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Abstract: In this study, we designed a K-band CMOS switch-type phase shifter. Equivalent circuits of
shift and pass modes were analyzed to minimize phase errors in a wide frequency range. In particular,
the impedance inside the equivalent circuit of the pass mode was analyzed to derive a frequency
region in which the equivalent circuit of the pass mode becomes an L-C-L structure. Based on the
fact that equivalent circuits in shift and pass modes can be regarded as L-C-L structures beyond a
specific frequency, a design methodology of the wideband phase shifter was proposed through slope
adjustment of the phase according to the frequency of each of the two modes. To verify the feasibility
of the proposed design methodology, a 20◦-bit phase shifter was designed through a 65 nm RFCMOS
process. As a result of the measurement at 21.5 GHz to 40.0 GHz, the phase error was within 0.87◦.
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1. Introduction

With the introduction of 5G mobile communication, research related to beamforming
systems has recently been actively conducted [1–4]. Accordingly, millimeter-wave (mm-
Wave) circuits constituting the beamforming system are also developing. Recently, research
has been active in securing more frequency bands with one beamforming system by
securing wideband characteristics as well as improving the performance of mm-Wave
circuits that make up the beamforming system [5–10].

With the development of such a beamforming system, research on a phase shifter for
antenna beam control is also attracting attention [11–13]. Such a phase shifter is divided
into an active type using a vector sum and a passive type using a filter consisting of a
passive device and switch. Active phase shifters have the advantage of fine-tuning the
phase and amplifying the signal, while only one-way signal paths are possible [14–21]. On
the other hand, in the case of a passive phase shifter, there is a disadvantage that insertion
loss occurs due to power loss caused by passive devices, but there is an advantage that a
bidirectional signal path is possible [22–25]. The passive phase shifter consists of several
bits that can control the phase, and each bit has a different amount of phase control function.
The advantages and disadvantages of each phase shift structure have been summarized
in previous studies [26]. These phase shifters, like other mm-Wave circuits [5,9], require
wideband characteristics to be secured for the application of beamforming systems that can
support multiple frequency bands [11,25].

In this study, a method of designing a unit bit of a phase shifter that can secure
wideband characteristics in a passive phase shifter consisting of several bits and suppress
phase error at the same time was proposed. The proposed design methodology relates to
the L-C-L T-type structure, and a method of maintaining phase differences in a wide range
of frequency bands through impedance analysis in pass and shift modes was proposed. The
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proposed design methodology was applied to the phase shifter fabricated with the 65 nm
RFCMOS process, and its feasibility was confirmed through the measurement results.

2. Proposed Design Method of the Wideband L-C-L T-Type Unit Bit for Phase Shifters

Here, in order to explain the proposed design methodology of a wideband phase
shifter with a suppressed phase error, the equivalent circuits in shift and pass mode were
first analyzed. After considering the simplified equivalent circuit for each mode, a design
technique for a wideband phase shifter with suppressed phase errors was presented using
the derived equivalent circuits.

2.1. Analysis of Equivalent Circuits by Mode in T-Type Structure

Figure 1 shows the schematic and its equivalent circuits of the unit bit of a wideband
phase shifter for the application of the proposed design methodology. The unit bit of the
phase shifter operates in shift and pass modes, respectively, depending on the on- and
off-states of the transistor acting as a switch. Figure 1b,c show equivalent circuits in shift
and pass modes of the unit bit, respectively.
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Figure 1. L-C-L T-type structure of unit bit for phase shifter: (a) schematic of the used T-type structure,
and equivalent circuits for the (b) shift and (c) pass modes.

In the shift mode shown in Figure 1b, the transistor M is turned on, and for convenience
of analysis, it is assumed equivalent to the on-resistance, RM of the transistor. Assuming
that the impedance of RM is small enough, the impedance by LRE connected in parallel
with RM can be ignored. In this case, the equivalent circuit of the shift mode is in the form
of a low-pass filter composed of a T-type LSH-CSH-LSH.

On the other hand, in the case of the pass mode, M is turned off, and for the con-
venience of analysis, it is assumed equivalent to CM due to parasitic capacitances of the
transistor M, as shown in Figure 1c. In this case, unlike the shift mode, direct equaliza-
tion with the L-C-L structure is difficult. Therefore, the ZEQ of Figure 1c was developed
as follows.

ZEQ =
1−ω2LRE(CSH + CM)

jωCSH(1−ω2LRECM)
(1)

Here, for convenience of analysis, it was assumed that the parasitic resistance was
small enough to be negligible. The frequencies at which ZEQ becomes 0 and infinite using
Equation (1) are calculated as follows.

ω ZEQ=0 = 1√
LRE(CSH+CM)

,

ω ZEQ=∞ = 1√
LRECM

(2)

Here, ωZEQ=0 and ωZEQ=∞ denote frequencies at which ZEQ becomes 0 and infinity,
respectively. Figure 2 shows the simulation results of the resistance and capacitance of ZEQ
according to frequency. Since the simulation was performed using models of actual devices,
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there is a slight difference from the results of the analyzed equations, but the tendency is
the same as that of the equations. The main difference between equations and simulation is
that parasitic resistances were ignored in equations, but were considered in simulation.
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Figure 2. Simulated conceptual ZEQ according to operating frequency: (a) capacitance and
(b) resistance.

The capacitance of ZEQ shown in Figure 2a has a value of 0 at ωZEQ=0 and ωZEQ=∞. As
the operating frequency gradually increases from ωZEQ=0, the capacitance of ZEQ converges
to a specific value, and the converging capacitance is expressed as CEQ. At this time, the
frequency at which the capacitance of ZEQ begins to be regarded as CEQ was defined as ωC.
On the other hand, the resistance shown in Figure 2b has the highest value at ωZEQ=∞, which
is determined by the LRE and CM as shown in Equation (2). As the operating frequency
increases from ωZEQ=∞, the resistance gradually decreases, and eventually approaches 0 Ω.
In addition, even near ωC set from Figure 2a, the resistance of ZEQ can be considered 0 Ω.
As a result, in the frequency region higher than ωC, the resistance and capacitance of ZEQ
are 0 Ω and CEQ, respectively, so ZEQ can be expressed as follows.

ZEQ ∼=
1

jωCEQ
f or ω > ωC (3)
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Therefore, in the case of pass-mode, a circuit consisting of CSH, CM, and LRE may be
represented by CEQ in the frequency region higher than ωC. This allows an equivalent
circuit in pass mode to be T-type LSH-CEQ-LSH, similar to shift mode, in frequency regions
higher than ωC. Figure 3 shows equivalent circuits of shift and pass modes in frequency
regions higher than ωC.
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2.2. Proposed Design Methodology for Wideband Phase Shifter with Suppressed Phase Error

Figure 4 is a conceptual diagram for explaining the proposed design methodology
of a wideband phase shifter with suppressed phase errors using the previously derived
equivalent circuit for each mode. In the case of an equivalent circuit in shift mode, it has a
structure of LSH-CSH-LSH regardless of the operating frequency, so the phase in shift mode
in Figure 4 shows linear characteristics according to the frequency. On the other hand, in
the case of an equivalent circuit in pass mode, it can only be regarded as the structure of
LSH-CEQ-LSH in the higher operating frequency region than ωC, so the phase in pass mode
in Figure 4 shows linear characteristics according to the frequency after ωC.
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That is, in the frequency regions after ωC, for both shift and pass modes, the phase
according to the frequency maintains a linear characteristic. Therefore, in the frequency
region after ωC, if the slopes of the phases according to the frequency in the shift and pass
modes are set to be the same, the phase difference between shift and pass modes can be
maintained to be the same in the frequency region after ωC. When the slopes of the shift
and pass modes are set the same as each other, the phase difference between the two modes
also increases as the absolute value of the slope in the two modes increases.

As a result of qualitative analysis, wideband characteristics can be secured by equaliz-
ing the phase slopes according to the frequency of the two modes. In addition, the desired
phase difference can be secured by adjusting the equalized slope.



Electronics 2023, 12, 4368 5 of 11

In order to quantify such a qualitative analysis, the phase of each mode in the frequency
region after ωC can be calculated as follows.

ϕShi f t = tan−1

(
−

2ωLSH −ω3L2
SHCSH

Z0(1−ω2LSHCSH)

)
(4)

ϕPass = tan−1

(
−

2ωLSH −ω3L2
SHCEQ

Z0
(
1−ω2LSHCEQ

) ) (5)

where ϕShift and ϕPass are phases of the shift and pass modes, respectively. In addition, we
assumed that the termination impedance Z0 is 50 Ω. Here, for convenience of analysis
through equations, it was assumed that parasitic resistances including RM were small
enough to be negligible. In this study, instead of directly setting the phase slope according
to the frequency, the desired slope for each mode was secured by adjusting the frequency
at which the phase in each mode becomes −90◦. In order to set the slope of the phase in
this manner, the frequency at which the phase becomes −90◦ for each mode is considered
as follows.

ωShi f t−90 = 1√
LSHCSH

ωPass−90 = 1√
LSHCEQ

(6)

where ωShift−90 and ωPass−90 are frequencies when the phase becomes −90◦ in shift and
pass modes, respectively.

As a result of quantitative analysis of the proposed design methodology, if the fre-
quency with a phase of −90◦ in each mode is adjusted through Equation (6), a wideband
phase shifter with a suppressed phase error can be secured.

3. Design Examples of the Phase Shifter Using Proposed Design Methodology

In this study, in order to verify the effectiveness of the proposed design methodology,
several unit bits of the phase shifter were first designed through simulation.

Here, if Equation (6) and Figure 4 are analyzed again, in the case of the unit bit of the
L-C-L structure of a wideband phase shifter with a large phase difference, the absolute
value of the phase slope according to frequency must increase. This means that ωShift−90
and ωPass−90 of Equation (6) should decrease, and LSHCSH and LSHCEQ should increase. As
such, when the required inductance and capacitance increase for a large phase difference,
the power loss and the size of the integrated circuit also increase accordingly. Therefore, the
wideband unit bit with suppressed phase error using the T-type L-C-L structure proposed
in this study is relatively more suitable for securing a small phase difference. For this
reason, in this study, as shown in Figure 5, unit bits for phase shifters of 5◦, 10◦, 15◦, and
20◦ were designed to verify the proposed structure through simulation.

In this study, the 65 nm RFCMOS process which provides eight metal layers was used
to design the phase shifter. The schematics for the simulation results of Figure 5 are all
the same as Figure 1a. The device values used for each bit to obtain the phase shift of
5◦, 10◦, 15◦, and 20◦ shown in Figure 5 are summarized in Table 1. When designing for
each bit to obtain simulation results, the effects of metal lines, inductors, and test pads
were all considered through electromagnetic (EM) simulation to secure the accuracy of the
simulation results. Spiral inductors are designed using the top metal layer to minimize
loss due to the Silicon substrate. In addition, the gate voltages of the transistor were 1 V
and 0 V, respectively, for the on and off states of the transistor. The simulation results in
Figure 5 were conducted at a temperature of 25 ◦C in a typical corner.
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Table 1. Size of the used transistors, inductors, and capacitors.

Bits 5◦ 10◦ 15◦ 20◦

M (µm) 1 4.8 6.8 10.5 12.0
CM (fF) 5.0 7.4 10.5 12.4
CSH (fF) 29.1 47.6 80.5 106.2
LSH (pH) 220 220 220 220
LRE (nH) 1.73 1.44 1.44 1.13

1 Total gate width.

Among the simulation results of the four designed phase shifters, the phase shifter of
20◦ was actually fabricated, measured, and analyzed. Accordingly, the phase shifter of 20◦

was investigated in more detail. As shown in Figure 5d, the simulation results of the phase
difference of −20.9◦ were obtained at the 25 ◦C typical corner with the operating frequency
of 40 GHz. In addition, simulation results at −40 ◦C, 25 ◦C, and 80 ◦C were examined in
fast, typical, and slow corners to confirm the impact of process and temperature variations.
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For the 20◦ phase shifter with the operating frequency of 40 GHz, simulation results of the
phase difference of −19.2◦ and −22.3◦ were obtained in the −40 ◦C fast corner and 80 ◦C
slow corner, respectively. It was confirmed as a simulation result that there was a deviation
of approximately 3.1◦ by process and temperature variations with the operating frequency
of 40 GHz.

As described above, in order to ensure wideband characteristics with suppressed
phase errors, the slopes of the phase according to the frequency of shift and pass modes for
each bit were designed to be the same. For all 5◦-, 10◦-, 15◦-, and 20◦-bits, the phase error
from the operating frequency of 22 GHz to 40 GHz was within 0.6◦ under 25 ◦C typical
corner conditions. If the operating frequency was expanded from 22 GHz to 60 GHz, the
phase error was less than 0.97◦. Such a frequency range includes all of the frequency ranges
for 5G applications in the mm-Wave band. As a result, from the simulation results shown
in Figure 5, it can be seen that the proposed design methodology is effective in securing
wideband characteristics and suppressing phase errors in the phase shifter.

4. Measurement Results of the Designed Wideband Phase Shifter

In order to verify the effectiveness of the proposed design methodology through
measurement, a phase shifter of the unit bit of the T-type L-C-L structure was designed
using the 65-nm RFCMOS process. The phase shift target of the designed unit bit was
set to 20◦. For shift- and pass-modes, the gate voltages of the transistor were 1 V and
0 V, respectively. The measurement was carried out at room temperature. Figure 6 shows
a chip photograph of the designed 20◦-bit phase shifter. The chip and core sizes are
0.290 × 0.455 mm2 and 0.130 × 0.260 mm2. The designed phase shifter of the unit bit is
actually integrated and used in the transceiver for the beamforming system. Therefore,
although test pads were implemented in this study to verify the feasibility of the phase
shifter itself, these test pads are removed when applied to the actual transceiver. On-wafer
probes were used to measure RF input and output signals, and gate voltage was applied
through a bonding wire.
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Figure 5d shows the simulated phase characteristics according to the frequency of the
designed unit bit phase shifter, and Figure 7 shows the measured phase characteristics.
Due to the limitation of the measurement environment, the operating frequency of the
designed unit bit phase shifter was measured up to 40 GHz. The target phase was 20◦,
but the measured phase was slightly reduced. One of the causes of the difference between
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measurement and simulation results may be the accuracy of EM simulation. In addition, as
described in the previous section, process–voltage–temperature (PVT) variation can also be
one of the important causes of the difference.
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The measured phase differences of the shift and pass modes were 18.72◦ and 18.35◦

at 21.5 GHz and 40.0 GHz, respectively. In the operating frequency range of 21.5 GHz to
40.0 GHz, the measured phase difference was in the range of 17.85◦ to 18.72◦. Therefore,
based on the target phase difference of 20◦, the phase error was less than 2.15◦. However,
considering the wideband characteristics of the proposed designed technique, the deviation
of the phase difference in the operating frequency range from 21.5 GHz to 40.0 GHz was less
than ±0.5◦. Figure 8 shows the measured and simulated insertion losses of the designed
unit bit phase shifter.

In Table 2, the performance of CMOS-based wideband phase shifters was compared.
While phase shifters in most previous studies consist of several bits, the phase shift in
this study consists of a unit bit. Therefore, accurate comparative evaluation is somewhat
difficult. However, it can be seen that the phase shifter of this study generally has a low
phase error in a wide frequency range.

Table 2. Performance comparison of CMOS phase shifters.

Ref. Tech.
(nm)

Type
/Bits

Freq.
(GHz)

BW
(%)

IL 1

(dB)
RMS Phase

Error (◦)
PDC

(mW)
Core Size

(mm2)

[27] 28 VSPS/2.8◦ 2 22–44 66.7 <5.81 <2.6 25 0.19
[28] 180 VSPS/22.5◦ 2 27–33 20.0 <10.0 <4.0 6.6 0.44
[29] 65 RTPS/>360◦ 3 27.8–31.2 11.5 <9.0 - 0 0.08
[30] 65 RTPS/>180◦ 3 25–43 53.0 <9.1 - 0 0.15
[31] 65 STPS/5-bits 27–42 43.5 <14.5 <3.8 4 0 0.40
[32] 28 STPS/4-bits 29–37 24.2 <15.3 <8.8 0 0.07

This work 65 STPS/1-bits 21.5–40.0 63 <5.0 <0.5 0 0.03

1 Insertion loss, 2 resolution, 3 phase-shift range, 4 controlled by bi-phase modulator.
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5. Conclusions

In this study, we propose a design methodology for a wideband phase shifter with
suppressed phase errors. To this end, the equivalent circuits in shift and pass modes of the
phase shifter were analyzed. Through internal impedance analysis of equivalent circuits, it
was shown using mathematical and simulation results that both modes can be represented
by equivalent circuits of the L-C-L structure beyond a specific frequency. In shift and pass
modes represented by equivalent circuits of L-C-L structure, it was confirmed that phase
errors can be minimized in a wide range of frequency bands when the slope of the phase
according to frequency is adjusted. Adjustment of the slope can be achieved by adjusting
the frequency of −90◦ in each mode, which can be achieved by adjusting the inductance
and capacitance in the equivalent circuit for each mode. The proposed design methodology
was applied to a 20◦-bit phase shifter designed with a 65 nm RFCMOS process. As a result
of the measurement, at 21.5 GHz to 40.0 GHz, the phase error was within 0.87◦.
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