2 and 3, respectively. The IP
header also includes the protocol of the level 4 layer (transport layer), whose data are
present in the IP payload. Three different protocols of the transport layer were considered,
namely TCP, UDP, and ICMP, and their packet formats are presented in Figures 4, 5 and
6, respectively.

Figure 1. The format of an Ethernet II frame. The length of each field of the frame is reported as the
number of bytes.

Figure 2. The format of an ARP packet. The length of each field of the frame is reported as the
number of bytes.

Figure 3. The format of an IP packet. The different fields of this packet are presented in rows of 32
bits.
Figure 3. The format of an IP packet. The different fields of this packet are presented in rows of
32 bits.

The fields that are most important from the perspective of cybersecurity for the TCP-IP
and UDP-IP packets are the IP source and destination addresses, along with the source
and destination ports. The IP address, along with the MAC address, is used to identify
a device within a network. Moreover, while the IP address is used as a global address,
the MAC address is utilized as a local address. When data are directed on the internet,
the IP address is used, and when the local area network (LAN) has been reached, the IP
address is translated to the MAC address, and the data is delivered to the intended device.
Similarly, the source and destination port numbers are utilized to define the application
or service involved, so that the operating system can deliver the packet to the appropriate
process. The importance of these parameters for cybersecurity is two-fold. Being able to
read them enables a potential attacker to infer who is communicating with whom (in terms

Electronics 2023, 12, 4412 5 of 22

of network hosts) and what kind of dialogue is happening, even if the contents (payload)
are encrypted. It is not possible to obscure IPs and ports without modified protocols, such
as IPSec [37], or by encapsulation performed by specific applications, such as virtual private
networks (VPNs). Obscuring IPs and ports using these techniques may interfere with the
functionality of a firewall or a packet sniffer. Therefore, encrypted IP and port numbers
were not considered. An attacker that can alter these parameters can hide their own identity
by spoofing the source address, usually with the goal of bypassing firewall rules that would
block packets bearing their real address.

Electronics 2023, 12, 4412 5 of 24

Figure 4. The format of a TCP packet. The different fields of this packet are presented in rows of 32
bits.

Figure 5. The format of an UDP packet. The different fields of this packet are presented in rows of
32 bits.

Figure 6. The format of an ICMP packet. The different fields of this packet are presented in rows of
32 bits.

The fields that are most important from the perspective of cybersecurity for the TCP-
IP and UDP-IP packets are the IP source and destination addresses, along with the source
and destination ports. The IP address, along with the MAC address, is used to identify a
device within a network. Moreover, while the IP address is used as a global address, the
MAC address is utilized as a local address. When data are directed on the internet, the IP
address is used, and when the local area network (LAN) has been reached, the IP address
is translated to the MAC address, and the data is delivered to the intended device.

Figure 4. The format of a TCP packet. The different fields of this packet are presented in rows of
32 bits.

Electronics 2023, 12, 4412 5 of 24

Figure 4. The format of a TCP packet. The different fields of this packet are presented in rows of 32
bits.

Figure 5. The format of an UDP packet. The different fields of this packet are presented in rows of
32 bits.

Figure 6. The format of an ICMP packet. The different fields of this packet are presented in rows of
32 bits.

The fields that are most important from the perspective of cybersecurity for the TCP-
IP and UDP-IP packets are the IP source and destination addresses, along with the source
and destination ports. The IP address, along with the MAC address, is used to identify a
device within a network. Moreover, while the IP address is used as a global address, the
MAC address is utilized as a local address. When data are directed on the internet, the IP
address is used, and when the local area network (LAN) has been reached, the IP address
is translated to the MAC address, and the data is delivered to the intended device.

Figure 5. The format of an UDP packet. The different fields of this packet are presented in rows of
32 bits.

Electronics 2023, 12, 4412 5 of 24

Figure 4. The format of a TCP packet. The different fields of this packet are presented in rows of 32
bits.

Figure 5. The format of an UDP packet. The different fields of this packet are presented in rows of
32 bits.

Figure 6. The format of an ICMP packet. The different fields of this packet are presented in rows of
32 bits.

The fields that are most important from the perspective of cybersecurity for the TCP-
IP and UDP-IP packets are the IP source and destination addresses, along with the source
and destination ports. The IP address, along with the MAC address, is used to identify a
device within a network. Moreover, while the IP address is used as a global address, the
MAC address is utilized as a local address. When data are directed on the internet, the IP
address is used, and when the local area network (LAN) has been reached, the IP address
is translated to the MAC address, and the data is delivered to the intended device.

Figure 6. The format of an ICMP packet. The different fields of this packet are presented in rows of
32 bits.

Electronics 2023, 12, 4412 6 of 22

4. Experimental Design

The experimental setup to validate the developed packet sniffer consists of two parts.
The first part is a packet generator that generates Ethernet frames with variable data rates,
which can be selected by the user. The second part is the packet sniffer that analyzes
the Ethernet traffic. The analysis includes Ethernet data statistics based on the fields of
the analyzed Ethernet frames. To ensure the packet sniffer’s accuracy, using a packet
generator instead of a PC with software to generate Ethernet frames is important, which
may produce uncertain results due to uncontrolled data traffic (a PC with a network card
generates control frames in addition to the target Ethernet frames). The experimental setup
included a packet generator that produces Ethernet frames, with selectable variable data
rates, and a packet sniffer that analyses Ethernet traffic and generates data statistics based
on frame fields.

The FPGA development board KC705 produced by Xilinx [38] was used to design both
the packet generator and the packet sniffer. The development board was equipped with
a Kintex-7 XC7K325T-2FFG900C FPGA, 1 GB of DDR3 RAM, 128 MB of flash memory, a
200 MHz LVDS oscillator, PCI Express connectivity, USB ports, and a 10/100/1000 tri-speed
Ethernet PHY (Marvell M88E1111-BAB1C000). It also has push buttons, switches, and
LEDs for user interaction. The tri-speed Ethernet PHY chip, which is integrated on the
board, manages the physical layer of the Ethernet protocol, while the tri-mode Ethernet
media access controller (TEMAC), an intellectual property module provided by Xilinx,
manages the data link layer [39]. The packet generator and the packet sniffer can generate
and analyze Ethernet traffic at a rate of 1 Gbit/s. The Ethernet frame analysis included the
ARP, IPv4, UDP, TCP, and ICMP protocols, with a maximum frame size of 1518 bytes for
normal frames and 1522 bytes for VLAN frames. For more details on the implementation
of the packet generator and the packet sniffer, refer to Sections 4.1 and 4.2 of this article.

4.1. The Packet Generator

To assess the functionality of the packet sniffer, a KC705 development board was used
to generate Ethernet frames. Figure 7 illustrates the main functional blocks that make
up the packet generator, including all interconnections among the blocks. The generator
utilizes a 200 MHz differential clock available on the board (CLK_IN_N and CLK_IN_P)
and the serial UART receiving port (UART_RX). The 200 MHz differential clock was used to
generate two clock signals: UART_CLK (10 MHz) and MAC_TX_CLK (125 MHz), which are
used to provide the clock signal for various modules. The UART_RX module reads the serial
input UART_RX and generates an eight-bit output byte (UART_RX_DATA) that is sampled
when the signal UART_RX_DV is active. The process involves the UART_RX_CONTROL
module receiving eight-bit data from UART and storing it in the 16 kbyte-distributed RAM
of the MEMORY module. After the data are loaded, the MAC-TX CONTROL module
fetches the frame data from memory and passes it on to the TRI-MODE_ETHERNET_MAC
module, which generates the Ethernet frames. Figure 8 displays the waveforms of the
signals for the case of frame data loading in the memory. This example includes a set of
two Ethernet frames, each with a length of 60 bytes, encapsulated with UDP and TCP data.
This operation starts when the UART_RX_CONTROL module receives the control byte
0x14, followed by two bytes indicating the number of frames loaded (0x0002), the total
number of bytes that follow (0x007c), and, for each frame, the data preceded by two bytes
indicating the frame length (0x003c). The data are then stored in a 16kbyte-distributed
RAM, with synchronous write and asynchronous read in the MEMORY module. Figure 9
shows the waveform signals at the end of the frame dataset loading.

Electronics 2023, 12, 4412 7 of 22

Electronics 2023, 12, 4412 7 of 24

Figure 8 displays the waveforms of the signals for the case of frame data loading in the
memory. This example includes a set of two Ethernet frames, each with a length of 60
bytes, encapsulated with UDP and TCP data. This operation starts when the
UART_RX_CONTROL module receives the control byte 0x14, followed by two bytes
indicating the number of frames loaded (0x0002), the total number of bytes that follow
(0x007c), and, for each frame, the data preceded by two bytes indicating the frame length
(0x003c). The data are then stored in a 16kbyte-distributed RAM, with synchronous write
and asynchronous read in the MEMORY module. Figure 9 shows the waveform signals at
the end of the frame dataset loading.

Figure 7. A schematic of the packet generator and its main functional blocks.

Figure 8. Signal waveforms in the case of data loading in memory using UART (start of the
operation).

Figure 7. A schematic of the packet generator and its main functional blocks.

Electronics 2023, 12, 4412 7 of 24

Figure 8 displays the waveforms of the signals for the case of frame data loading in the
memory. This example includes a set of two Ethernet frames, each with a length of 60
bytes, encapsulated with UDP and TCP data. This operation starts when the
UART_RX_CONTROL module receives the control byte 0x14, followed by two bytes
indicating the number of frames loaded (0x0002), the total number of bytes that follow
(0x007c), and, for each frame, the data preceded by two bytes indicating the frame length
(0x003c). The data are then stored in a 16kbyte-distributed RAM, with synchronous write
and asynchronous read in the MEMORY module. Figure 9 shows the waveform signals at
the end of the frame dataset loading.

Figure 7. A schematic of the packet generator and its main functional blocks.

Figure 8. Signal waveforms in the case of data loading in memory using UART (start of the
operation).

Figure 8. Signal waveforms in the case of data loading in memory using UART (start of the operation).

Electronics 2023, 12, 4412 8 of 24

Figure 9. Signal waveforms in the case of data loading in memory using UART (end of the
operation).

After loading the frame dataset into memory, various operations can be executed by
sending the appropriate control byte to the UART_RX_CONTROL module. For instance,
sending control byte 0x1e (decimal value 30) initiates a single write operation, causing the
Ethernet port to send out the frames in the dataset. Alternatively, control byte 0x28
(decimal value 40) initiates a continuous write operation, where the frames in the dataset
are sent out on the Ethernet port in a looping mode. To stop this continuous write
operation, a control byte 0x32 (decimal value 50) is used. Additionally, this system can be
programmed to include a specified delay between the end of one frame and the start of
the next, allowing for a controlled data rate of Ethernet transmission. As displayed in
Figure 9, the control byte 0x1e is sent after the end of frame loading (last byte 0x4b at
address 123) to output a single set of two Ethernet frames. Then, the control byte 0x28 is
sent to start a looping data transfer. The data transfer is finally terminated by sending the
control byte 0x32.

Figure 10 shows the waveform signals in the case of a single write operation, where
the two Ethernet frames in the dataset are read from memory via the MAC-
TX_CONTROL module. Then, the data are sent to the input of the TEMAC module, which
generates the output data for the Ethernet PHY chip on the KC705 board. Figures 11 and
12 illustrate the signal waveforms of the first frame�s transmission. The valid data signal
(MAC_TX_DV) was enabled during the transmit operation, and data read from memory
were sampled when the MAC_RX_READY signal was active. Initially, the frame length in
bytes was read from memory (0x003c, 60 bytes); then, the MAC_TX_DV signal was
enabled, and the frame data were transmitted. During the transmission of the last byte of
the frame, the MAC_TX_LAST signal was enabled; then, the MAC_TX_DV signal was
disabled, and, after a delay, the second frame was transmitted. At the output of the
TEMAC module, the frame data (GMII_TXD) were sent to the Ethernet PHY chip
preceded by the frame preamble (0x55555555555555d5) and followed by the frame
checksum (0x8a68866a). During transmission, the GMII_TX_EN signal was enabled.

Figure 9. Signal waveforms in the case of data loading in memory using UART (end of the operation).

Electronics 2023, 12, 4412 8 of 22

After loading the frame dataset into memory, various operations can be executed by
sending the appropriate control byte to the UART_RX_CONTROL module. For instance,
sending control byte 0x1e (decimal value 30) initiates a single write operation, causing the
Ethernet port to send out the frames in the dataset. Alternatively, control byte 0x28 (decimal
value 40) initiates a continuous write operation, where the frames in the dataset are sent
out on the Ethernet port in a looping mode. To stop this continuous write operation, a
control byte 0x32 (decimal value 50) is used. Additionally, this system can be programmed
to include a specified delay between the end of one frame and the start of the next, allowing
for a controlled data rate of Ethernet transmission. As displayed in Figure 9, the control
byte 0x1e is sent after the end of frame loading (last byte 0x4b at address 123) to output a
single set of two Ethernet frames. Then, the control byte 0x28 is sent to start a looping data
transfer. The data transfer is finally terminated by sending the control byte 0x32.

Figure 10 shows the waveform signals in the case of a single write operation, where
the two Ethernet frames in the dataset are read from memory via the MAC-TX_CONTROL
module. Then, the data are sent to the input of the TEMAC module, which generates the
output data for the Ethernet PHY chip on the KC705 board. Figures 11 and 12 illustrate the
signal waveforms of the first frame’s transmission. The valid data signal (MAC_TX_DV)
was enabled during the transmit operation, and data read from memory were sampled
when the MAC_RX_READY signal was active. Initially, the frame length in bytes was
read from memory (0x003c, 60 bytes); then, the MAC_TX_DV signal was enabled, and
the frame data were transmitted. During the transmission of the last byte of the frame,
the MAC_TX_LAST signal was enabled; then, the MAC_TX_DV signal was disabled, and,
after a delay, the second frame was transmitted. At the output of the TEMAC module,
the frame data (GMII_TXD) were sent to the Ethernet PHY chip preceded by the frame
preamble (0x55555555555555d5) and followed by the frame checksum (0x8a68866a). During
transmission, the GMII_TX_EN signal was enabled.

Electronics 2023, 12, 4412 9 of 24

Figure 10. Signal waveforms in the case of the generation of two Ethernet frames in sequence.

Figure 11. Signal waveforms in the case of the generation of an Ethernet frame (start of the
operation).

Figure 12. Signal waveforms in the case of the generation of an Ethernet frame (end of the operation).

Programs were written in LabVIEW to control the packet generator. The tests were
carried out by connecting the packet generator�s Ethernet port to an Ethernet port on the
PC and generating several sets of Ethernet frames. The network traffic on the PC was
analyzed using Wireshark to verify the correct functioning of the packet generator.

Figure 10. Signal waveforms in the case of the generation of two Ethernet frames in sequence.

Programs were written in LabVIEW to control the packet generator. The tests were
carried out by connecting the packet generator’s Ethernet port to an Ethernet port on the
PC and generating several sets of Ethernet frames. The network traffic on the PC was
analyzed using Wireshark to verify the correct functioning of the packet generator.

4.2. The Packet Sniffer

Figure 13 illustrates the core functional blocks comprising the packet sniffer, including
visualizing all the interconnections among these blocks.

Electronics 2023, 12, 4412 9 of 22

Electronics 2023, 12, 4412 9 of 24

Figure 10. Signal waveforms in the case of the generation of two Ethernet frames in sequence.

Figure 11. Signal waveforms in the case of the generation of an Ethernet frame (start of the
operation).

Figure 12. Signal waveforms in the case of the generation of an Ethernet frame (end of the operation).

Programs were written in LabVIEW to control the packet generator. The tests were
carried out by connecting the packet generator�s Ethernet port to an Ethernet port on the
PC and generating several sets of Ethernet frames. The network traffic on the PC was
analyzed using Wireshark to verify the correct functioning of the packet generator.

Figure 11. Signal waveforms in the case of the generation of an Ethernet frame (start of the operation).

Electronics 2023, 12, 4412 9 of 24

Figure 10. Signal waveforms in the case of the generation of two Ethernet frames in sequence.

Figure 11. Signal waveforms in the case of the generation of an Ethernet frame (start of the
operation).

Figure 12. Signal waveforms in the case of the generation of an Ethernet frame (end of the operation).

Programs were written in LabVIEW to control the packet generator. The tests were
carried out by connecting the packet generator�s Ethernet port to an Ethernet port on the
PC and generating several sets of Ethernet frames. The network traffic on the PC was
analyzed using Wireshark to verify the correct functioning of the packet generator.

Figure 12. Signal waveforms in the case of the generation of an Ethernet frame (end of the operation).

Electronics 2023, 12, 4412 10 of 24

4.2. The Packet Sniffer
Figure 13 illustrates the core functional blocks comprising the packet sniffer,

including visualizing all the interconnections among these blocks.

Figure 13. A schematic of the packet sniffer and its main functional blocks.

Two clocks were derived from the 200 MHz differential clock on the KC705 board:
MAC_RX_CLK (125 MHz), used for packet reception and analysis synchronization, and
UART_CLK (10 MHz), used for data transmission/reception between the packet sniffer
and the PC via UART at a 9600 baud rate.

Ethernet frames were received by the Marvell M88E1111-BAB1C000 Ethernet PHY
chip on the KC705 board, transmitted in parallel (1 byte) to the TEMAC IP produced by
Xilinx, which removes the frame preamble and validates the frame checking sequence
(FCS). The MAC_RX_CONTROL module then forwards the data to the
PACKET_ANALYSIS module for field extraction (as discussed in Section 3).

Figure 14 displays signal waveforms for the continuous reception of four different
Ethernet frames (UDP, TCP, ARP, and ICMP).

When the packet analysis was running, the ENABLE_FW signal was activated, and
upon completion, a pulse was generated on the FIREWALL_OUT signal. This analysis
extracted various frame parameters, including MAC source and destination addresses
(MAC_SOURCE and MAC_DEST), layer 3 protocol (LEV_3_PROT), and for LEV_3_PROT
= 0x0800 (IP packets), layer 4 protocol (LEVEL_4_PROT), IP source and destination
addresses (IP_SOURCE and IP_DEST), source and destination ports for the UDP and TCP
packets, and flag information for the TCP packets.

After frame analysis and the pulsed FIREWALL_OUT signal, the CHECK_RULES
module assesses if the packet matches the firewall rules. These rules are defined based on
IP packet characteristics, such as source and destination address ranges, layer 4 protocol,
and source/destination port ranges, are stored in the RULES_MEMORY module, and
loaded from a PC via UART. The CHECK_RULES module outputs packet type
(FW_PCK_TYPE), packet length (FW_PCK_LENGTH), and analysis results
(FW_RESULT—zero for packet errors, one for rule violations, and three for allowed
packets).

Figure 13. A schematic of the packet sniffer and its main functional blocks.

Electronics 2023, 12, 4412 10 of 22

Two clocks were derived from the 200 MHz differential clock on the KC705 board:
MAC_RX_CLK (125 MHz), used for packet reception and analysis synchronization, and
UART_CLK (10 MHz), used for data transmission/reception between the packet sniffer
and the PC via UART at a 9600 baud rate.

Ethernet frames were received by the Marvell M88E1111-BAB1C000 Ethernet PHY
chip on the KC705 board, transmitted in parallel (1 byte) to the TEMAC IP produced by
Xilinx, which removes the frame preamble and validates the frame checking sequence (FCS).
The MAC_RX_CONTROL module then forwards the data to the PACKET_ANALYSIS
module for field extraction (as discussed in Section 3).

Figure 14 displays signal waveforms for the continuous reception of four different
Ethernet frames (UDP, TCP, ARP, and ICMP).

Electronics 2023, 12, 4412 11 of 24

Upon completing the rules check, the OUT_RESULTS signal is pulsed, and the
GENERATE_STATISTICS module calculates packet statistics (type, length,
allowed/rejected status, total data transferred, etc.), which can be transmitted to the PC
via UART.

Figure 14. Signal waveforms for the reception and analysis of Ethernet frames.

Figure 15 displays signal waveforms for frame analysis and statistics generation,
featuring four continuously received Ethernet frames (UDP, TCP, ARP, and ICMP). In this
case, the packet sniffer rules were defined to only allow the IP source address of the TCP
packet.

Figure 15. Signal waveforms for the frame analysis and statistics generation of Ethernet frames.

As shown in Figure 15, among the four generated packet types (UDP, TCP, ARP, and
ICMP), TCP (FW_PCK_TYPE = 1) and ARP (FW_PCK_TYPE = 0) are classified as �allowed�
(FW_RESULT = 3). Specifically, TCP packets were allowed, as their IP source addresses

Figure 14. Signal waveforms for the reception and analysis of Ethernet frames.

When the packet analysis was running, the ENABLE_FW signal was activated, and
upon completion, a pulse was generated on the FIREWALL_OUT signal. This analysis
extracted various frame parameters, including MAC source and destination addresses
(MAC_SOURCE and MAC_DEST), layer 3 protocol (LEV_3_PROT), and for LEV_3_PROT =
0x0800 (IP packets), layer 4 protocol (LEVEL_4_PROT), IP source and destination addresses
(IP_SOURCE and IP_DEST), source and destination ports for the UDP and TCP packets,
and flag information for the TCP packets.

After frame analysis and the pulsed FIREWALL_OUT signal, the CHECK_RULES
module assesses if the packet matches the firewall rules. These rules are defined based on IP
packet characteristics, such as source and destination address ranges, layer 4 protocol, and
source/destination port ranges, are stored in the RULES_MEMORY module, and loaded
from a PC via UART. The CHECK_RULES module outputs packet type (FW_PCK_TYPE),
packet length (FW_PCK_LENGTH), and analysis results (FW_RESULT—zero for packet
errors, one for rule violations, and three for allowed packets).

Upon completing the rules check, the OUT_RESULTS signal is pulsed, and the GEN-
ERATE_STATISTICS module calculates packet statistics (type, length, allowed/rejected
status, total data transferred, etc.), which can be transmitted to the PC via UART.

Figure 15 displays signal waveforms for frame analysis and statistics generation,
featuring four continuously received Ethernet frames (UDP, TCP, ARP, and ICMP). In
this case, the packet sniffer rules were defined to only allow the IP source address of the
TCP packet.

Electronics 2023, 12, 4412 11 of 22

Electronics 2023, 12, 4412 11 of 24

Upon completing the rules check, the OUT_RESULTS signal is pulsed, and the
GENERATE_STATISTICS module calculates packet statistics (type, length,
allowed/rejected status, total data transferred, etc.), which can be transmitted to the PC
via UART.

Figure 14. Signal waveforms for the reception and analysis of Ethernet frames.

Figure 15 displays signal waveforms for frame analysis and statistics generation,
featuring four continuously received Ethernet frames (UDP, TCP, ARP, and ICMP). In this
case, the packet sniffer rules were defined to only allow the IP source address of the TCP
packet.

Figure 15. Signal waveforms for the frame analysis and statistics generation of Ethernet frames.

As shown in Figure 15, among the four generated packet types (UDP, TCP, ARP, and
ICMP), TCP (FW_PCK_TYPE = 1) and ARP (FW_PCK_TYPE = 0) are classified as �allowed�
(FW_RESULT = 3). Specifically, TCP packets were allowed, as their IP source addresses

Figure 15. Signal waveforms for the frame analysis and statistics generation of Ethernet frames.

As shown in Figure 15, among the four generated packet types (UDP, TCP, ARP, and
ICMP), TCP (FW_PCK_TYPE = 1) and ARP (FW_PCK_TYPE = 0) are classified as ‘allowed’
(FW_RESULT = 3). Specifically, TCP packets were allowed, as their IP source addresses
comply with the firewall rules, and ARP packets were allowed as they are not IP packets
(LEV_3_PROT = 0x0806).

Conversely, IP packets (LEV_3_PROT = 0x0800), with Level 4 protocols UDP (LEV_4_
PROT = 17) and ICMP (LEV_4_PROT = 1), were marked as ‘rejected’, since their IP source
addresses do not match the firewall rules.

5. Results

The packet sniffer, as discussed in Section 4.2, underwent performance evaluation.
Initially, testing involved the generation of Ethernet frames using the packet generator
outlined in Section 4.1, with the results detailed in Section 5.1. Subsequently, the packet
sniffer was connected to the internet to assess its reliability and performance under real
Ethernet traffic, and the outcomes are presented in Section 5.2.

5.1. Tests with the Packet Generator

The packet sniffer was tested by generating Ethernet frames with the packet generator.
The measurement setup is depicted in Figure 16.

Considering that the packet sniffer reads a single byte in a clock cycle of duration 8 ns
(TCLK), corresponding to a 125 MHz frequency, the number of clock cycles NCLK needed to
analyze an Ethernet frame of byte length NETH is given by:

NCLK = NPREAMBLE + NSFD + NETH + NFCS + NMAC + NDELAY (1)

where NPREAMBLE is the number of clock cycles needed to read the Ethernet frame preamble
(7), NSFD is the number of clock cycles needed to read the Ethernet start frame delimiter (1),
NFCS is the number of clock cycles needed to read the Ethernet frame checksum (4), NMAC
is the number of clock cycles of delay introduced via the TEMAC module, and NDELAY is
the number of clock cycles of delay set in the packet’s generator using the UART command.
Consequently:

NCLK = NETH + NMAC + NDELAY + 12 (2)

Electronics 2023, 12, 4412 12 of 22

Electronics 2023, 12, 4412 12 of 24

comply with the firewall rules, and ARP packets were allowed as they are not IP packets
(LEV_3_PROT = 0x0806).

Conversely, IP packets (LEV_3_PROT = 0x0800), with Level 4 protocols UDP
(LEV_4_PROT = 17) and ICMP (LEV_4_PROT = 1), were marked as �rejected�, since their
IP source addresses do not match the firewall rules.

5. Results
The packet sniffer, as discussed in Section 4.2, underwent performance evaluation.

Initially, testing involved the generation of Ethernet frames using the packet generator
outlined in Section 4.1, with the results detailed in Section 5.1. Subsequently, the packet
sniffer was connected to the internet to assess its reliability and performance under real
Ethernet traffic, and the outcomes are presented in Section 5.2.

5.1. Tests with the Packet Generator
The packet sniffer was tested by generating Ethernet frames with the packet

generator. The measurement setup is depicted in Figure 16.

Figure 16. Experimental setup, where the Ethernet cables of the packet generator and the packet
sniffer are connected.

Considering that the packet sniffer reads a single byte in a clock cycle of duration 8
ns (TCLK), corresponding to a 125 MHz frequency, the number of clock cycles NCLK needed
to analyze an Ethernet frame of byte length NETH is given by: 𝑁CLK = 𝑁PREAMBLE ൅ 𝑁SFD ൅ 𝑁ETH ൅𝑁FCS ൅ 𝑁MAC ൅𝑁DELAY (1)

where NPREAMBLE is the number of clock cycles needed to read the Ethernet frame preamble
(7), NSFD is the number of clock cycles needed to read the Ethernet start frame delimiter
(1), NFCS is the number of clock cycles needed to read the Ethernet frame checksum (4),
NMAC is the number of clock cycles of delay introduced via the TEMAC module, and NDELAY
is the number of clock cycles of delay set in the packet�s generator using the UART
command. Consequently: 𝑁CLK = 𝑁ETH ൅ 𝑁MAC ൅𝑁DELAY ൅ 12 (2)

Thus, the data rate (DR), expressed in bit/s, can be calculated as:

Figure 16. Experimental setup, where the Ethernet cables of the packet generator and the packet
sniffer are connected.

Thus, the data rate (DR), expressed in bit/s, can be calculated as:

DR =
8× NETH

NCLK × TCLK
= 109 NETH

NETH + NMAC + NDELAY + 12
(3)

From Equation (3), it is evident that, even for NDELAY = 0, the data rate cannot reach
the maximum value of 1 Gbit/s. However, it can be asymptotically approached as NETH→
+∞. We conducted tests using the packet generator in continuous mode, assessing various
Ethernet frames with different byte lengths and protocols: ARP (42 bytes), TCP (54 bytes),
TCP (74 bytes), UDP (112 bytes), UDP (256 bytes), TCP (506 bytes), TCP (983 bytes), and
TCP (1414 bytes). Each Ethernet frame was subjected to different inter-frame delays,
including 0, 10, 50, 100, 500, 1000, 5000, 10,000, and 50,000 clock cycles. The results of these
tests are presented in Figure 17.

Electronics 2023, 12, 4412 13 of 24

DR = ଼×ேETHேCLK×்CLK
= 10ଽ ேETHேETHାேMACାேDELAYା12

 (3)

From Equation (3), it is evident that, even for NDELAY = 0, the data rate cannot reach
the maximum value of 1 Gbit/s. However, it can be asymptotically approached as NETH →
+∞. We conducted tests using the packet generator in continuous mode, assessing various
Ethernet frames with different byte lengths and protocols: ARP (42 bytes), TCP (54 bytes),
TCP (74 bytes), UDP (112 bytes), UDP (256 bytes), TCP (506 bytes), TCP (983 bytes), and
TCP (1414 bytes). Each Ethernet frame was subjected to different inter-frame delays,
including 0, 10, 50, 100, 500, 1000, 5000, 10,000, and 50,000 clock cycles. The results of these
tests are presented in Figure 17.

Figure 17. Data rate as a function of inter-frame delay for Ethernet frames of different byte lengths
and different protocols.

As anticipated, the data rate declined with increasing inter-frame delay. The data,
depicted in Figure 17, were fitted to Equation (3), utilizing CurveExpert Professional v2.4.0
(Hyams Development). The results exhibit a strong correlation, with coefficients of
determination (R2) ranging from 0.989 to 0.999.

The maximum data rate, DRMAX, is achieved when no inter-frame delay is present
(NDELAY = 0), and it can be expressed as:

DRMAX = 10ଽ ேETHேETHାேMACା12
 (4)

In Figure 18, the maximum data rate is plotted vs the frame length in bytes (NETH).
These measured data have been fitted to Equation (4), and this resulted in a high
correlation (R2 > 0.98) and an estimated value of NMAC of about 16 clock cycles.

Figure 17. Data rate as a function of inter-frame delay for Ethernet frames of different byte lengths
and different protocols.

Electronics 2023, 12, 4412 13 of 22

As anticipated, the data rate declined with increasing inter-frame delay. The data,
depicted in Figure 17, were fitted to Equation (3), utilizing CurveExpert Professional
v2.4.0 (Hyams Development). The results exhibit a strong correlation, with coefficients of
determination (R2) ranging from 0.989 to 0.999.

The maximum data rate, DRMAX, is achieved when no inter-frame delay is present
(NDELAY = 0), and it can be expressed as:

DRMAX = 109 NETH

NETH + NMAC + 12
(4)

In Figure 18, the maximum data rate is plotted vs the frame length in bytes (NETH).
These measured data have been fitted to Equation (4), and this resulted in a high correlation
(R2 > 0.98) and an estimated value of NMAC of about 16 clock cycles.

Electronics 2023, 12, 4412 14 of 24

Figure 18. Maximum data rate as a function of the Ethernet frame length (NETH).

Next, we evaluated and compared the performance of our proposed packet sniffer
against a PC running Wireshark. Figure 19 illustrates the experimental setup, which
involved the use of an Extreme Networks Summit X450e-48p switch (Extreme Networks)
to provide identical Ethernet traffic to both the packet sniffer and the PC running
Wireshark. The PC�s Ethernet port was linked to switch port two, while the traffic from
port two was mirrored to port ten, where the Ethernet port of the packet sniffer was
connected. To accommodate this experimental setup, we implemented the optional
virtual local area network (VLAN) field in the Ethernet frame within the packet sniffer.
This adjustment was necessary, as the traffic mirrored to port ten carried the VLAN tag.
The packet generator was linked to port six of the switch, responsible for generating
Ethernet frames addressed to the PC. These Ethernet frames were continually transmitted,
with varying inter-frame delay values. The results of this test are illustrated in Figure 20,
depicting frame rates over time for both the packet sniffer and the PC running Wireshark.
The plotted data were found to align, as expected, but there was a notable delay of
approximately 8–11 s in the PC running Wireshark�s response compared to the packet
sniffer. Furthermore, when the frame rates exceeded 48,000 frames per second, the PC
running Wireshark began losing data and eventually crashed at frame rates exceeding
100,000 frames per second. This demonstrates the packet sniffer�s ability to accurately
monitor Ethernet traffic with data rates of up to 1 Gbit/s, while a PC running Wireshark
encounters issues when data rates are too high.

Figure 18. Maximum data rate as a function of the Ethernet frame length (NETH).

Next, we evaluated and compared the performance of our proposed packet sniffer
against a PC running Wireshark. Figure 19 illustrates the experimental setup, which
involved the use of an Extreme Networks Summit X450e-48p switch (Extreme Networks) to
provide identical Ethernet traffic to both the packet sniffer and the PC running Wireshark.
The PC’s Ethernet port was linked to switch port two, while the traffic from port two
was mirrored to port ten, where the Ethernet port of the packet sniffer was connected. To
accommodate this experimental setup, we implemented the optional virtual local area
network (VLAN) field in the Ethernet frame within the packet sniffer. This adjustment was
necessary, as the traffic mirrored to port ten carried the VLAN tag. The packet generator
was linked to port six of the switch, responsible for generating Ethernet frames addressed
to the PC. These Ethernet frames were continually transmitted, with varying inter-frame
delay values. The results of this test are illustrated in Figure 20, depicting frame rates over
time for both the packet sniffer and the PC running Wireshark. The plotted data were
found to align, as expected, but there was a notable delay of approximately 8–11 s in the PC
running Wireshark’s response compared to the packet sniffer. Furthermore, when the frame
rates exceeded 48,000 frames per second, the PC running Wireshark began losing data and
eventually crashed at frame rates exceeding 100,000 frames per second. This demonstrates
the packet sniffer’s ability to accurately monitor Ethernet traffic with data rates of up to
1 Gbit/s, while a PC running Wireshark encounters issues when data rates are too high.

Electronics 2023, 12, 4412 14 of 22Electronics 2023, 12, 4412 15 of 24

Figure 19. Experimental setup, where the PC Ethernet traffic is mirrored on the packet sniffer and
the packet generator is used to generate the traffic.

Figure 20. Measured frame rate vs time in the case of the proposed packet sniffer and a PC running
Wireshark.

5.2. Tests with Real Ethernet Traffic
After successfully testing the designed packet sniffer with controlled Ethernet traffic

generated via the packet generator, the system was further evaluated with real-world
Ethernet traffic. This real-world test was conducted using the experimental setup depicted
in Figure 21.

In this setup, an Extreme Networks Summit X450e-48p switch was deployed to
provide identical internet traffic to both the packet sniffer and the PC running Wireshark.
The PC�s Ethernet port was connected to port two of this switch, and the traffic on port
two was mirrored to port ten, where the Ethernet port of the packet sniffer was connected.
To enable internet access for the PC, a router was connected to port six of this switch.

Figure 19. Experimental setup, where the PC Ethernet traffic is mirrored on the packet sniffer and the
packet generator is used to generate the traffic.

Electronics 2023, 12, 4412 15 of 24

Figure 19. Experimental setup, where the PC Ethernet traffic is mirrored on the packet sniffer and
the packet generator is used to generate the traffic.

Figure 20. Measured frame rate vs time in the case of the proposed packet sniffer and a PC running
Wireshark.

5.2. Tests with Real Ethernet Traffic
After successfully testing the designed packet sniffer with controlled Ethernet traffic

generated via the packet generator, the system was further evaluated with real-world
Ethernet traffic. This real-world test was conducted using the experimental setup depicted
in Figure 21.

In this setup, an Extreme Networks Summit X450e-48p switch was deployed to
provide identical internet traffic to both the packet sniffer and the PC running Wireshark.
The PC�s Ethernet port was connected to port two of this switch, and the traffic on port
two was mirrored to port ten, where the Ethernet port of the packet sniffer was connected.
To enable internet access for the PC, a router was connected to port six of this switch.

Figure 20. Measured frame rate vs time in the case of the proposed packet sniffer and a PC running
Wireshark.

5.2. Tests with Real Ethernet Traffic

After successfully testing the designed packet sniffer with controlled Ethernet traffic
generated via the packet generator, the system was further evaluated with real-world
Ethernet traffic. This real-world test was conducted using the experimental setup depicted
in Figure 21.

Electronics 2023, 12, 4412 15 of 22

Electronics 2023, 12, 4412 16 of 24

In the initial test, we emulated an ICMP flood attack targeted at the PC connected to
port two of this switch. This was achieved using the UDP Flooder software on another PC
within the same local area network. Figure 22 displays five distinct attacks, each generated
for varying durations. The results include data collected via both the packet sniffer and
the PC running Wireshark.

To assess the data correlation between the packet sniffer and Wireshark, we
conducted a cross-correlation analysis utilizing the Real Statistics add-on for Excel. This
analysis revealed a delay of approximately 6 s in the Wireshark data, with a maximum
correlation factor estimated at 0.99.

Figure 21. The experimental setup, where the PC Ethernet traffic is mirrored on the packet sniffer
and real Ethernet traffic is generated via the PC.

Figure 22. ICMP packets rate under different ICMP flood attacks detected with the packet sniffer
and the PC running Wireshark.

As a second test, we generated UDP Ethernet traffic by streaming content from an
online video service. We viewed a 2 min YouTube video on the PC at various video
resolutions (at 1080 p, 720 p, and 480 p) and monitored the corresponding UDP traffic
using both the packet sniffer and Wireshark. The number of UDP packets detected using

Figure 21. The experimental setup, where the PC Ethernet traffic is mirrored on the packet sniffer
and real Ethernet traffic is generated via the PC.

In this setup, an Extreme Networks Summit X450e-48p switch was deployed to provide
identical internet traffic to both the packet sniffer and the PC running Wireshark. The PC’s
Ethernet port was connected to port two of this switch, and the traffic on port two was
mirrored to port ten, where the Ethernet port of the packet sniffer was connected. To enable
internet access for the PC, a router was connected to port six of this switch.

In the initial test, we emulated an ICMP flood attack targeted at the PC connected to
port two of this switch. This was achieved using the UDP Flooder software on another PC
within the same local area network. Figure 22 displays five distinct attacks, each generated
for varying durations. The results include data collected via both the packet sniffer and the
PC running Wireshark.

Electronics 2023, 12, 4412 16 of 24

In the initial test, we emulated an ICMP flood attack targeted at the PC connected to
port two of this switch. This was achieved using the UDP Flooder software on another PC
within the same local area network. Figure 22 displays five distinct attacks, each generated
for varying durations. The results include data collected via both the packet sniffer and
the PC running Wireshark.

To assess the data correlation between the packet sniffer and Wireshark, we
conducted a cross-correlation analysis utilizing the Real Statistics add-on for Excel. This
analysis revealed a delay of approximately 6 s in the Wireshark data, with a maximum
correlation factor estimated at 0.99.

Figure 21. The experimental setup, where the PC Ethernet traffic is mirrored on the packet sniffer
and real Ethernet traffic is generated via the PC.

Figure 22. ICMP packets rate under different ICMP flood attacks detected with the packet sniffer
and the PC running Wireshark.

As a second test, we generated UDP Ethernet traffic by streaming content from an
online video service. We viewed a 2 min YouTube video on the PC at various video
resolutions (at 1080 p, 720 p, and 480 p) and monitored the corresponding UDP traffic
using both the packet sniffer and Wireshark. The number of UDP packets detected using

Figure 22. ICMP packets rate under different ICMP flood attacks detected with the packet sniffer and
the PC running Wireshark.

To assess the data correlation between the packet sniffer and Wireshark, we conducted
a cross-correlation analysis utilizing the Real Statistics add-on for Excel. This analysis

Electronics 2023, 12, 4412 16 of 22

revealed a delay of approximately 6 s in the Wireshark data, with a maximum correlation
factor estimated at 0.99.

As a second test, we generated UDP Ethernet traffic by streaming content from an
online video service. We viewed a 2 min YouTube video on the PC at various video
resolutions (at 1080 p, 720 p, and 480 p) and monitored the corresponding UDP traffic using
both the packet sniffer and Wireshark. The number of UDP packets detected using the
packet sniffer in 1 s is depicted in Figure 23 for the 1080 p video resolution, Figure 24 for
the 720 p resolution, and Figure 25 for the 480 p resolution.

Electronics 2023, 12, 4412 17 of 24

the packet sniffer in 1 s is depicted in Figure 23 for the 1080 p video resolution, Figure 24
for the 720 p resolution, and Figure 25 for the 480 p resolution.

Online video streaming predominantly produces intermittent spikes in Ethernet
frames tagged as UDP traffic. The frequency of UDP data transfer was influenced by the
video resolution, with higher resolutions resulting in increased data traffic. A cross-
correlation analysis was performed between the data from the packet sniffer and
Wireshark. The results indicated correlation coefficients of 0.78 for the 1080 p video
resolution, 0.92 for 720 p, and 0.57 for 480 p. These lower correlation coefficients were due
to the intermittent nature of data transfers and the lack of synchronization between the
packet sniffer and the PC running Wireshark. As a result, the sporadic data transfers
exhibited variable delays when recorded via the packet sniffer and Wireshark, which
affected the correlation between these two datasets. We also measured the total UDP data
transfer for both the packet sniffer and the PC running Wireshark, and the results are
summarized in Table 1.

Figure 23. UDP packets� rate in the case of the video resolution 1080 p.

Figure 24. UDP packets� rate in the case of the video resolution 720 p.

Figure 23. UDP packets’ rate in the case of the video resolution 1080 p.

Electronics 2023, 12, 4412 17 of 24

the packet sniffer in 1 s is depicted in Figure 23 for the 1080 p video resolution, Figure 24
for the 720 p resolution, and Figure 25 for the 480 p resolution.

Online video streaming predominantly produces intermittent spikes in Ethernet
frames tagged as UDP traffic. The frequency of UDP data transfer was influenced by the
video resolution, with higher resolutions resulting in increased data traffic. A cross-
correlation analysis was performed between the data from the packet sniffer and
Wireshark. The results indicated correlation coefficients of 0.78 for the 1080 p video
resolution, 0.92 for 720 p, and 0.57 for 480 p. These lower correlation coefficients were due
to the intermittent nature of data transfers and the lack of synchronization between the
packet sniffer and the PC running Wireshark. As a result, the sporadic data transfers
exhibited variable delays when recorded via the packet sniffer and Wireshark, which
affected the correlation between these two datasets. We also measured the total UDP data
transfer for both the packet sniffer and the PC running Wireshark, and the results are
summarized in Table 1.

Figure 23. UDP packets� rate in the case of the video resolution 1080 p.

Figure 24. UDP packets� rate in the case of the video resolution 720 p. Figure 24. UDP packets’ rate in the case of the video resolution 720 p.

Online video streaming predominantly produces intermittent spikes in Ethernet
frames tagged as UDP traffic. The frequency of UDP data transfer was influenced by
the video resolution, with higher resolutions resulting in increased data traffic. A cross-
correlation analysis was performed between the data from the packet sniffer and Wireshark.
The results indicated correlation coefficients of 0.78 for the 1080 p video resolution, 0.92 for
720 p, and 0.57 for 480 p. These lower correlation coefficients were due to the intermittent
nature of data transfers and the lack of synchronization between the packet sniffer and the
PC running Wireshark. As a result, the sporadic data transfers exhibited variable delays
when recorded via the packet sniffer and Wireshark, which affected the correlation between

Electronics 2023, 12, 4412 17 of 22

these two datasets. We also measured the total UDP data transfer for both the packet sniffer
and the PC running Wireshark, and the results are summarized in Table 1.

Electronics 2023, 12, 4412 18 of 24

Figure 25. UDP packets� rate in the case of the video resolution 480 p.

Table 1. Total UDP data transferred in the case of a YouTube video with resolutions of 1080 p, 720
p, and 480 p for the packet sniffer and the PC running Wireshark.

Device
Video Resolution

1080 p 720 p 480 p
Packet sniffer 56.72 MB 33.26 MB 20.44 MB

PC running Wireshark 56.51 MB 33.14 MB 20.27 MB

As a third test, we conducted a file download (Arduino IDE, file size 197 MB) using
the �wget� command in Linux. This test employed the TCP protocol for data transfer, and
the TCP data rate (data transferred per second) is illustrated in Figure 26.

The file was downloaded on four occasions, each time with different bandwidth
limits: 2 MB/s, 5 MB/s, 10 MB/s, and 15 MB/s. A cross-correlation analysis was performed,
which revealed that the Wireshark data exhibited an approximate 9 s delay compared to
the packet sniffer data. Despite this delay, the correlation coefficient remained notably
high at 0.97.

Figure 26. TCP data rate, in MB/s, in the case of file download using the Linux command “wget” for
the packet sniffer and the PC running Wireshark.

Figure 25. UDP packets’ rate in the case of the video resolution 480 p.

Table 1. Total UDP data transferred in the case of a YouTube video with resolutions of 1080 p, 720 p,
and 480 p for the packet sniffer and the PC running Wireshark.

Device
Video Resolution

1080 p 720 p 480 p

Packet sniffer 56.72 MB 33.26 MB 20.44 MB
PC running Wireshark 56.51 MB 33.14 MB 20.27 MB

As a third test, we conducted a file download (Arduino IDE, file size 197 MB) using
the ‘wget’ command in Linux. This test employed the TCP protocol for data transfer, and
the TCP data rate (data transferred per second) is illustrated in Figure 26.

Electronics 2023, 12, 4412 18 of 24

Figure 25. UDP packets� rate in the case of the video resolution 480 p.

Table 1. Total UDP data transferred in the case of a YouTube video with resolutions of 1080 p, 720
p, and 480 p for the packet sniffer and the PC running Wireshark.

Device
Video Resolution

1080 p 720 p 480 p
Packet sniffer 56.72 MB 33.26 MB 20.44 MB

PC running Wireshark 56.51 MB 33.14 MB 20.27 MB

As a third test, we conducted a file download (Arduino IDE, file size 197 MB) using
the �wget� command in Linux. This test employed the TCP protocol for data transfer, and
the TCP data rate (data transferred per second) is illustrated in Figure 26.

The file was downloaded on four occasions, each time with different bandwidth
limits: 2 MB/s, 5 MB/s, 10 MB/s, and 15 MB/s. A cross-correlation analysis was performed,
which revealed that the Wireshark data exhibited an approximate 9 s delay compared to
the packet sniffer data. Despite this delay, the correlation coefficient remained notably
high at 0.97.

Figure 26. TCP data rate, in MB/s, in the case of file download using the Linux command “wget” for
the packet sniffer and the PC running Wireshark.
Figure 26. TCP data rate, in MB/s, in the case of file download using the Linux command “wget” for
the packet sniffer and the PC running Wireshark.

The file was downloaded on four occasions, each time with different bandwidth limits:
2 MB/s, 5 MB/s, 10 MB/s, and 15 MB/s. A cross-correlation analysis was performed,

Electronics 2023, 12, 4412 18 of 22

which revealed that the Wireshark data exhibited an approximate 9 s delay compared to
the packet sniffer data. Despite this delay, the correlation coefficient remained notably high
at 0.97.

Finally, we conducted a test to verify the packet sniffer’s ability to accurately test for
the rules defined in Section 4.2. Two distinct files were downloaded using the Linux ‘wget’
command, each from a different IP address (82.197.215.15 and 104.18.12.241). The rules
were configured to solely permit data transfer from the IP address 104.18.12.241. The results
of this test are depicted in Figure 27, where it is evident that the TCP data downloaded
from 104.18.12.241 are correctly labeled as ‘allowed data’, while the data from 82.197.215.15
are flagged as ‘data with rules violation’.

Electronics 2023, 12, 4412 19 of 24

Finally, we conducted a test to verify the packet sniffer�s ability to accurately test for
the rules defined in Section 4.2. Two distinct files were downloaded using the Linux �wget�
command, each from a different IP address (82.197.215.15 and 104.18.12.241). The rules
were configured to solely permit data transfer from the IP address 104.18.12.241. The
results of this test are depicted in Figure 27, where it is evident that the TCP data
downloaded from 104.18.12.241 are correctly labeled as �allowed data,� while the data
from 82.197.215.15 are flagged as �data with rules violation�.

Figure 27. TCP packets� rate in the case of file download from two different IP addresses
(104.18.12.241 and 82.197.215.15) using the Linux command “wget” for the packet sniffer.

6. Ethernet Data Analyses for Higher Data Rates
A hardware-based packet sniffer was designed for analyzing the Ethernet traffic at a

maximum data rate of 1 Gbit/s. However, more recent Ethernet standards now allow for
higher data speeds, such as 10 Gbit/s and 100 Gbit/s.

Preliminary efforts were made to extend the capabilities of the packet sniffer to
operate at the higher data rate of 10 Gbit/s. For this purpose, we utilized the KC705
development board to create a packet generator running at 10 Gbit/s. The transmitted
Ethernet frames were looped back on the receive channel of the same board. To
accommodate this higher data rate, we switched from the RJ45 port to the small form-
factor pluggable (SFP) port on the development board, enabling data transfer via optical
fibers.

In this configuration, the physical layer of Ethernet transmission was managed using
a PHY module instantiated within the FPGA, replacing the external PHY chip (Marvell
M88E1111-BAB1C000), which can handle a maximum data speed of 1 Gbit/s. The IP
module 10 G Ethernet Subsystem version 3.1, provided by Xilinx, was employed to handle
layers one and two of the OSI protocol.

Figure 28 illustrates simulations of single-frame data transfers, specifically, a UDP
packet with a length of 60 bytes. In the case of a 1 Gbit/s data rate, data were acquired
with a 1-byte data width using a 125 MHz clock. For the 10 Gbit/s data rate, the data width
was increased to 8 bytes with a 156.25 MHz clock. In summary, with a 1 Gbit/s rate, a 60-
byte frame requires 60 clock cycles for data transfer, while at 10 Gbit/s, the number of
clock cycles is reduced to eight. For the 100 Gbit/s data rate, data were acquired with a 64-
byte data width, allowing for a 60-byte frame to be transferred in a single clock cycle.

Figure 27. TCP packets’ rate in the case of file download from two different IP addresses (104.18.12.241
and 82.197.215.15) using the Linux command “wget” for the packet sniffer.

6. Ethernet Data Analyses for Higher Data Rates

A hardware-based packet sniffer was designed for analyzing the Ethernet traffic at a
maximum data rate of 1 Gbit/s. However, more recent Ethernet standards now allow for
higher data speeds, such as 10 Gbit/s and 100 Gbit/s.

Preliminary efforts were made to extend the capabilities of the packet sniffer to operate
at the higher data rate of 10 Gbit/s. For this purpose, we utilized the KC705 development
board to create a packet generator running at 10 Gbit/s. The transmitted Ethernet frames
were looped back on the receive channel of the same board. To accommodate this higher
data rate, we switched from the RJ45 port to the small form-factor pluggable (SFP) port on
the development board, enabling data transfer via optical fibers.

In this configuration, the physical layer of Ethernet transmission was managed using
a PHY module instantiated within the FPGA, replacing the external PHY chip (Marvell
M88E1111-BAB1C000), which can handle a maximum data speed of 1 Gbit/s. The IP
module 10 G Ethernet Subsystem version 3.1, provided by Xilinx, was employed to handle
layers one and two of the OSI protocol.

Figure 28 illustrates simulations of single-frame data transfers, specifically, a UDP
packet with a length of 60 bytes. In the case of a 1 Gbit/s data rate, data were acquired with
a 1-byte data width using a 125 MHz clock. For the 10 Gbit/s data rate, the data width was
increased to 8 bytes with a 156.25 MHz clock. In summary, with a 1 Gbit/s rate, a 60-byte
frame requires 60 clock cycles for data transfer, while at 10 Gbit/s, the number of clock
cycles is reduced to eight. For the 100 Gbit/s data rate, data were acquired with a 64-byte
data width, allowing for a 60-byte frame to be transferred in a single clock cycle.

Electronics 2023, 12, 4412 19 of 22Electronics 2023, 12, 4412 20 of 24

Figure 28. Signal waveforms in the case of data transmission and reception, with a 10 Gbit/s data
rate.

The reduction in the number of clock cycles required for data frame transfers at
higher data rates poses challenges for critical timing in frame analysis and packet sniffer
rule verification. In the current version (1 Gbit/s), the timing is sufficient to verify up to
256 different packet sniffer rules. However, higher data rates demand stringent timing
requirements, necessitating the redesign of the frame analysis hardware. In the case of a
10 Gbit/s data rate, we implemented 64 different packet sniffer rules that were checked in
groups of 16 using a pipeline with a 4 clock cycle delay. Preliminary experimental tests,
performed with a specially designed packet generator operating at 10 Gbit/s, confirmed
the system�s reliable and efficient performance.

7. Comparison with the State-of-the-Art
The performance of our proposed packet sniffer was compared to similar FPGA-

based systems from the existing literature, and the results are summarized in Table 2. The
system developed by Stój et al. utilizes the same FPGA device family as our work but lacks
data traffic statistics collection and is limited to a 1 Gbit/s data rate [27]. Our preliminary
results indicated that our system can be extended to operate at 10 Gbit/s. Pal�s packet
sniffer, �E-Sniff,� was implemented on a FPGA (Altera Cyclone® II 2C35 FPGA device on
a DE2 development board) (Intel-Altera) and utilizes a soft processor and custom
hardware to capture and display packets on a VGA monitor [28]. However, it supports
lower data rates of 10 Mbit/s and 100 Mbit/s. Song et al.�s system was deployed on the
Xilinx Virtex-E FPGA XCV2000E on the FPX platform, supporting a data rate for the OC48
network (2.5 Gbit/s). Nonetheless, it lacks features for generating statistics, and
information regarding its supported protocols and PC interface is not available [29].

In 2009, Faria et al. introduced an Ethernet sniffer based on FPGA technology (Xilinx
Virtex-4 XC4VFX140), with an interface to the host PC via an EZ-USB FX2 USB module
from Cypress (CY7C68013-100AC), which supports USB 2.0 high-speed connections.
However, the supported data rate is below 1 Gbit/s [30]. HyPaFilter is a hybrid
classification system comprising a FPGA development board (Xilinx VC709, with a Virtex-
7 device) and a Linux software firewall on a PC. This system supports high data rates (10
Gbit/s) and utilizes a PCI Express interface but lacks data traffic statistics [31]. Ezzati et
al.�s packet sniffer implemented packet filtering using neural networks and achieved an
accuracy of higher than 97% [32]. It was implemented on a Xilinx Virtex-4 FPGA device
(xc4vlx15), but a full working system was not developed, and information regarding the
data rate is unavailable.

Figure 28. Signal waveforms in the case of data transmission and reception, with a 10 Gbit/s
data rate.

The reduction in the number of clock cycles required for data frame transfers at
higher data rates poses challenges for critical timing in frame analysis and packet sniffer
rule verification. In the current version (1 Gbit/s), the timing is sufficient to verify up to
256 different packet sniffer rules. However, higher data rates demand stringent timing
requirements, necessitating the redesign of the frame analysis hardware. In the case of a
10 Gbit/s data rate, we implemented 64 different packet sniffer rules that were checked in
groups of 16 using a pipeline with a 4 clock cycle delay. Preliminary experimental tests,
performed with a specially designed packet generator operating at 10 Gbit/s, confirmed
the system’s reliable and efficient performance.

7. Comparison with the State-of-the-Art

The performance of our proposed packet sniffer was compared to similar FPGA-based
systems from the existing literature, and the results are summarized in Table 2. The system
developed by Stój et al. utilizes the same FPGA device family as our work but lacks data
traffic statistics collection and is limited to a 1 Gbit/s data rate [27]. Our preliminary
results indicated that our system can be extended to operate at 10 Gbit/s. Pal’s packet
sniffer, ‘E-Sniff’, was implemented on a FPGA (Altera Cyclone® II 2C35 FPGA device
on a DE2 development board) (Intel-Altera) and utilizes a soft processor and custom
hardware to capture and display packets on a VGA monitor [28]. However, it supports
lower data rates of 10 Mbit/s and 100 Mbit/s. Song et al.’s system was deployed on
the Xilinx Virtex-E FPGA XCV2000E on the FPX platform, supporting a data rate for the
OC48 network (2.5 Gbit/s). Nonetheless, it lacks features for generating statistics, and
information regarding its supported protocols and PC interface is not available [29].

Table 2. Performance comparison of the proposed packet sniffer with similar systems implemented
on FPGAs from the literature.

Hardware Type Data Rate (Gbit/s) Supported Protocols PC Interface Statistics Reference

Xilinx Kintex-7 1 NA PCI Express No [27]
Altera Cyclone II 0.1 About 15 VGA monitor No [28]

Xilinx Virtex-E 2.5 NA NA No [29]
Xilinx Virtex-4 <1 TCP, UDP, ICMP, and ARP USB Yes [30]

Xilinx Virtex-7 + Linux firewall 10 TCP, UDP, ICMP, and ARP PCI Express No [31]
Xilinx Virtex-4 NA TCP NA No [32]
Xilinx Kintex-7 1–10 TCP, UDP, ICMP, and ARP UART Yes This work

In 2009, Faria et al. introduced an Ethernet sniffer based on FPGA technology (Xilinx
Virtex-4 XC4VFX140), with an interface to the host PC via an EZ-USB FX2 USB module from

Electronics 2023, 12, 4412 20 of 22

Cypress (CY7C68013-100AC), which supports USB 2.0 high-speed connections. However,
the supported data rate is below 1 Gbit/s [30]. HyPaFilter is a hybrid classification system
comprising a FPGA development board (Xilinx VC709, with a Virtex-7 device) and a Linux
software firewall on a PC. This system supports high data rates (10 Gbit/s) and utilizes
a PCI Express interface but lacks data traffic statistics [31]. Ezzati et al.’s packet sniffer
implemented packet filtering using neural networks and achieved an accuracy of higher
than 97% [32]. It was implemented on a Xilinx Virtex-4 FPGA device (xc4vlx15), but a full
working system was not developed, and information regarding the data rate is unavailable.

8. Conclusions

This article provided a comprehensive description of a stateless packet sniffer im-
plemented on a FPGA. This packet sniffer was developed using a commercial FPGA
development board (Xilinx’s KC705), and is capable of supporting data transfer rates of up
to 1 Gbit/s, with promising initial results indicating the potential for reliable data analysis,
even at rates of 10 Gbit/s.

This system was engineered to meticulously analyze various types of Ethernet frames,
including ARP, IP, UDP, TCP, and ICMP. It calculates essential frame attributes, such as
MAC addresses, IP addresses, source ports, and destination ports, and assesses potential
data threats based on user-defined rules.

Extensive testing was conducted under controlled conditions, which involved gener-
ating sets of Ethernet frames using a custom packet generator. Additionally, this system
was evaluated under real-world internet traffic conditions. The performance tests covered
certain scenarios, like video streaming and simulating an ICMP attack, demonstrating the
packet sniffer’s capability to reliably detect potential threats within the received data.

Future research endeavors in this domain will aim to enhance the packet sniffer’s
speed, with further testing to accommodate a 10 Gbit/s data rate, as well as upgrading the
hardware to support 100 Gbit/s data rates.

Applications for this technology range from network monitoring to securing high-
speed vertical internet connections. FPGAs have emerged as the optimal choice for these
applications, primarily due to their inherent attributes of low latency, high throughput, and
straightforward system reconfigurability.

Author Contributions: Conceptualization, M.G., A.G. and F.A.; methodology, M.G., A.G. and F.A.;
software, M.G. and F.A.; validation, M.G. and F.A.; formal analysis, M.G. and F.A.; investigation,
M.G. and F.A.; resources, M.G. and F.A.; data curation, M.G.; writing—original draft preparation,
M.G.; writing—review and editing, M.G., A.G., F.A. and M.P.; visualization, M.G., A.G. and F.A.;
supervision, A.G. and M.P.; project administration, A.G. and M.P.; funding acquisition, A.G. All
authors have read and agreed to the published version of the manuscript.

Funding: The Italian Ministry of University and Research, Grant/Award Number: J45F21002000001;
“Alma Idea 2022” Linea di Intervento A (D.M. 737/2021); the Italian Ministry of Industry Incentives
(MISE); and the Ministry of University and Research (MUR). In addition, this work was partially
supported by project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan
funded by the European Union—NextGenerationEU.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Acknowledgments: The authors would like to thank the National Institute for Nuclear Physics
(INFN, Bologna division) and the National Center for Frame Analysis (CNAF, Bologna division) for
their support in the development and testing of the presented packet sniffer.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 4412 21 of 22

References
1. Sudar, K.M.; Deepalakshmi, P.; Nagaraj, P.; Muneeswaran, V. Analysis of cyberattacks and its detection mechanisms. In

Proceedings of the IEEE Fifth International Conference on Research in Computational Intelligence and Communication Networks
(ICRCICN), Bangalore, India, 26–27 November 2020; pp. 12–16.

2. Agarwal, S.; Oser, P.; Lueders, S. Detecting IoT devices and how they put large heterogeneous networks at security risk. Sensors
2019, 19, 4107. [CrossRef] [PubMed]

3. Katsikas, S.; Gkioulos, V. Security, privacy, and trustworthiness of sensor networks and internet of things. Sensors 2020, 20, 3846.
[CrossRef] [PubMed]

4. Lezzi, M.; Lazoi, M.; Corallo, A. Cybersecurity for Industry 4.0 in the current literature: A reference framework. Comput. Ind.
2018, 103, 97–110. [CrossRef]

5. Corallo, A.; Lazoi, M.; Lezzi, M. Cybersecurity in the context of industry 4.0: A structured classification of critical assets and
business impacts. Comput. Ind. 2020, 114, 103165. [CrossRef]

6. Mullet, V.; Sondi, P.; Ramat, E. A review of cybersecurity guidelines for manufacturing factories in industry 4.0. IEEE Access 2021,
9, 23235–23263. [CrossRef]

7. Coventry, L.; Branley, D. Cybersecurity in healthcare: A narrative review of trends, threats and ways forward. Maturitas 2018, 113,
48–52. [CrossRef]

8. Anwar, R.W.; Abdullah, T.; Pastore, F. Firewall best practices for securing smart healthcare environment: A review. Appl. Sci.
2021, 11, 9183. [CrossRef]

9. Giansanti, D. Cybersecurity and the digital-health: The challenge of this millennium. Healthcare 2021, 9, 62. [CrossRef]
10. Neupane, K.; Haddad, R.; Chen, L. Next generation firewall for network security: A survey. In Proceedings of the IEEE

SoutheastCon, St. Petersburg, FL, USA, 19–22 April 2018; pp. 1–6.
11. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.

Cybersecurity 2019, 2, 20. [CrossRef]
12. Siswanto, A.; Syukur, A.; Kadir, E.A. Network traffic monitoring and analysis using packet sniffer. In Proceedings of the IEEE

International Conference on Advanced Communication Technologies and Networking (CommNet), Rabat, Morocco, 12–14 April
2019; pp. 1–4.

13. Nahar, N.; Kumar, R. An improved Linux firewall using a hybrid frame of netfilter. In Proceedings of the IEEE International
Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 11–12 May 2017; pp. 657–662.

14. Nivethan, J.; Papa, M. A Linux-based firewall for the DNP3 protocol. In Proceedings of the IEEE symposium on technologies for
homeland security (HST), Boston, MA, USA, 10–12 May 2016; pp. 1–5.

15. Tirumala, S.S.; Nepal, N.; Kumar Ray, S. Raspberry pi-based intelligent cyber defense systems for SMEs and smart-homes: An
exploratory study. EAI Endorsed Trans. Smart Cities 2022, 6, e4. [CrossRef]

16. Phalguni, J.; Santosh Krishna, M. Design of a Firewall Based on Linux Netfilter using ARM9. Int. J. Sci. Eng. Technol. Res. 2015, 4,
7744–7748.

17. Oluwabukola, O.; Oludele, A.; Ogbonna, A.C.; Chigozirim, A.; Amarachi, A. A Packet Sniffer (PSniffer) application for network
security in Java. In Proceedings of the Informing Science and Information Technology Education Conference; Informing Science
Institute: Santa Rosa, CA, USA, 2013; pp. 389–400.

18. Phang, S.Y.; Lee, H.; Lim, H. Design and implementation of V6SNIFF: An efficient IPv6 packet sniffer. In Proceedings of the IEEE
Third International Conference on Convergence and Hybrid Information Technology, Busan, Republic of Korea, 11–13 November
2008; Volume 2, pp. 44–49.

19. Goyal, P.; Goyal, A. Comparative study of two most popular packet sniffing tools-Tcpdump and Wireshark. In Proceedings of
the IEEE 9th International Conference on Computational Intelligence and Communication Networks (CICN), Girne, Northern
Cyprus, 16–17 September 2017; pp. 77–81.

20. Niemiec, G.S.; Batista, L.M.S.; Schaeffer-Filho, A.E.; Nazar, G.L. A survey on FPGA support for the feasible execution of virtualized
network functions. IEEE Commun. Surv. Tutor. 2019, 22, 504–525. [CrossRef]

21. Wicaksana, A.; Sasongko, A. Fast and reconfigurable packet classification engine in FPGA-based firewall. In Proceedings of the
IEEE International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, 17–19 July 2011; pp. 1–6.

22. Lin, S.; Zhang, D.; Fu, Y.; Wang, S. A design of the ethernet firewall based on FPGA. In Proceedings of the IEEE 10th International
Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October
2017; pp. 1–5.

23. Prajapati, G.S.; Khare, N. A framework of an internet firewall for IPv6 using FPGA. Int. J. Comput. Appl. 2012, 50, 22–24.
24. Prajapati, G.S.; Khare, N. A Novel Parallel Approach for Disjoint Rule Generation and Optimization (DRGO) in Reconfigurable

Firewall Using FPGA. Natl. Acad. Sci. Lett. 2020, 43, 321–325. [CrossRef]
25. Mohammed, R.K.; Ueno, Y. An FPGA-based Network Firewall with Expandable Rule. Indones. J. Electr. Eng. Comput. Sci. 2018, 10,

1310–1318. [CrossRef]
26. Hilgurt, S. A Concise Review of FPGA-Based Hardware Solutions for Network Intrusion Detection. In Proceedings of the IEEE

8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 5–7
October 2021; pp. 164–168.

https://doi.org/10.3390/s19194107
https://www.ncbi.nlm.nih.gov/pubmed/31547561
https://doi.org/10.3390/s20143846
https://www.ncbi.nlm.nih.gov/pubmed/32664194
https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/10.1016/j.compind.2019.103165
https://doi.org/10.1109/ACCESS.2021.3056650
https://doi.org/10.1016/j.maturitas.2018.04.008
https://doi.org/10.3390/app11199183
https://doi.org/10.3390/healthcare9010062
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.4108/eetsc.v6i18.2345
https://doi.org/10.1109/COMST.2019.2943690
https://doi.org/10.1007/s40009-019-00862-6
https://doi.org/10.11591/ijeecs.v10.i3.pp1310-1318

Electronics 2023, 12, 4412 22 of 22

27. Stój, J.; Ziębiński, A.; Cupek, R. FPGA based Industrial Ethernet Network Analyser for Real-time Systems Providing Openness
for Industry 4.0. Enterp. Inf. Syst. 2022, 16, 1711–1731. [CrossRef]

28. Pal, R.; Gotiya, R.; Singh, P.; Agrawal, A. Design of A Embedded Ethernet Packet Sniffer. Int. J. Innov. Technol. Explor. Eng. (IJITEE)
2013, 2, 84–88.

29. Song, H.; Lockwood, J.W. Efficient packet classification for network intrusion detection using FPGA. In Proceedings of the 2005
ACM/SIGDA 13th International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 20–22 February 2005; pp.
238–245.

30. Faria, J.; Oliveira, A.; Pedreiras, P.; Santos, R. FPGA-based Ethernet sniffer for Real-Time networks. Eletrónica e Telecomunicações
2009, 5, 61–68.

31. Fiessler, A.; Hager, S.; Scheuermann, B.; Moore, A.W. HyPaFilter: A versatile hybrid FPGA packet filter. In Proceedings of the
Symposium on Architectures for Networking and Communications Systems, Santa Clara, CA, USA, 17–18 March 2016; pp. 25–36.

32. Ezzati, S.; Naji, H.R.; Chegini, A.; Habibimehr, P. Intelligent firewall on reconfigurable hardware. Eur. J. Sci. Res. 2010, 47, 509–516.
33. Ulven, J.B.; Wangen, G. A systematic review of cybersecurity risks in higher education. Future Internet 2021, 13, 39. [CrossRef]
34. IEEE 802.3. Available online: https://en.wikipedia.org/wiki/IEEE_802.3 (accessed on 4 August 2023).
35. Sommer, J.; Gunreben, S.; Feller, F.; Kohn, M.; Mifdaoui, A.; Saß, D.; Scharf, J. Ethernet—A survey on its fields of application.

IEEE Commun. Surv. Tutor. 2010, 12, 263–284. [CrossRef]
36. Briscoe, N. Understanding the OSI 7-layer model. PC Netw. Advis. 2000, 120, 13–15.
37. Tiller, J.S. A technical Guide to IPSec Virtual Private Networks; CRC Press: Boca Raton, FL, USA, 2017.
38. AMD Kintex7 FPGA KC705 Evaluation Kit. Available online: https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705

-g.html (accessed on 4 August 2023).
39. Tri-Mode Ethernet Media Access Controller (TEMAC). Available online: https://www.xilinx.com/products/intellectual-

property/temac.html (accessed on 4 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/17517575.2021.1948613
https://doi.org/10.3390/fi13020039
https://en.wikipedia.org/wiki/IEEE_802.3
https://doi.org/10.1109/SURV.2010.021110.00086
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/intellectual-property/temac.html
https://www.xilinx.com/products/intellectual-property/temac.html

	Introduction
	Paper Structure
	Ethernet Frame Format
	Experimental Design
	The Packet Generator
	The Packet Sniffer

	Results
	Tests with the Packet Generator
	Tests with Real Ethernet Traffic

	Ethernet Data Analyses for Higher Data Rates
	Comparison with the State-of-the-Art
	Conclusions
	References

