
Citation: Dong, S.; Zhao, Z.; Wang,

B.; Gao, W.; Zhang, S. Certificateless

Encryption Supporting Multi-

Ciphertext Equality Test with

Proxy-Assisted Authorization.

Electronics 2023, 12, 4326. https://

doi.org/10.3390/electronics12204326

Academic Editors: Weiting Zhang,

Chuan Zhang and Tong Wu

Received: 7 October 2023

Revised: 12 October 2023

Accepted: 16 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Certificateless Encryption Supporting Multi-Ciphertext
Equality Test with Proxy-Assisted Authorization
Siyue Dong 1,*,†,‡ , Zhen Zhao 1,*,†,‡ , Baocang Wang 1, Wen Gao 2 and Shanshan Zhang 3

1 The State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China;
bcwang@xidian.edu.cn

2 School of Cyberspace Security, Xi’an University of Posts & Telecommunications, Xi’an 710121, China;
gaowen@xupt.edu.cn

3 School of Mathematics and Information Science, Baoji University of Arts and Science, Xi’an 721016, China;
sszhang@bjwlxy.edu.cn

* Correspondence: sydong@stu.xidian.edu.cn (S.D.); zzhen@xidian.edu.cn (Z.Z.)
† Current address: No. 2 South Taibai Road, Xi’an 710071, China.
‡ These authors contributed equally to this work.

Abstract: Public key encryption with equality test (PKEET) is a cryptographic primitive that enables
a tester to determine, without decryption, whether two ciphertexts encrypted with different public
keys generate from the same message. In previous research, public key encryption with equality
test (PKEET) was extended to include identity-based encryption with equality test (IBEET), thereby
broadening the application of PKEET. Subsequently, certificateless encryption with equality test
(CLEET) was introduced to address the key escrow problem in IBEET. However, existing CLEET
schemes suffer from inefficiency and potential information leakage when dealing with multiple
ciphertexts due to the need for pairwise equality tests. To address this issue, we propose a concept of
certificateless encryption supporting multi-ciphertext equality test with proxy-assisted authorization
(CLE-MET-PA). CLE-MET-PA incorporates the functionality of the multi-ciphertext equality test into
CLEET, enabling a tester to perform a single equality test on multiple ciphertexts to determine whether
the underlying plaintexts are equal, without revealing any additional information. This enhances
the security of our scheme while significantly reducing the computational overhead compared to
multiple pairwise equality tests, making our scheme more efficient. Additionally, our approach
integrates proxy-assisted authorization, allowing users to delegate a proxy to grant authorizations for
equality tests on their behalf when offline. Importantly, the proxy token used in our scheme does not
include any portion of the user’s private key, providing enhanced protection compared to traditional
PKEET schemes in which the user token is often part of the user’s private key. We construct a concrete
CLE-MET-PA scheme and prove that it achieves CPA security and attains CCA security through an
FO transformation.

Keywords: public key encryption with equality test; certificateless encryption; multi-ciphertext
equality test

1. Introduction

Cloud computing provides an efficient solution for transferring the storage and compu-
tation burdens from users to cloud servers. In recent decades, the continuous improvement in
network bandwidth, the emergence of big data, the Internet of Things, and artificial intelli-
gence have led to the rapid development of cloud technology and its applications [1–4]. Cloud
storage, in comparison to traditional local storage, offers several advantages including low
cost, high scalability, easy management, and maintenance. With cloud technology, users can
select the appropriate storage capacity and service types based on their specific requirements
and perform various data operations such as uploading, downloading, backup, archiving,
and sharing. As a result, more and more individuals and organizations are utilizing cloud

Electronics 2023, 12, 4326. https://doi.org/10.3390/electronics12204326 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12204326
https://doi.org/10.3390/electronics12204326
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9756-5742
https://orcid.org/0000-0003-2654-624X
https://orcid.org/0000-0001-9923-068X
https://doi.org/10.3390/electronics12204326
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12204326?type=check_update&version=2

Electronics 2023, 12, 4326 2 of 29

servers to process and store their data. However, due to the sensitive nature of their data and
the need for privacy protection, it is common practice to encrypt the data on cloud servers
using various cryptosystems. Nevertheless, there is a growing demand for cryptographic
technologies that enable processing operations, such as searching, deduplication, classification,
and data segmentation, while preserving the confidentiality of the encrypted data.

In the realm of processing encrypted data, researchers have proposed various cryp-
tographic primitives, including searchable encryption [5,6] and fully homomorphic en-
cryption [7]. Expanding upon searchable encryption, Boneh et al. [8] introduced public
key encryption with keyword search (PEKS) in 2004. The scheme allows a server to verify,
without decryption, whether a ciphertext C is generated from a message M as long as it
is in possession of the corresponding tag TM for that ciphertext and the public key used
for message encryption. This property renders it suitable for applications such as the
classification of public key ciphertexts.

This scheme, however, has a limitation in that it only allows ciphertext management
for a single user, restricting comparison and search to ciphertexts under the same public
key. To enable ciphertext equality tests across different public keys, additional primitives
are necessary. In 2010, Yang et al. [9] proposed the concept of public-key encryption with
equality test (PKEET). In their work, the authors introduced a special public key encryption
scheme where an entity can determine whether two ciphertexts correspond to identical
plaintexts using an equality test algorithm on two ciphertexts encrypted under different
public keys.

1.1. Related Work

In the first PKEET scheme proposed by Yang et al. [9], there is a concern regarding the
protection of data privacy for the data owner, as there is no restriction on who can perform
an equality test. Consequently, the initial advancements in PKEET schemes were predomi-
nantly directed towards achieving fine-grained control over tester authorizations. These
efforts [10–14] concentrated on devising methods to authorize testers and defining which
ciphertexts they could perform equality tests on once granted authorization. The work
proposed by Ma et al. [14] extensively examines and provides a comprehensive overview
of diverse authorization mechanisms.

In 2016, Ma [15] and Lee et al. [16] introduced the identity-based encryption (IBE)
primitive into PKEET, presenting their respective IBEET schemes. These schemes adopt the
benefits of identity-based encryption (IBE) cryptosystems, which allow users to generate public
and private key pairs using their identity information without the need for digital certificates,
therefore addressing the key management problem in public key encryption cryptosystems.
This novel approach sparked significant subsequent research on IBEET [17–28].

Certificateless public key encryption with equality test (CL-PKEET). When it comes
to solving the key management problem, identity-based encryption (IBE) relies on a central
authority, typically the key generation center (KGC), to generate private keys for users based
on their identities. However, this reliance on a central authority means that the KGC has
the ability to decrypt messages intended for any user. If the KGC is compromised, coerced,
or misused, it can result in unauthorized access to users’ encrypted data, which is known as
the key escrow problem. To address this issue, Al-Riyami et al. [29] proposed certificateless
encryption (CLE). In CLE, the KGC generates partial private keys for users, enabling them
to generate their own private and public keys. This approach effectively addresses the
key escrow problem. Similarly, IBEET also faces the key escrow problem. In order to
tackle this problem in IBEET, Qu et al. [30] introduced CLE into PKEET, creating the initial
certificateless public key encryption with equality test (CL-PKEET, referred to as CLEET in
this paper for brevity) scheme.

Public key encryption with multi-ciphertext equality test (PKE-MET). Before the in-
troduction of PKE-MET by Susilo et al. [31], all PKEET and IBEET schemes only supported
pairwise equality tests. Consider a scenario where a tester receives n ciphertexts from n
different users. With a conventional PKEET scheme, the tester would be required to perform

Electronics 2023, 12, 4326 3 of 29

a minimum of n− 1 equality tests between pairs of ciphertexts to determine the equality of
the n ciphertexts. However, in the PKE-MET scheme, a specific parameter s is designated,
enabling the tester to test the equality of s ciphertexts in a single equality test. Moreover,
this feature of multi-ciphertext comparison significantly reduces additional information
leakage in equality tests. For example, when conducting an equality test on ciphertexts
from three different users to determine whether the plaintexts corresponding to user A, B,
and C’s ciphertexts are equal, traditional PKEET test algorithms would inevitably reveal
additional information, such as the equality of the underlying plaintexts between user
A and user B. By exploiting our multi-ciphertext test feature, the leakage of additional
information in equality tests can be greatly mitigated. This improvement leads to better
efficiency, heightened security, and reduced computational costs for the tester.

Proxy-assisted authorization. One authorization method employed in our scheme
is consistent with the majority of PKEET schemes, known as user authorization. In this
method, a user generates a token (also referred to as a trapdoor), and sends it to the tester,
enabling the tester to conduct equality tests on the user’s ciphertexts. Additionally, we
introduce a proxy-assisted authorization method, whereby the user can engage with a
proxy through a secure and efficient key exchange algorithm to create a proxy token. This
token is then securely stored by the proxy and possesses the same authorization capabilities
as the user token. There are two primary advantages to this approach. Firstly, it liberates
the user from having to be constantly online to authorize a tester, enhancing the practical
application value of the scheme. Secondly, unlike the user token, the proxy token does not
compromise any part of the user’s private key, thus reducing the risk of privacy exposure.

1.2. Our Contribution

We propose a CLE-MET-PA scheme in this paper, and the contributions of this paper
are as follows:

• We introduce the multi-ciphertext equality test into CLEET. Our proposal associates
each ciphertext with a designated number s, making it possible to perform equality
tests on multiple ciphertexts simultaneously in a single test without revealing any
additional information, all while retaining the fundamental attributes of certificateless
encryption.

• We incorporate the concept of a proxy into our framework. Users have the flexibility
to choose and disclose proxies along with their public keys on the public key server.
This enables users to delegate authorization to proxies, allowing them to go offline,
which effectively improves the practical application value. Moreover, the use of proxy
tokens eliminates the exposure of the user’s private key, thus enhancing the security of
our scheme. Additionally, our encryption process does not involve proxy information.
Hence, when users choose a new proxy, there is no need to reconfigure previous
ciphertexts. The disclosed proxy information is only utilized in the equality test,
resulting in a more flexible scheme. Furthermore, the key generation algorithm for
proxies is identical to that of users, meaning that any user can act as a proxy. This
enhances the flexibility and efficiency of our scheme.

• We establish formal security models for our concrete CLE-MET-PA scheme, including
five different types of adversaries. Subsequently, our work achieves IND-CPA security
against adversaries with the trapdoor of the challenge ciphertext and OW-CPA security
against adversaries without the trapdoor of the challenge ciphertext. In the extension
section, we employ the Fujisaki–Okamoto (FO) transformation [32,33] to modify
the encryption and decryption processes, thereby attaining CCA security for our
scheme (i.e., IND-CCA security against adversaries with the trapdoor of the challenge
ciphertext and OW-CCA security against adversaries without the trapdoor of the
challenge ciphertext).

Electronics 2023, 12, 4326 4 of 29

1.3. Organization

In Section 2, we reviewed the concepts of asymmetric bilinear groups and the BDH
assumption; in Section 3, we introduced the system model, definitions and security models
of CLE-MET-PA; in Section 4, we presented the concrete construction of CLE-MET-PA and
verified its correctness; In Section 5, we proved the security of the scheme; in Section 6, we
conducted a performance analysis and discussed the security extension of the scheme; in
Section 7, we summarized our work.

2. Preliminary
2.1. Asymmetric Bilinear Groups

Let G = (p,G1,G2,GT , e) be a bilinear groups ensemble, where G1, G2, and GT
are three multiplicative cyclic groups of order p. g1 ∈ G1, g2 ∈ G2 are two generators.
A bilinear map e : G1 ×G2 → GT has the following properties:

1. Bilinear: For any g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zp, e(ga
1, gb

2) = e(g1, g2)
ab.

2. Non-degenerate: e(g1, g2) 6= 1.
3. Computable: For any g1 ∈ G1 and g2 ∈ G2, there is an efficient algorithm to compute

e(g1, g2).

Since G1 6= G2, this is an asymmetric bilinear map. In the asymmetric setting, if there
exists an efficient computable isomorphism ψ : G1 → G2, the pairing e is referred to as a
Type 2 pairing. Conversely, if no such isomorphism exists, e is categorized as a Type 3 pairing
[34–37].

2.2. Bilinear Diffie–Hellman (BDH) Assumption in Asymmetric Bilinear Groups

The bilinear Diffie–Hellman (BDH) assumption was initially proposed by Boneh
et al. [38] in the context of symmetric bilinear groups. Later, Boyen et al. [39] expanded this
assumption to asymmetric bilinear settings.

The BDH problem can be defined as follows: consider a set of bilinear groups in
Section 2.1, denoted by G = {p,G1,G2,GT , e}. Let g1 ∈ G1 and g2 ∈ G2 be two generators.
Given an instance (g1, ga

1, gc
1, g2, ga

2, gb
2) ∈ G3

1 ×G3
2 where a, b, and c are uniformly random

choices from Z∗p, the task is to compute e(g1, g2)
abc ∈ GT .

The BDH assumption is defined as follows: Given an instance of the aforementioned
BDH problem, no probabilistic polynomial-time (PPT) adversary, denoted by A, can com-
pute the value of e(g1, g2)

abc with non-negligible probability. The advantage ofA is defined
as:

Adv(A) = Pr[A(g1, ga
1, gc

1, g2, ga
2, gb

2) = e(g1, g2)
abc].

3. System Model, Definitions, and Security Models

We present the system model of our certificateless encryption supporting multi-
ciphertext equality test with proxy-assisted authorization (CLE-MET-PA) scheme, followed
by its formal definition and security models.

3.1. System Model of CLE-MET-PA

The system model of our CLE-MET-PA scheme is depicted in Figure 1. The model
comprises seven types of entities as follows:

1. Key generation center (KGC): This entity is responsible for system setup, safeguarding
the master secret key, and issuing partial private keys to users based on their identities.

2. Message sender: This entity generates ciphertexts using the public key of the target
user and uploads them to the cloud server.

3. Message receiver: This entity, often referred to as the user in this paper, can download
ciphertexts for decryption, grant authorization to testers for equality tests, and dele-
gate proxies to provide authorizations on its behalf.

Electronics 2023, 12, 4326 5 of 29

4. Cloud server: This entity stores the ciphertexts generated by message senders and
allows message receivers to download them. The cloud server often serves as the
tester. To ensure generality, we established a separate entity for test purposes.

5. Proxy: This entity can interact with a message receiver to create a proxy token,
granting authorization for equality tests on the message receiver’s ciphertexts.

6. Public key server: This entity stores public keys issued by message receivers and
proxies. Additionally, it keeps track of the message receiver’s choice of proxy and
publishes its proxy information.

7. Tester: This entity can perform an equality test on a set of s ciphertexts. To conduct
the test, the tester must receive s ciphertexts along with the tokens issued by their
respective message receivers or proxies. Each ciphertext is designated with the
number s.

Proxy

KGC

Te
st

er
Pu

bl
ic

 K
ey

 S
er

ve
r

Mseesage Sender

Message Reiceiver

Encrypted Data

Cloud Server

Partial Private Key

Public Key C
iphertext

Public Key

Figure 1. System model of CLE-MET-PA.

The workflow of our proposed CLE-MET-PA scheme is also depicted in Figure 1. The
message sender queries the public key server for the necessary public key, encrypts the
message using it to obtain the ciphertext, and uploads it to the cloud server. The message
receiver can then download the ciphertext from the cloud server, and decrypt it to obtain
the message. A message receiver can authorize a tester directly or by a delegated proxy,
enabling the tester to perform an equality test on its ciphertexts.

A notable feature of CLE-MET-PA is its multi-ciphertext equality test, illustrated in
Figure 2. A tester can conduct a single-test algorithm upon receiving s ciphertexts, each
with the designated number s, along with s trapdoors (whether authorized by the user or
authorized through user-delegated proxy authorization). The test algorithm outputs 1 if all
underlying plaintexts to the ciphertexts are equal, and 0 if at least one underlying plaintext
differs from the rest.

Electronics 2023, 12, 4326 6 of 29

Cloud Server

... ...

User User User

Tester

Proxy

... ...

User Users

Proxy

Figure 2. Equality test of CLE-MET-PA.

3.2. Certificateless Encryption Supporting Multi-Ciphertext Equality Test with
Proxy-Assisted Authorization

A CLE-MET-PA system consists of eleven algorithms as described below:

• Setup(1λ): This algorithm takes the security parameter λ as input and outputs the
system parameter pp and the system master secret key msk.

• Partial-Private-Key-Extract(pp, msk, ID): Given the system parameter pp, a master key
msk, and an identifier ID, this algorithm outputs the partial private key D.

• Set-Secret-Value (pp, ID): Given the system parameter pp and an identifier ID, this
algorithm outputs a secret value x at random.

• Set-Private-Key (pp, D, x): Given the system parameter pp, a partial private key D,
and a secret value x, this algorithm outputs a private key sk.

• Set-Public-Key (pp, x): Given the system parameter pp and a secret value x, this
algorithm outputs a public key pk.

• Set-Proxy-Key (pp, IDP): Given the system parameter pp and a proxy identifier IDP,
this algorithm outputs a proxy public key pkP and its secret value xP.

• Enc(pp, pk, M, s): This algorithm outputs a ciphertext CT of a message M, with a
designated number s, such that an equality test on CT must be performed with s− 1
other ciphertexts with the same s.

• Dec(CT, sk): This algorithm outputs the message M or ⊥.
• Aut(sk): This algorithm outputs a token tk that authorizes the tester to perform an

equality test on the ciphertexts of users who own sk.
• Proxy-Aut (pp, sk, skP): This protocol outputs a token t̂k issued by the proxy who owns

skP to the tester, enabling the latter to perform an equality test on the ciphertexts of
the users who own sk.

• Test(CT1, · · · , CTt, t̂k1, · · · , t̂kj, tk1, · · · , tkt−j: Given t ciphertexts CT and t tokens,
including tokens issued by users and the proxy, this algorithm checks whether
t = s1 = s2 = · · · = st, where si is the designated number of CTi. If not, it out-
puts ⊥ and aborts. Otherwise, it outputs 1, implying that the underlying messages of
CT1, CT2, · · · , CTt are equal, or 0, implying that the messages are not equal.

Correctness: We can say that a CLE-MET-PA scheme is correct if the following condi-
tions hold.

(1) For any security parameter λ, any message M ∈ M, and any number s ∈ Zp,
we have

Electronics 2023, 12, 4326 7 of 29

Pr

Dec(sk, CT) = M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(λ)

D ← Partial-Private-Key-Extract(pp, msk, ID)

x ← Set-Secret-Value(pp, ID)

sk← Set-Private-Key(pp, D, x)

pk← Set-Public-Key(pp, x)

(pkP, xP)← Set-Proxy-Key(pp, IDP)

CT ← Enc(pp, pk, M, s)

= 1.

(2) For any security parameter λ, any message M ∈ M, any number t ∈ Zp, and
i ∈ {1, · · · , t}, we have

Pr

Test(CT1, · · · , CTt, t̂k1, · · · ,

t̂kj, tk1, · · · , tkt−j) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(λ)

Di ← Partial-Private-Key-Extract(pp, msk, IDi)

xi ← Set-Secret-Value(pp, IDi)

ski ← Set-Private-Key(pp, DI , xi)

pki ← Set-Public-Key(pp, xi)

(pkP, xP)← Set-Proxy-Key(pp, IDPi)

CTi ← Enc(pp, pki, pkPi , Mi, t)

tki ← Aut(ski)

t̂ki ← Proxy-Aut(ski)

is overwhelming.

3.3. Security Models of CLE-MET-PA

We consider five types of adversaries in CLE-MET-PA. Type-I ∼ Type-IV exist in
CL-PKEET and Type-V in PKE-MET. In CLE, users generate their own pairs of public
and private keys. The absence of a certificate in the public key introduces a vulnerability
to tampering. We define Type-I and Type-II adversaries as outsiders who possess the
capability to replace legitimate public keys. In the context of CLE, where the KGC is not
fully trusted, we define Type-III and Type-IV adversaries as curious KGCs who possess the
system master secret key msk. For the discussion on the impact of trapdoors needed by the
equality tests on system security, we define that Type-II and Type-IV adversaries can acquire
all trapdoors in the system, including the trapdoor of the challenge ciphertext. Finally,
considering the characteristics of PKE-MET, we define a Type-V adversary. The detailed
descriptions are provided below:

• Type-I Adversary: This type of adversary can replace the public key of a user but
cannot access the master key. Without the trapdoor of the challenge ciphertext, we
define the IND-CPA security model regarding this type of adversary.

• Type-II Adversary: This type of adversary can replace the public key of a user but
cannot access the master key. With the trapdoor of the challenge ciphertext, we define
the OW-CPA security model regarding this type of adversary.

• Type-III Adversary: This type of adversary cannot replace the public key of a user but
can access the master key. Without the trapdoor of the challenge ciphertext, we define
the IND-CPA security model regarding this type of adversary.

• Type-IV Adversary: This type of adversary cannot replace the public key of a user but
can access the master key. With the trapdoor of the challenge ciphertext, we define the
OW-CPA security model regarding this type of adversary.

Electronics 2023, 12, 4326 8 of 29

• Type-V Adversary: This type of adversary attempts to perform an equality test on t
ciphertexts CT1, · · · , CTt, where all the designated numbers of these ciphertexts are si,
with si > t.

We define five games for these five types of adversaries.

Game 1: IND-CPA Game

pp← Setup(1λ);
Di ← Partial-Private-Key-Extract(pp, msk, IDi) for 1 ≤ i ≤ N;

xi ← Set-Secret-Value(pp, IDi)
ski ← Set-Private-Key(pp, Di, xi)

pki ← Set-Public-Key(pp, xi)
(pkPi , xPi)← Set-Proxy-Key(pp, IDPi)

(s∗, pk∗, M∗0 , M∗1)← AO
par-key(·),Opriv-key(·),Opub-key(·),Opub-rep(·),Op-key(·),Otoken(·),Op-token(·)({pki, pkPi}N

i=1);
CT∗ ← Enc(pk∗, M∗b , s∗) for b ∈ {0, 1}, random s∗;

b′ ← AOpar-key(·),Opriv-key(·),Opub-key(·),Opub-rep(·),Op-key(·),Otoken(·),Op-token(·)({pki, pkPi}N
i=1).

In Game 1, Opar-key(·), Opriv-key(·), Opub-key(·), Opub-rep(·), Op-key(·), Otoken(·), and
Op-token(·), denote the partial key oracle, the private key oracle, the public key oracle,
the public key replace oracle, the proxy key oracle, the token oracle, and the proxy token
oracle, respectively. The adversary is not allowed to make private key query, token query,
or proxy token query on pk∗. We define the advantage of adversary in winning this game as

AdvIND-CPA,Type-I
CLE-MET-PA (λ) = Pr[b′ = b]− 1/2.

Game 2: OW-CPA Game

pp← Setup(1λ);
Di ← Partial-Private-Key-Extract(pp, msk, IDi) for 1 ≤ i ≤ N;

xi ← Set-Secret-Value(pp, IDi)
ski ← Set-Private-Key(pp, Di, xi)

pki ← Set-Public-Key(pp, xi)
(pkPi , xPi)← Set-Proxy-Key(pp, IDPi)

(s∗, pk∗)← AOpar-key(·),Opriv-key(·),Opub-key(·),Opub-rep(·),Op-key(·),Otoken(·),Op-token(·)({pki, pkPi}N
i=1);

CT∗ ← Enc(pk∗, M∗, s∗) for random M∗, s∗;
M′ ← AOpar-key(·),Opriv-key(·),Opub-key(·),Opub-rep(·),Op-key(·),Otoken(·),Op-token(·)({pki, pkPi}N

i=1).

In Game 2, the adversary is restricted to making a private key query on pk∗. We define
the advantage of the adversary in winning this game as

AdvOW-CPA,Type-II
CLE-MET-PA (λ) = Pr[M′ = M∗].

Game 3: IND-CPA Game

pp← Setup(1λ);
Di ← Partial-Private-Key-Extract(pp, msk, IDi) for 1 ≤ i ≤ N;

xi ← Set-Secret-Value(pp, IDi)
ski ← Set-Private-Key(pp, Di, xi)

pki ← Set-Public-Key(pp, xi)
(pkPi , xPi)← Set-Proxy-Key(pp, IDPi)

(s∗, pk∗, M∗0 , M∗1)← AO
msk(·),Opar-key(·),Opriv-key(·),Opub-key(·),Op-key(·),Otoken(·),Op-token(·)({pki, pkPi}N

i=1);
CT∗ ← Enc(pk∗, M∗b , s∗) for b ∈ {0, 1}, random s∗;

b′ ← AOmsk(·),Opar-key(·),Opriv-key(·),Opub-key(·),Op-key(·),Otoken(·),Op-token(·)({pki, pkPi}N
i=1).

In Game 3, the adversary can access the master secret key oracle Omsk(·), but can no
longer access the public key replace oracle. The adversary cannot make a private key, token

Electronics 2023, 12, 4326 9 of 29

query, or proxy token query on pk∗. We define the advantage of the adversary in winning
this game as

AdvIND-CPA,Type-III
CLE-MET-PA (λ) = Pr[b′ = b]− 1/2.

Game 4: OW-CPA Game

pp← Setup(1λ);
Di ← Partial-Private-Key-Extract(pp, msk, IDi) for 1 ≤ i ≤ N;

xi ← Set-Secret-Value(pp, IDi)
ski ← Set-Private-Key(pp, Di, xi)

pki ← Set-Public-Key(pp, xi)
(pkPi , xPi)← Set-Proxy-Key(pp, IDPi)

(s∗, pk∗)← AOmsk(·),Opar-key(·),Opriv-key(·),Opub-key(·),Op-key(·),Otoken(·),Op-token(·)({pki, pkPi}N
i=1);

CT∗ ← Enc(pk∗, M∗, s∗) for random M∗, s∗;
M′ ← AOmsk(·),Opar-key(·),Opriv-key(·),Opub-key(·),Op-key(·),Otoken(·),Op-token(·)({pki, pkPi}N

i=1).

In Game 4, the adversary can access the master secret key oracle Omsk(·), but can no
longer access the public key replace oracle. The adversary cannot make a private key query
on pk∗. We define the advantage of the adversary in winning this game as

AdvOW-CPA,Type-IV
CLE-MET-PA (λ) = Pr[M′ = M∗].

Game 5: Number Game

pp← Setup(1λ);
Di ← Partial-Private-Key-Extract(pp, msk, IDi) for 1 ≤ i ≤ N;

xi ← Set-Secret-Value(pp, IDi)
ski ← Set-Private-Key(pp, Di, xi)

pki ← Set-Public-Key(pp, xi)
(pkPi , xPi)← Set-Proxy-Key(pp, IDPi)

(s∗, t∗, pk∗1 , · · · , pk∗t)← AO
par-key(·),Opriv-key(·),Opub-key(·),Op-key(·),Otoken(·),Op-token(·)({pki, pkPi}N

i=1), t∗ < s∗;
(CT∗1 , · · · , CT∗j , · · · , CT∗t∗)← Enc((M∗0 , pk∗1 , s∗), · · · , (M∗0 , pk∗j−1, s∗), (M∗b , pk∗j , s∗), (M∗0 , pk∗j+1, s∗), · · · , (M∗0 , pk∗t , s∗))

for random messages M∗0 , M∗1 and number b ∈ {0, 1};
b′ ← AOpar-key(·),Opriv-key(·),Opub-key(·),Op-key(·),Otoken(·),Op-token(·)({pki, pkPi}N

i=1).

In Game 5, the adversary cannot make private key queries on pk∗1 , · · · , pk∗t∗ . We define
the advantage of the adversary in winning this game as

AdvNumber,Type-V
CLE-MET-PA (λ) = Pr[b′ = b]− 1/2.

4. The Proposed CLE-MET-PA Scheme

In certificateless encryption supporting multi-ciphertext equality test with proxy-
assisted authorization (CLE-MET-PA), each ciphertext CT can designate a number s.
With this designation, an authorized cloud server is enabled to perform an equality test on
s ciphertexts, but only if all the designated numbers of these s ciphertexts are equal to s.

4.1. Our Construction

Setup(1λ): Taking as input a security parameter λ, the setup algorithm generates a bi-
linear groups ensemble G = (p,G1,G2,GT , e), generators g1 ∈ G1, g2 ∈ G2 and five
cryptographic hash functions H1 : {0, 1}∗ → G2, H2 : {0, 1}∗ → G2, H3 : {0, 1}∗ → Zp,
H4 : {0, 1}∗ → {0, 1}2l , H5 : {0, 1}∗ → {0, 1}λ, where l is the bit length of a group element
in Zp. Pick a random α ∈ Z∗p, ḡ = gα

1 . It sets the system parameter as

pp = {G, g1, g2, ḡ, H1, H2, H3, H4, H5},

Electronics 2023, 12, 4326 10 of 29

and the master secret key
msk = α.

Partial private key extract (pp, msk, ID): Taking as input the system parameter pp, the master
key msk, and the identifier ID. The key generation algorithm computes and outputs the
partial private key pair

D = (D1, D2) = (H1(ID)α, H2(ID)α).

Set-Secret-Value (pp, ID): Taking as input the system parameter pp and an identifier ID.
The algorithm picks a value x ∈ Z∗q at random. A proxy secret value corresponding to IDP
is denoted as xP.

Set-Private-Key (pp, D, x): Taking as input the system parameter pp, a partial private key
pair and an secret value x. The algorithm computes the private key pair sk, where

sk = (sk1, sk2) = (Dx
1 , Dx

2) = (H1(ID)αx, H2(ID)αx).

Set-Public-Key (pp, x): Taking as input the system parameter pp and a secret value x,
the algorithm outputs the public key pair

pk = (X = ḡx, Y = gx
2 , Z = gx

1) = (gαx
1 , gx

2 , gx
1).

Set-Proxy-Key (pp, IDP): The proxy can be any user. A proxy generates the secret value
and public key by running Set-Secret-Value (pp, IDP) and Set-Public-Key (pp, xP). Output
the secret key xP, and the public key pair

pkP = (XP = ḡxP , YP = gxP
2 , ZP = gxP

1) = (gαxP
1 , gxP

2 , gxP
1).

Enc(pp, pk, M, s): Taking as input the system parameter pp, a user public key pk, check
whether e(X, g2) = e(ḡ, Y) and e(Z, g2) = e(g1, Y) holds; if not, output ⊥ and abort. Then,
taking as input a message M ∈ Zp, and a number s ∈ Zp, the encryption algorithm
iteratively computes

f0 = H3(M||s), f1 = H3(M||s|| f0), · · · ,

fs−1 = H3(M||s|| f0|| · · · || fs−2)

as illustrated in Figure 3 with i = s. Let

f (x) = f0 + f1x + f2x2 + · · ·+ fs−1xs−1.

It randomly chooses A, r1, r2 ∈ Zp, and outputs the ciphertext CT = (s, C1, C2, C3, C4,
C5, C6) as

C1 = gr1
1 , C2 = H4(e(X, H1(ID))r1)⊕ (M||r1),

C3 = gr2
1 , C4 = Zr2 ,

C5 = H4(e(X, H2(ID))r2)⊕ (A|| f (A)),

C6 = H5(s||C1||C2||C3||C4||C5||e(X, H2(ID))r2 || f0|| f1|| · · · || fs−1).

Note that the equality of this ciphertext CT can only be performed as an equality test
with other s− 1 ciphertexts in which all the designated numbers are s.

Dec(CT, sk): Taking as input a ciphertext CT = (s, C1, C2, C3, C4, C5, C6) and a secret key
sk = (H1(ID)αx, H2(ID)αx), the decrypt algorithm computes

M′||r′1 = C2 ⊕ H4(e(C1, sk1))

Electronics 2023, 12, 4326 11 of 29

It then computes

f ′0 = H3(M′||s), f ′1 = H3(M′||s|| f ′0), · · · ,

f ′s−1 = H3(M′||s|| f ′0|| · · · || f ′s−2)

and checks whether the following equations hold or not

C1 = gr′1
1 ,

f ′(A′) = f ′0 + f ′1 A′ + · · ·+ f ′s−1 A′s−1,

C6 = H5(s||C1||C2||C3||C4||C5||e(C3, sk2)|| f ′0|| f ′1|| · · · || f ′s−1),

where A′|| f ′(A′) = C5 ⊕ H4(e(C3, sk2)). If all the equations hold, it returns

M = M′.

Otherwise, it returns ⊥.
Aut(sk): Taking as input a secret key sk = (sk1, sk2) = (H1(ID)αx, H2(ID)αx), the autho-
rization algorithm returns the token as

tk = sk2 = H2(ID)αx.

Proxy-Aut (pp, sk, skP): Following the algorithm depicted in Table 1, the user receives and
publishes H2(ID)xP as the proxy information PI,

PI = H2(ID)xP ,

and the algorithm returns the proxy token as

t̂k = H2(ID)αx+x·xP .

Table 1. Key exchange protocol between the user and proxy.

Key Exchange Protocol

The user checks whether e(XP, g2) = e(ḡ, YP) and e(ZP, g2) = e(g1, YP) holds,
if not, output ⊥ and abort.

User Proxy
H2(ID)xP

The user checks whether e(ZP, H2(ID)) = e(g1, H2(ID)xP) holds, if not, abort and output ⊥.
Otherwise, the user outputs proxy information PI = H2(ID)xP ,

computes t̂k = sk2 · (PI)x = H2(ID)αx+x·xP .

User Proxyt̂k

The proxy receives the proxy token t̂k without revealing xP and knowing part of sk.

Test(CT1, · · · , CTt, t̂k1, · · · , t̂kj, tk1, · · · , tkt−j): Taking as input t ciphertexts CT1, · · · , CTt
where CTi = (si, Ci,1, Ci,2, Ci,3, Ci,4, Ci,5, Ci,6) and t corresponding tokens including the
proxy token and user token: t̂k1, · · · , t̂kj, tk1, · · · , tkt−j, the test algorithm aborts if the
equation s1 = · · · = st = t does not hold. Otherwise, for each i ∈ {1, · · · , j}:
• With the token authorized by the user, it computes

Ai|| fi(Ai) = Ci,5 ⊕ H4(e(Ci,3, tki)),

• With the proxy token authorized by the proxy, it computes

Ai|| fi(Ai) = Ci,5 ⊕ H4

(
e(Ci,3, t̂ki)/e(Ci,4, PIi)

)
,

Electronics 2023, 12, 4326 12 of 29

where
fi(Ai) = fi,0 + fi,1 Ai + fi,2 A2

i + · · ·+ fi,t−1 At−1
i .

With Ai and fi(Ai) for i ∈ {1, · · · , t}, we have an equation set as

f1(A1) = f1,0 + f1,1 A1 + · · ·+ f1,t−1 At−1
1

f2(A2) = f2,0 + f2,1 A2 + · · ·+ f2,t−1 At−1
2

...

ft(At) = ft,0 + ft,1 At + · · ·+ ft,t−1 At−1
t

.

Implicitly setting fi,k = f j,k for i, j ∈ {1, 2, · · · , t} and k ∈ {0, 1, · · · , t− 1}, it solves
the equation set and obtains a unique solution fi,0, fi,1, · · · , fi,t−1. It checks whether the
following equations hold or not for each i ∈ {1, 2, · · · , j}.

Ci,6 = H5(t||Ci,1|| · · · ||Ci,5||e(Ci,3, t̂ki)/e(Ci,4, PIi)|| fi,0|| · · · || fi,t−1),

and for each i ∈ {1, 2, · · · , t− j}.

Ci,6 = H5(t||Ci,1|| · · · ||Ci,5||e(Ci,3, tki)|| fi,0|| · · · || fi,t−1).

• If all the equations hold, it returns 1, implying that M1 = M2 = · · · = Mt.

• Otherwise, it returns 0, implying that the equation M1 = M2 = · · · = Mt does not
hold.

Output

Output

Output

Output

Figure 3. Iteration computation of { f n
j }0≤j≤n−1.

4.2. Correctness of CLE-MET-PA

We analyze the correctness of the proposed CLE-MET-PA construction as below.
(1) In the decryption algorithm, denoted by Dec, the decryption process computes

the following:

C2 ⊕ H4(sk1, C1)

=H4(e(X, H1(ID))r1)⊕ (M||r1)⊕ H4(e(sk1, C1))

=H4(e(gαx
1 , H1(ID))r1)⊕ (M||r1)⊕ H4

(
e(H1(ID)αx, gr1

1)
)

=M||r1

Electronics 2023, 12, 4326 13 of 29

The output M and r1 satisfy the three listed equations. Subsequently, the decryption
algorithm will recover the message M, implying that

Pr
[
Dec(sk, CT) = M

]
= 1.

(2) In the test algorithm, denoted by Test, after implicitly setting fi,k = f j,k for
i, j ∈ 1, 2, · · · , t and k ∈ 0, 1, · · · , t− 1, we obtain an equation set comprising t equations
for t unknown variables. We can then represent the coefficients of this equation set as the
following Vandermonde matrix:

V =

1 A1 A2

1 · · · At−1
1

1 A2 A2
2 · · · At−1

2
...

...
...

...
...

1 At A2
t · · · At−1

t

.

Thanks to the properties of the Vandermonde matrix, the equation set possesses
a unique solution when the determinant of this matrix, denoted by det(V), satisfies
det(V) 6= 0. This determinant is defined as:

det(V) = ∏
1≤i<j≤t

(Ai − Aj).

Since the values of Ai for i ∈ 1, · · · , t are randomly chosen from the set Zp, we can
conclude that

det(V) 6= 0

holds with overwhelming probability, specifically p(p−1)···(p−t+1)
pt .

Consequently, we obtain a unique solution for the variables f1,0, f1,1, · · · , f1,t−1. Given
that M1 = · · · = Mt, it follows that fi,k = f j,k for i, j ∈ 1, 2, · · · , t and k ∈ 0, 1, · · · , t− 1.
Thus, the unique solution will satisfy the following equations for 1 ≤ i ≤ j ≤ t.

Ci,6 = H5(s||Ci,1|| · · · ||Ci,5||e(Ci,3, t̂ki)/e(Ci,4, PIi)|| f1,0|| · · · || f1,j)

Ci,6 = H5(s||Ci,1|| · · · ||Ci,5||e(Ci,3, tki)|| f1,0|| · · · || f1,t−j+1)

Then, we have

Test(CT1, · · · , CT, t̂k1, · · · , t̂kj, tk1, · · · , tkt−j) = 1

will hold with overwhelming probability.

(3) Similarly to the previous step (2), we can obtain a unique solution from the equation
set. However, since the equation M1 = · · · = Mt does not hold, without a loss of generality,
assume that M1 6= M2 = M3 = · · · = Mt. In this scenario, we then have f1,k 6= fi,k = f j,k
for i, j ∈ 2, · · · , t, k ∈ 0, · · · , t− 1. Nevertheless, it is evident that the solution cannot
simultaneously satisfy the two following equations.

C1,6 = H5(t||C1,1|| · · · ||C1,4||e(C1,3, t̂k1)/e(C1,4, PI1)|| f ′1,0|| · · · || f ′1,j)

C2,6 = H5(t||C2,1|| · · · ||C2,4||e(C2,3, t̂k2)/e(C1,4, PI2)|| f ′1,0|| · · · || f ′1,j)

Therefore, the test algorithm will output 0. We have

Test(CT1, · · · , CT, t̂k1, · · · , t̂kj, tk1, · · · , tkt−j) = 0

will hold with overwhelming probability.

Electronics 2023, 12, 4326 14 of 29

5. Security Proof

Our CLE-MET-PA construction is secure due to the hardness of the BDH assumption.

Theorem 1. For any PPT Type-I adversary, our CLE-MET-PA scheme is IND-CPA-secure based
on the BDH assumption in the random oracle model.

Proof of Theorem 1. Assume there exists an adversary A1 who can break the IND-CPA
security of our scheme with a non-negligible advantage ε, we can construct a simulator B
to break the BDH assumption. Given an instance as (G, g1, ga

1, gc
1, g2, ga

2, gb
2), B is to compute

e(g1, g2)
abc by running A1 as a subroutine. B and A1 play the following game.

1. Setup: B randomly picks a cryptographic hash function H3 : {0, 1}∗ → {0, 1}λ and
sets the public parameter pp = {G, g1, g2, ḡ, H1, H2, H3, H4, H5}, where ḡ = ga

1 and
H1, H2, H4, H5 are random oracles. pp is sent to A1. Lists LH1 , LH2 , LH4 , LH5 , andLs
are initially empty. Assume that A1 can make qH1 , qH2 , qH4 , qH5 hash queries to
H1, H2, H4, andH5, respectively.

2. Phase 1: Assume there are n users with identities ID1, · · · , IDn in the system. B
randomly chooses i∗ ∈ [1, n] and performs the following steps.

• H1-query (IDi): For i-th query IDi, B searches LH1 . If there exists the related item
of IDi as (ui, IDi, H1(IDi)), B returns H1(IDi) to A1. Otherwise, B randomly
chooses ui and sets

H1(IDi) =

{
gui

2 , i f i 6= i∗,

gbui
2 , i f i = i∗.

B stores (ui, IDi, H1(IDi)) into LH1 and returns H1(IDi) to A1.

• H2-query (IDi): For the i-th query IDi, B searches LH2 . If there exists the re-
lated item of IDi as (vi, IDi, H2(IDi)), B returns H2(IDi) to A1. Otherwise, B
randomly chooses vi and sets

H2(IDi) =

{
gvi

2 , i f i 6= i∗,

gbvi
2 , i f i = i∗.

B stores (vi, IDi, H2(IDi)) into LH2 and returns H2(IDi) to A1.

• H4-query (Qi): For i-th query Qi, B randomly picks ηi ∈ {0, 1}2l , sets H4(Qi) = ηi,
stores a new item (Qi, H4(Qi) = ηi) into LH4 , and then returns H4(Qi) to A1.

• H5-query (Wi): For the i-th query Wi, B randomly picks σi ∈ {0, 1}λ, sets
H5(Wi) = σi, stores a new item (Wi, H5(Wi) = σi) into LH5 , and then returns
H5(Wi) to A1.

• Partial private key query (IDi): For i-th queried identity IDi, if IDi = IDi∗ , B
aborts. Otherwise, if IDi has not been queried to H1, B randomly chooses ui, sets

H1(IDi) = gui
2 ,

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B then computes

Di = (Di,1, Di,2) = (Hα
1 (ID), Hα

2 (ID)) =
(

gaui
2 , gavi

2
)
,

which can be computed with a known ga
2, ui, vi. B returns Di to A1.

• Secret key query (IDi): For the i-th queried identity IDi, B randomly picks xi ∈ Zp,
stores (IDi, xi,−,−) into Ls, and returns xi to A1.

Electronics 2023, 12, 4326 15 of 29

• Private key query (IDi): For i-th queried identity IDi, if IDi = IDi∗ , B aborts.
Otherwise, if IDi has not been queried to H1, B randomly chooses ui, sets

H1(IDi) = gui
2 ,

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B searches Ls and finds
the related item of IDi as (IDi, xi,−,−). If the related item of IDi does exist, B
randomly picks xi ∈ Zp and computes

ski = (ski,1, ski,2) =
(

Dxi
1 , Dxi

2
)
=
(

gaxiui
2 , gaxivi

2
)
,

which can be computed with known ga
2, xi, ui, vi. It then stores (IDi, xi, ski,−)

into Ls and returns ski to A1.

• Public key query (IDi): For i-th queried identity IDi, B searches Ls, and finds
the related item of IDi as (IDi, xi,−,−). If the related item does not exist, B
randomly picks xi ∈ Zp and computes

pki = (Xi, Yi, Zi) =
(

gaxi
1 , gxi

2 , gxi
1
)
,

which can be computed with known g1, ga
1, g2, xi. It then stores (IDi, xi,−, pki)

into Ls and returns pki to A1.

• Proxy key query (IDPi): For a proxy with the related item in Ls as (IDPi , xPi), B
performs as Public key query step and obtains

pkPi = (XPi , YPi , ZPi) =
(

g
axPi
1 , g

xPi
2 , g

xPi
1

)
.

which can be computed with known g1, ga
1, g2, xPi . B then returns pkPi and skPi

to A1.

• Public key replace query (IDi, pk′): B changes the public key pki corresponding
to IDi to pk′ = (X′, Y′, Z′) while receiving (IDi, pk′) if e(X′i , g2) = e(ḡ1, Y′i) and
e(Z′i , g2) = e(g1, Y′i) holds.

• Token query (IDi): For a queried IDi, if IDi = IDi∗ , B aborts. Otherwise, B
searches Ls to find the related item of IDi as (IDi, xi, ski), where ski = (sk1, sk2).
If the related item does not exist, B performs as follows. If IDi has not been
queried to H1, B randomly chooses ui, sets

H1(IDi) = gui
2 ,

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B searches Ls and finds
the related item of IDi as (IDi, xi,−,−). If the related item of IDi does not exist,
B randomly picks xi ∈ Zp and computes

ski = (ski,1, ski,2) =
(

Dxi
1 , Dxi

2
)
=
(

gaxiui
2 , gaxivi

2
)
,

which can be computed with known ga
2, xi, ui, vi. It then stores (IDi, xi, ski) into

Ls. B returns sk2 to A1.

Electronics 2023, 12, 4326 16 of 29

• Proxy token query (IDi, IDPi): For a queried IDi, if IDi = IDi∗ , B aborts. Other-

wise, B performs as Aut step except that B computes PIi = H2(IDi)
xPi = g

avixixPi
2 ,

and the proxy token

t̂ki = H2(ID)αx+x·xP = g
avixi+xixPi
2

with known g2, ga
2, vi, xi, xPi . B returns t̂ki to A1.

3. Challenge: A1 sends (s∗, ID∗, M∗0 , M∗1) to B, where s∗ represents the designated chal-
lenge number, ID∗ stands for the challenge identity, and two plaintexts M∗0 and M∗1
are selected from {0, 1}λ with equal lengths. If ID∗ 6= IDi∗ , B aborts. Otherwise,
it randomly picks w1, w2 ∈ Zp, R1, R2 ∈ {0, 1}2l , R3 ∈ {0, 1}λ and implicitly sets
r1 = w1c, r2 = w2c. It then computes the challenge ciphertext as

C1 = gr1
1 = gcw1

1 ,

C2 = R1,

C3 = gr2
1 = gcw2

1 ,

C4 = gxi∗ r2
1 = gcxi∗w2

1 ,

C5 = R2,

C6 = R3.

4. Phase 2: B interacts with A1 as Phase 1 with the limitation that IDi∗ cannot be queried
in partial private key query, secret key query, private key query, token query, and proxy token
query.

5. Guess: A1 outputs its guess bit ρ′ ∈ {0, 1}.
6. Solve: B randomly chooses an item (Qi, H4(Qi) = ηi) from LH4 and sets

e(g1, g2)
abc = Q

1
xi∗ ui∗w1
i

as the solution to the BDH instance.

7. Analysis: To successfully perform the reduction, the simulation should be indistin-
guishable from the real attack from the point of view of the adversary. As we can
see, if the adversary chooses IDi∗ as the challenge identity, the simulation will not
abort, which means that the simulation is indistinguishable from the real attack.
The corresponding probability is 1/n. Upon the case that the simulation is indis-
tinguishable to the adversary, we have the following analysis. Since the adversary
is assumed to break the security with the advantage ε, we have that it issues the
hash query e(Xi∗ , H1(IDi∗))

r1 = e(gaxi∗
1 , gbui∗

2)cw1 = e(g1, g2)
abc·xi∗ui∗w1 with proba-

bility ε. Thus, B can finally obtain the true solution to the given BDH instance as

e(g1, g2)
abc = Q

1
xi∗ ui∗w1
i with a probability of ε

qH4
. In conclusion, B can successfully

break the BDH assumption with the probability of

Pr[B chooses the correct hash query|the simulation is indistinguishable] =
ε

n · qH4

.

Theorem 2. For any PPT Type-II adversary, our CLE-MET-PA scheme is OW-CPA secure based
on the BDH assumption in the random oracle model.

Proof of Theorem 2. Assume there exists an adversary A2 who can break the OW-CPA
security of our scheme with non-negligible advantage ε; then, we can construct a simulator

Electronics 2023, 12, 4326 17 of 29

B to break the BDH assumption. Given an instance as (G, g1, ga
1, gc

1, g2, ga
2, gb

2), B is to
compute e(g1, g2)

abc by running A2 as a subroutine. B and A2 play the following game.

1. Setup: B randomly picks a cryptographic hash function H3 : {0, 1}∗ → {0, 1}λ

and sets the public parameter pp = {G, g1, g2, ḡ, H1, H2, H3, H4, H5}, where ḡ = ga
1

and H1, H2, H4, H5 are random oracles. pp is sent to A2. Lists LH1 , LH2 , LH4 , LH5 , Ls
are initially empty. Assume that A2 can make qH1 , qH2 , qH4 , qH5 hash queries to
H1, H2, H4, H5, respectively.

2. Phase 1: Assume there are n users with identities ID1, · · · , IDn in the system. B
randomly chooses i∗ ∈ [1, n] and performs the following steps.

• H1-query (IDi): For i-th query IDi, B searches LH1 . If there exists the related item
of IDi as (ui, IDi, H1(IDi)), B returns H1(IDi) to A2. Otherwise, B randomly
chooses ui and sets

H1(IDi) =

{
gui

2 , i f i 6= i∗,

gbui
2 , i f i = i∗.

B stores (ui, IDi, H1(IDi)) into LH1 and returns H1(IDi) to A2.

• H2-query (IDi): For i-th query IDi, B searches LH2 . If there exists the related item
of IDi as (vi, IDi, H2(IDi)), B returns H2(IDi) to A2. Otherwise, B randomly
chooses vi and sets

H2(IDi) = gvi
2

B stores (vi, IDi, H2(IDi)) into LH2 and returns H2(IDi) to A2.

• H4-query (Qi): For the i-th query Qi, B picks ηi ∈ {0, 1}2l randomly, sets
H4(Qi) = ηi, stores a new item (Qi, H4(Qi) = ηi) into LH4 , and then returns
H4(Qi) to A2.

• H5-query (Wi): For the i-th query Wi, B randomly picks σi ∈ {0, 1}λ, sets
H5(Wi) = σi, stores a new item (Wi, H5(Wi) = σi) into LH5 , and then returns
H5(Wi) to A2.

• Partial private key query (IDi): For the i-th queried identity IDi, if IDi = IDi∗ , B
aborts. Otherwise, if IDi has not been queried to H1, B randomly chooses ui, sets

H1(IDi) = gui
2 ,

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B then computes

Di = (Di,1, Di,2) = (Hα
1 (ID), Hα

2 (ID)) =
(

gaui
2 , gavi

2
)
,

which can be computed with known ga
2, ui, vi. B returns Di to A2.

• Secret key query (IDi): For the i-th queried identity IDi, B randomly picks xi ∈ Zp,
stores (IDi, xi,−,−) into Ls, and returns xi to A2.

• Private key query (IDi): For the i-th queried identity IDi, if IDi = IDi∗ , B aborts.
Otherwise, if IDi has not been queried to H1, B randomly chooses ui, sets

H1(IDi) = gui
2 ,

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

Electronics 2023, 12, 4326 18 of 29

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B searches Ls and finds
the related item of IDi as (IDi, xi,−,−). If the related item of IDi does not exist,
B randomly picks xi ∈ Zp and computes

ski = (ski,1, ski,2) =
(

Dxi
1 , Dxi

2
)
=
(

gaxiui
2 , gaxivi

2
)
,

which can be computed with known ga
2, xi, ui, vi. It then stores (IDi, xi, ski,−)

into Ls and returns ski to A2.
• Public key query (IDi): For the i-th queried identity IDi, B searches Ls and finds

the related item of IDi as (IDi, xi,−,−). If the related item does not exist, B
randomly picks xi ∈ Zp and computes

pki = (Xi, Yi, Zi) =
(

gaxi
1 , gxi

2 , gxi
1
)
,

which can be computed with a known g1, ga
1, g2, xi. It then stores (IDi, xi,−, pki)

into Ls and returns pki to A2.
• Proxy key query (IDPi): For a proxy with the related item in Ls as (IDPi , xPi), B

performs as the public key query step and obtains

pkPi = (XPi , YPi , ZPi) =
(

g
axPi
1 , g

xPi
2 , g

xPi
1

)
.

which can be computed with known g1, ga
1, g2, xPi . B then returns pkPi and skPi

to A2.
• Public key replace query (IDi, pk′): B changes the public key pki corresponding

to IDi to pk′ = (X′, Y′, Z′) while receiving (IDi, pk′) if e(X′i , g2) = e(ḡ1, Y′i) and
e(Z′i , g2) = e(g1, Y′i) holds.

• Token query (IDi): For a queried IDi, B searches Ls to find the related item of
IDi as (IDi, xi, ski), where ski = (sk1, sk2). If the related item does not exist, B
performs as follows. If IDi has not been queried to H1, B randomly chooses ui,
sets

H1(IDi) = gui
2 ,

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B searches Ls and finds
the related item of IDi as (IDi, xi,−,−). If the related item of IDi does not exist,
B randomly picks xi ∈ Zp and computes

ski = (ski,1, ski,2) =
(

Dxi
1 , Dxi

2
)
=
(

gaxiui
2 , gaxivi

2
)
,

which can be computed with known ga
2, x, ui, vi. It then stores (IDi, xi, ski) into

Ls. B returns sk2 to A2.
• Proxy token query (IDi, IDPi): For a queried IDi, B performs as Aut step except

that B computes PIi = H2(IDi)
xPi = g

avixixPi
2 , and the proxy token

t̂ki = H2(ID)αx+x·xP = g
avixi+xixPi
2

with known g2, ga
2, vi, xi, xPi . B returns t̂ki to A2.

3. Challenge: A2 sends (s∗, ID∗) to B, where s∗ represents the designated challenge
number, and ID∗ stands for the challenge identity. If ID∗ 6= IDi∗ , B aborts. Oth-
erwise, it chooses to randomly pick M∗ ∈ {0, 1}λ, w1, w2 ∈ Zp, R1 ∈ {0, 1}2l , and

Electronics 2023, 12, 4326 19 of 29

implicitly sets r1 = w1c, r2 = w2c. Taking as input M∗, s∗, it then iteratively computes
(f0, f1, · · · , fs∗−1) and f (x) same as Enc(pp, pk, M, s) in Section 4.1. Then, it randomly
picks A ∈ Zp, computes f (A), then outputs the challenge ciphertext as follows:

C1 = gr1
1 = gcw1

1 ,

C2 = R1,

C3 = gr2
1 = gcw2

1 ,

C4 = gxi∗ r2
1 = gcxi∗w2

1 ,

C5 = H4

(
e(gcw1

1 , gavi∗ xi∗
2)

)
⊕ (A|| f (A)),

C6 = H5

(
s∗||C∗1 ||C∗2 ||C∗3 ||C∗4 ||C∗5 ||e(gcw1

1 , gavi∗ xi∗
2)|| f0|| f1|| · · · || fs∗−1

)
.

4. Phase 2: B interacts with A2 as Phase 1 with the limitation that IDi∗ cannot be queried
in partial private key query, secret key query, and private key query.

5. Guess: A2 outputs its guess M′ ∈ {0, 1}λ.
6. Solve: B randomly chooses an item (Qi, H4(Qi) = ηi) from LH4 and sets

e(g1, g2)
abc = Q

1
xi∗ ui∗w1
i

as the solution to the BDH instance.
7. Analysis: To successfully perform the reduction, the simulation should be indis-

tinguishable from the real attack from the point of view of the adversary. As we
can see, if the adversary chooses IDi∗ as the challenge identity, the simulation
will not abort, which means the simulation is indistinguishable from the real at-
tack. The corresponding probability is 1/n. Upon the case that the simulation is
indistinguishable to the adversary, we have the following analysis. Since the adver-
sary is assumed to break the security with advantage ε, we have that it issues the
hash query e(Xi∗ , H1(IDi∗))

r1 = e(gaxi∗
1 , gbui∗

2)cw1 = e(g1, g2)
abc·xi∗ui∗w1 with proba-

bility ε. Thus, B finally can obtain the true solution to the given BDH instance as

e(g1, g2)
abc = Q

1
xi∗ ui∗w1
i with probability ε

qH4
. In conclusion, B can successfully break

the BDH assumption with probability

Pr[B chooses the correct hash query|the simulation is indistinguishable] =
ε

n · qH4

.

Theorem 3. For any PPT Type-III adversary, our CLE-MET-PA scheme is IND-CPA secure based
on the BDH assumption in the random oracle model.

Proof of Theorem 3. Assume that there exists an adversary A3 who can break the IND-
CPA security of our scheme with the non-negligible advantage ε, we can construct a
simulator B to break the BDH assumption. Given an instance as (G, g1, ga

1, gc
1, g2, ga

2, gb
2), B

is to compute e(g1, g2)
abc by runningA3 as a subroutine. B andA3 play the following game.

1. Setup: B randomly picks a cryptographic hash function H3 : {0, 1}∗ → {0, 1}λ, ran-
domly picks α ∈ Z∗p, and sets the public parameter pp. pp = {G, g1, g2, ḡ, H1, H2, H3,
H4, H5}, where ḡ = gα

1 , H1, H2, H4, H5 are random oracles. pp is sent to A3. Lists
LH1 , LH2 , LH4 , LH5 , Ls are initially empty. Assume that A3 can make qH1 , qH2 , qH4 , qH5

hash queries to H1, H2, H4, H5, respectively.
2. Phase 1: Assume there are n users with identities ID1, · · · , IDn in the system. B

randomly chooses i∗ ∈ [1, n] and performs the following steps.

• Hi-query (IDi) (i = 1, 2, 4, 5): B performs as in the Proof of Theorem 1.

Electronics 2023, 12, 4326 20 of 29

• Master secret key query (1λ): B returns α to A3.

• Partial private key query (IDi): For i-th queried identity IDi, if IDi = IDi∗ , B
aborts. Otherwise, if IDi has not been queried to H1, B randomly chooses ui, sets

H1(IDi) = gui
2 ,

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B then computes

Di = (Di,1, Di,2) = (Hα
1 (ID), Hα

2 (ID)) =
(

gαui
2 , gαvi

2
)
,

which can be computed with known g2, α, ui, vi. B returns Di to A3.

• Secret key query (IDi): For i-th queried identity IDi, if IDi = IDi∗ , B aborts.
Otherwise, B randomly picks xi ∈ Zp, stores (IDi, xi,−,−) into Ls, and returns
xi to A3.

• Private key query (IDi): For the i-th queried identity IDi, if IDi = IDi∗ , B aborts.
Otherwise, if IDi was not queried to H1, B randomly chooses ui, sets

H1(IDi) = gui
2 ,

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B searches Ls and finds
the related item of IDi as (IDi, xi,−,−). If the related item of IDi does not exist,
B randomly picks xi ∈ Zp and computes

ski = (ski,1, ski,2) =
(

Dxi
1 , Dxi

2
)
=
(

gαxiui
2 , gαxivi

2
)
,

which can be computed with known g2, α, xi, ui, vi. It then stores (IDi, xi, ski,−)
into Ls and returns ski to A3.

• Public key query (IDi): For the i-th queried identity IDi, if IDi 6= IDi∗ , B searches
Ls and finds the related item of IDi as (IDi, xi,−,−). If the related item does not
exist, B randomly picks xi ∈ Zp and computes

pki = (Xi, Yi, Zi) =
(

gαxi
1 , gxi

2 , gxi
1
)
,

It then stores (IDi, xi,−, pki) into Ls and returns pki to A3;
If IDi 6= IDi∗ , B randomly picks x′i ∈ Zp, implicitly sets xi = ax′i , computes

pki = (Xi, Yi, Zi) =
(

gαax′i
1 , gax′i

2 , gax′i
1

)
,

which can be computed with known ga
1, ga

2, α, x′i . It then stores (IDi, x′i ,−, pki)
into Ls and returns pki to A3.

• Proxy key query (IDPi): For a proxy with the related item in Ls as (IDPi , xPi), B
performs as a public key query step and obtains

pkPi = (XPi , YPi , ZPi) =
(

g
αxPi
1 , g

xPi
2 , g

xPi
1

)
.

Electronics 2023, 12, 4326 21 of 29

which can be computed with known g1, α, g2, xPi . B then returns pkPi and skPi
to A3.

• Token query (IDi): For a queried IDi, if IDi = IDi∗ , B aborts. Otherwise, B
searches Ls to find the related item of IDi as (IDi, xi, ski), where ski = (sk1, sk2).
If the related item does not exist, B performs as follows. If IDi has not been
queried to H1, B randomly chooses ui, sets

H1(IDi) = gui
2 ,

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B searches Ls and finds
the related item of IDi as (IDi, xi,−,−). If the related item of IDi does not exist,
B randomly picks xi ∈ Zp and computes

ski = (ski,1, ski,2) =
(

Dxi
1 , Dxi

2
)
=
(

gαxiui
2 , gαxivi

2
)
,

which can be computed with known ga
2, x, ui, vi. It then stores (IDi, xi, ski) into

Ls. B returns sk2 to A3.

• Proxy token query (IDi, IDPi): For a queried IDi, if IDi = IDi∗ , B aborts. Other-

wise, B performs as Aut step except that B computes PIi = H2(IDi)
xPi = g

αvixixPi
2 ,

and the proxy token

t̂ki = H2(ID)αx+x·xP = g
αvixi+xixPi
2

with known g2, α, vi, xi, xPi . B returns t̂ki to A3.

3. Challenge: A3 sends (s∗, ID∗, M∗0 , M∗1) to B, where s∗ represents the designated chal-
lenge number, ID∗ stands for the challenge identity, and two plaintexts M∗0 and M∗1
are selected from {0, 1}λ with equal lengths. If ID∗ 6= IDi∗ , B aborts. Otherwise,
it randomly picks w1, w2 ∈ Zp, R1, R2 ∈ {0, 1}2l , R3 ∈ {0, 1}λ and implicitly sets
r1 = w1c, r2 = w2c. It then computes the challenge ciphertext as

C1 = gr1
1 = gcw1

1 ,

C2 = R1,

C3 = gr2
1 = gcw2

1 ,

C4 = gxi∗ r2
1 = gcxi∗w2

1 ,

C5 = R2,

C6 = R3.

4. Phase 2: B interacts with A3 as Phase 1 with the limitation that IDi∗ cannot be queried
in partial private key query, secret key query, private key query, token query, and proxy token
query.

5. Guess: A3 outputs its guess bit ρ′ ∈ {0, 1}.
6. Solve: B randomly chooses an item (Qi, H4(Qi) = ηi) from LH4 and sets

e(g1, g2)
abc = Q

1
x′i∗ ui∗w1α

i

as the solution to the BDH instance.

Electronics 2023, 12, 4326 22 of 29

7. Analysis: To successfully perform the reduction, the simulation should be indistin-
guishable from the real attack from the point of view of the adversary. As we can
see, if the adversary chooses IDi∗ as the challenge identity, the simulation will not
abort, which means that the simulation is indistinguishable from the real attack.
The corresponding probability is 1/n. Upon the case that the simulation is indis-
tinguishable to the adversary, we have the following analysis. Since the adversary
is assumed to break the security with advantage ε, we have that it issues the hash

query e(Xi∗ , H1(IDi∗))
r1 = e(g

αax′i∗
1 , gbui∗

2)cw1 = e(g1, g2)
abc·x′i∗ui∗w1α with probabil-

ity ε. Thus, B finally can obtain the true solution to the given BDH instance as

e(g1, g2)
abc = Q

1
x′i∗ ui∗w1α

i with probability ε
qH4

. In conclusion, B can successfully break

the BDH assumption with probability

Pr[B chooses the correct hash query|the simulation is indistinguishable] =
ε

n · qH4

.

Theorem 4. For any PPT Type-IV adversary, our CLE-MET-PA scheme is OW-CPA secure based
on the BDH assumption in the random oracle model.

Proof of Theorem 4. Assume there exists an adversary A4 who can break the IND-CPA
security of our scheme with a non-negligible advantage ε; we can construct a simulator B
to break the BDH assumption. Given an instance as (G, g1, ga

1, gc
1, g2, ga

2, gb
2), B is to compute

e(g1, g2)
abc by running A4 as a subroutine. B and A4 play the following game.

1. Setup: B randomly picks a cryptographic hash function H3 : {0, 1}∗ → {0, 1}λ, ran-
domly picks α ∈ Z∗p, and sets the public parameter pp. pp = {G, g1, g2, ḡ, H1, H2, H3,
H4, H5}, where ḡ = gα

1 , H1, H2, H4, H5 are random oracles. pp is sent to A4. Lists
LH1 , LH2 , LH4 , LH5 , Ls are initially empty. Assume that A4 can make qH1 , qH2 , qH4 , qH5

hash queries to H1, H2, H4, H5, respectively.
2. Phase 1: Assume there are n users with identities ID1, · · · , IDn in the system. B

randomly chooses i∗ ∈ [1, n] and performs the following steps.

• Hi-query (IDi) (i = 1, 2, 4, 5): B performs as in the Proof of Theorem 2.

• Master secret key query (1λ): B returns α to A4.
• Partial private key query (IDi): For i-th queried identity IDi, if IDi = IDi∗ , B

aborts. Otherwise, if IDi has not been queried to H1, B randomly chooses ui, sets

H1(IDi) = gui
2 ,

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B then computes

Di = (Di,1, Di,2) = (Hα
1 (ID), Hα

2 (ID)) =
(

gαui
2 , gαvi

2
)
,

which can be computed with known g2, α, ui, vi. B returns Di to A4.
• Secret key query (IDi): For i-th queried identity IDi, if IDi = IDi∗ , B aborts.

Otherwise, B randomly picks xi ∈ Zp, stores (IDi, xi,−,−) into Ls, and returns
xi to A4.

• Private key query (IDi): For the i-th queried identity IDi, if IDi = IDi∗ , B aborts.
Otherwise, if IDi has not been queried to H1, B randomly chooses ui, sets

H1(IDi) = gui
2 ,

Electronics 2023, 12, 4326 23 of 29

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B searches Ls and finds
the related item of IDi as (IDi, xi,−,−). If the related item of IDi does not exist,
B randomly picks xi ∈ Zp and computes

ski = (ski,1, ski,2) =
(

Dxi
1 , Dxi

2
)
=
(

gαxiui
2 , gαxivi

2
)
,

which can be computed with known g2, α, xi, ui, vi. It then stores (IDi, xi, ski,−)
into Ls and returns ski to A4.

• Public key query (IDi): For i-th queried identity IDi, if IDi 6= IDi∗ , B searches Ls
and finds the related item of IDi as (IDi, xi,−,−). If the related item does not
exist, B randomly picks xi ∈ Zp and computes

pki = (Xi, Yi, Zi) =
(

gαxi
1 , gxi

2 , gxi
1
)
,

It then stores (IDi, xi,−, pki) into Ls and returns pki to A4;
If IDi 6= IDi∗ , B randomly picks x′i ∈ Zp, implicitly sets xi = ax′i , and computes

pki = (Xi, Yi, Zi) =
(

gαax′i
1 , gax′i

2 , gax′i
1

)
,

which can be computed with known ga
1, ga

2, α, x′i . It then stores (IDi, x′i ,−, pki)
into Ls and returns pki to A4.

• Proxy key query (IDPi): For a proxy with the related item in Ls as (IDPi , xPi), B
performs as public key query step and obtains

pkPi = (XPi , YPi , ZPi) =
(

g
αxPi
1 , g

xPi
2 , g

xPi
1

)
.

which can be computed with known g1, α, g2, xPi . B then returns pkPi and skPi to
A4.

• Token query (IDi): For a queried IDi, if IDi 6= IDi∗ , B searches Ls to find the
related item of IDi as (IDi, xi, ski), where ski = (sk1, sk2). If the related item does
not exist, B performs as follows. If IDi has not been queried to H1, B randomly
chooses ui, sets

H1(IDi) = gui
2 ,

and stores (ui, IDi, H1(IDi)) into LH1 . If IDi has not been queried to H2, B
randomly chooses vi, sets

H2(IDi) = gvi
2 ,

and stores (vi, IDi, H2(IDi)) into LH2 . B searches LH1 and LH2 to find the related
items of IDi as (ui, IDi, H1(IDi)) and (vi, IDi, H2(IDi)). B searches Ls and finds
the related item of IDi as (IDi, xi,−,−). If the related item of IDi does not exist,
B randomly picks xi ∈ Zp and computes

ski = (ski,1, ski,2) =
(

Dxi
1 , Dxi

2
)
=
(

gαxiui
2 , gαxivi

2
)
,

which can be computed with known g2, α, xi, ui, vi. It then stores (IDi, xi, ski)
into Ls. B returns sk2 to A4.
If IDi = IDi∗ , B searches Ls to find the related item of IDi as (IDi, x′i ,−,−) and
(vi, IDi, H2(IDi)). If the related item of IDi does not exist, B randomly picks
x′i ∈ Zp and computes

sk2 = gαavix′i
2 ,

Electronics 2023, 12, 4326 24 of 29

which can be computed with the known ga
2, α, vi, x′i , B returns sk2 to A4.

• Proxy token query (IDi, IDPi): For a queried IDi, B performs as Aut step except
that B computes

PIi = H2(IDi)
xPi =

g
αvixixPi
2 , i f i 6= i∗,

g
αavix′i xPi
2 , i f i = i∗.

t̂k = H2(ID)αx+x·xP =

g
αvixi+xixPi
2 , i f i 6= i∗,

g
αavix′i+ax′i xPi
2 , i f i = i∗.

with known g2, α, vi, xi, x′i , xPi .

3. Challenge: A4 sends (s∗, ID∗) to B, where s∗ represents the designated challenge
number, and ID∗ stands for the challenge identity. If ID∗ 6= IDi∗ , B aborts. Oth-
erwise, it chooses to randomly pick M∗ ∈ {0, 1}λ, w1, w2 ∈ Zp, R1 ∈ {0, 1}2l , and
implicitly sets r1 = w1c, r2 = w2c. Taking as input M∗, s∗, it then iteratively com-
putes (f0, f1, · · · , fs∗−1) and f (x) same as Enc(pp, pk, pkP, M, s) in Section 4.1. Then,
it randomly picks A ∈ Zp, computes f (A), before outputting the challenge ciphertext
as follows:

C1 = gr1
1 = gcw1

1 ,

C2 = R1,

C3 = gr2
1 = gcw2

1 ,

C4 = g
x′i∗ r2
1 = g

cx′i∗w2
1 ,

C5 = H4

(
e(gcw1

1 , g
αavi∗ x′i∗
2)

)
⊕ (A|| f (A)),

C6 = H5

(
s∗||C∗1 ||C∗2 ||C∗3 ||C∗4 ||C∗5 ||e(gcw1

1 , g
αavi∗ x′i∗
2)|| f0|| f1|| · · · || fs∗−1

)
.

4. Phase 2: B interacts with A4 as Phase 1 with the limitation that IDi∗ cannot be queried
in partial private key query, secret key query, and private key query.

5. Guess: A4 outputs its guess M′ ∈ {0, 1}λ.

6. Solve: B randomly chooses an item (Qi, H4(Qi) = ηi) from LH4 and sets

e(g1, g2)
abc = Q

1
x′i∗ ui∗w1α

i

as the solution to the BDH instance.

7. Analysis: To successfully perform the reduction, the simulation should be indis-
tinguishable from the real attack from the point of view of the adversary. As we
can see, if the adversary chooses IDi∗ as the challenge identity, the simulation will
not abort, which means the simulation is indistinguishable from the real attack.
The corresponding probability is 1/n. Upon the case that the simulation is indis-
tinguishable to the adversary, we have the following analysis. Since the adversary
is assumed to break the security with advantage ε, we have that it issues the hash

query e(Xi∗ , H1(IDi∗))
r1 = e(g

αax′i∗
1 , gbui∗

2)cw1 = e(g1, g2)
abc·x′i∗ui∗w1α with probabil-

ity ε. Thus, B can finally obtain the true solution to the given BDH instance as

Electronics 2023, 12, 4326 25 of 29

e(g1, g2)
abc = Q

1
x′i∗ ui∗w1α

i with probability ε
qH4

. In conclusion, B can successfully break

the BDH assumption with probability

Pr[B chooses the correct hash query|the simulation is indistinguishable] =
ε

n · qH4

.

Theorem 5 (Number Security of CLE-MET-PA). In the information theoretical sense, no proba-
bilistic polynomial-time adversary has a non-negligible advantage in breaking the number security
of our CLE-MET-PA scheme.

Proof of Theorem 5. In this game of number security, the adversary A5 tries to determine
whether the underlying messages of t∗ challenging ciphertexts CT∗1 , · · · , CT∗t∗ are equal or
not with all the designated numbers of these ciphertexts, which are s∗ and s∗ > t∗. And, the
underlying messages are chosen by B and they are unknown to A5. From the setting of our
scheme, we have thatA5 has two ways to check whether the underlying messages are equal
or not, i.e., extracting Mi or fi,j of CTi for some j ∈ {0, · · · , t∗ − 1}, for each i ∈ {1, · · · , t∗}.

In line with the OW-CPA security proof, A5 has only a negligible advantage in ob-
taining the underlying message from the ciphertext under the BDH assumption. To ex-
tract a fi,j from the ciphertext CTi = (s, Ci,1, Ci,2, Ci,3, Ci,4, Ci,5, Ci,6), A5 can make a token
query or a Proxy token query on pki and obtain the corresponding token tki = ski,2 or
t̂ki = ski,2H2(IDi)

xixPi such that it is able to obtain the Ai|| fi(Ai) = Ci,5 ⊕ H4(e(Ci,3, tki))

or Ai|| fi(Ai) = Ci,5 ⊕ H4

(
e(Ci,3, t̂ki)/e(Ci,4, PIi)

)
, where

fi(Ai) = fi,0 + fi,1 Ai + · · ·+ fi,t∗−1 At∗−1
i

and
fi,j = H3(Mi||s|| fi,0|| · · · || fi,j−1), j ∈ {0, · · · , t∗ − 1}.

Obtaining Ai|| fi(Ai) for each i ∈ {1, · · · , t∗}, A5 has an equation set as

f1(A1) = f1,0 + f1,1 A1 + · · ·+ f1,t∗−1 At∗−1
1

f2(A2) = f2,0 + f2,1 A2 + · · ·+ f2,t∗−1 At∗−1
2

...

ft∗(At∗) = ft∗ ,0 + ft∗ ,1 At∗ + · · ·+ ft∗ ,t∗−1 At∗−1
t∗

,

where Ai for i ∈ {1, · · · , t∗ − 1} are randomly chosen by C. Therefore, after implicitly
setting that fi,k = f j,k for i ∈ {1, · · · , t∗ − 1}, j ∈ {0, · · · , t∗ − 1}, these t∗ − 1 equations are
nonlinearly correlated with each other by an overwhelming probability such that there
are infinite solutions for { fi,j}1≤i≤t∗ ,0≤j≤t∗−1. In addition, A5 has no other information to
further ensure whether the underlying messages are equal or not. It can only randomly
guess b′. In conclusion, the adversary has a negligible advantage in breaking the number
security of the proposed CLE-MET-PA scheme.

6. Performance Analysis and Extension
6.1. Performance Analysis of CLE-MET-PA

We conducted a visual comparison between our scheme and several existing
schemes [15,30,31,40], and the results are presented in Table 2. Among them, Refs. [15,30,40]
only support pairwise equality tests. Therefore, in scenarios where we need to test the
equality of s ciphertexts, these three schemes require s− 1 executions of their test algo-
rithms.

We adopted the commonly used approach for the performance analysis of most PKEET
schemes, which involves calculating the complexity of significant algorithms, ciphertext

Electronics 2023, 12, 4326 26 of 29

size, and scheme-specific functionalities. This method allows us to evaluate different
algorithms using the same standard across various platforms. Initially, we evaluated the
complexity of encryption, decryption, and test algorithms, primarily focusing on three
metrics: the number of exponential operations, hash operations, and bilinear pairings,
denoted by E, H, and P, respectively. We excluded efficient operations such as addition,
multiplication, and XOR. Next, we considered additional metrics such as ciphertext size
and three functionalities: the anti-key management feature, the anti-key escrow feature,
and support for proxy-assisted authorization.

As shown in Table 2, our scheme demonstrates significant advantages in terms of the
multi-ciphertext equality test algorithm. In comparison to traditional schemes that support
pairwise equality tests, our multi-ciphertext equality test exhibits lower computational
complexity than conducting multiple pairwise equality tests. Specifically, even in extreme
situations where all tokens are proxy tokens, we only require 2s of the most computation-
ally expensive bilinear pairings. This is notably lower than other schemes that support
pairwise equality tests. Furthermore, our scheme inherently possesses certificateless en-
cryption properties, effectively addressing the key management problem in PKEET and the
key escrow problem in IBEET. This makes our scheme more suitable in scenarios where
certificate management is challenging or where anonymous communication is required.
Additionally, we introduced the feature of proxy-assisted authorization, enabling users to
delegate proxy authorization while they are offline and better protect their private keys.
These characteristics make our CLE-MET-PA scheme more competitive for practical use.

Table 2. Comparison among several equality test schemes.

Schemes [15] [30] [40] [31] Ours

Enc 6E+3H+2P 5E+4H+4P 2E+3H+3P (s + 2)E+(s + 3)H (s + 3)E+(s + 5)H+6P
Dec 4E+3H+2P 2E+4H+2P 1E+2H+3P (s + 1)E+(s + 2)H (s− 1)E+(s + 3)H+2P
Test (s− 1)(2E+4P) (s− 1)(2H+4P) (s− 1)(4H+4P) sE+ 2sH+SE 2sH+(s + j)P+SE

|CT| 5|G|+ |Zp| 3|G|+ |Zp|+ {0, 1}λ 3|G|+ |Zp|
2|G|+ 5|Zp|+
{0, 1}λ 3|G|+ 5|Zp|+ {0, 1}λ

AntiKM X X X × X
AntiKE × X X X X

PA × × × × X

E, H, P, and SE represent the computation cost of an exponential operation, hash operation, pairing operation,
and solving an equation set, respectively. |Zp|, |G| represent the bit length of a group element in Zp,G,
respectively. j: number of proxy tokens, (0 ≤ j ≤ s). s: number of ciphertexts to be verified. AntiKM, AntiKE,
and PA represent anti-key management feature, anti-key escrow feature and proxy-assisted authorization feature,
respectively. The presence of a checkmark indicates that the feature has been included, while a cross indicates that
the feature has not been included.

6.2. Extension

As mentioned before in this paper, our CLE-MET-PA scheme achieves IND-CPA
security against adversaries without a trapdoor and OW-CPA security against adversaries
with a trapdoor. We extend our scheme to CCA security with FO transformation [32,33] by
simple modifications. The improved version of CLE-MET-PA is as follows.

Setup(1λ): Almost the same as Setup(1λ) in Section 4.1. The difference is that while
generating pp and msk, additionally generate a cryptographic hash function H6 : {0, 1}∗ →
{0, 1}l , and add it in pp.

Partial-Private-Key-Extract (pp, msk, ID): Same as Partial-Private-Key-Extract(pp, msk, ID)
in Section 4.1.

Set-Secret-Value (pp, ID): Same as Set-Secret-Value (pp, ID) in Section 4.1.

Set-Private-Key (pp, D, x): Same as Set-Private-Key (pp, D, x) in Section 4.1.

Set-Public-Key (pp, x): Same as Set-Public-Key (pp, x) in Section 4.1.

Set-Proxy-Key (pp, IDP): Same as Set-Proxy-Key (pp, IDP) in Section 4.1.

Electronics 2023, 12, 4326 27 of 29

Enc(pp, pk, M, s): Taking as input the system parameter pp, a user public key pk, and a
proxy public key pkP, check whether e(X, g2) = e(ḡ, Y) holds; if not, output ⊥ and abort.
Then, taking as input a message M ∈ Zp, and a number s ∈ Zp, iteratively compute
(f0, f1, · · · , fs−1) and f (x) same as Enc(pp, pk, M, s) in Section 4.1.

It randomly chooses A, r1, r2 ∈ Zp, computes C3 = H4(r1)⊕ (M||r1), R = H3(r1||M
||C3), and outputs the ciphertext CT = (s, C1, C2, C3, C4, C5, C6, C7) as

C1 = gR
1 , C2 = H6

(
e(X, H1(ID))R

)
⊕ r1,

C3 = H4(r1)⊕ (M||r1),

C4 = gr2
1 , C5 = Zr2 ,

C6 = H4(e(X, H2(ID))r2)⊕ (A|| f (A)),

C7 = H5(s||C1||C2||C3||C4||C5||C6||e(X, H2(ID))r2 || f0|| f1|| · · · || fs−1).

Dec(CT, sk): Taking as input a ciphertext CT = (s, C1, C2, C3, C4, C5, C6, C7) and a secret
key sk = (H1(ID)αx, H2(ID)αx), the decrypt algorithm computes

r′1 = C2 ⊕ H6(e(sk1, C1)), M′||r′1 = C3 ⊕ H4(r′1), R′ = H3(r′1||M′||C3).

It then computes

f ′0 = H3(M′||s), f ′1 = H3(M′||s|| f ′0), · · · ,

f ′s−1 = H3(M′||s|| f ′0|| · · · || f ′s−2)

and checks whether the following equations hold or not

C1 = gR′
1 ,

f ′(A′) = f ′0 + f ′1 A′ + · · ·+ f ′s−1 A′s−1,

C7 = H5(s||C1||C2||C3||C4||C5||C6||e(sk2, C4)|| f ′0|| f ′1|| · · · || f ′s−1),

where A′|| f ′(A′) = C5 ⊕ H4(e(sk2, C4)). If all the equations hold, it returns

M = M′.

Otherwise, it returns ⊥.

The structures of the subsequent Aut, Proxy-Aut, and Test algorithms are essentially
the same as the relevant algorithms in Section 4.1. Since these algorithms do not affect the
security of the scheme, we will not elaborate further.

It is important to highlight that the enhanced scheme offers improved security, albeit
with a slight increase in system parameter size, cipher size, and computation for encryption
and decryption algorithms. In particular, the system parameters (pp) now incorporate
an additional hash function. Furthermore, the cipher size increased by 2|Zp|, and both
the encryption and decryption algorithms entail two additional hash operations (denoted
by 2H). By definition of FO transformation, our improved CLE-MET-PA scheme achieves
IND-CCA security against adversaries without the trapdoor of the challenge ciphertext
and OW-CCA security against adversaries with trapdoor of the challenge ciphertext.

7. Conclusions

In this work, we presented the notion of CLE-MET-PA, which integrates the character-
istics of solving the key management problem in the public key encryption cryptosystem
and addressing the key escrow problem in the IBE cryptosystem. It combines the feature of
the multi-ciphertext equality test and supports proxy-assisted authorization, enhancing the
practical use of the scheme. We formalized the system model and five security models for
CLE-MET-PA, and proved that our scheme achieves OW-CPA/IND-CPA security. Finally,

Electronics 2023, 12, 4326 28 of 29

through an FO transformation, we obtained the improved version of CLE-MET-PA, which
achieves OW-CCA/IND-CCA security.

Author Contributions: Conceptualization, S.D. and Z.Z.; methodology, S.D. and Z.Z.; writing—original
draft preparation, S.D.; writing—review and editing, W.G. and S.Z.; supervision, B.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 61972457, 62102299, 62002288, U19B2021, 62272362, 62202363, and the Youth Innovation Team
of Shaanxi Universities, Science and Technology on Communication Security Laboratory Foundation
(61421030202012103).

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qian, L.; Luo, Z.; Du, Y.; Guo, L. Cloud computing: An overview. In Proceedings of the Cloud Computing: First International

Conference, CloudCom 2009, Beijing, China, 1–4 December 2009; Proceedings 1; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 626–631.

2. Dillon, T.; Wu, C.; Chang, E. Cloud computing: Issues and challenges. In Proceedings of the 2010 24th IEEE International
Conference on Advanced Information Networking and Applications, Perth, WA, Australia, 20–23 April 2010; pp. 27–33.

3. Zhang, C.; Hu, C.; Wu, T.; Zhu, L.; Liu, X. Achieving Efficient and Privacy-Preserving Neural Network Training and Prediction in
Cloud Environments. IEEE Trans. Dependable Secur. Comput. 2022, 20, 4245–4257. [CrossRef]

4. Hu, C.; Zhang, C.; Lei, D.; Wu, T.; Liu, X.; Zhu, L. Achieving Privacy-Preserving and Verifiable Support Vector Machine Training
in the Cloud. IEEE Trans. Inf. Forensics Secur. 2023, 18, 3476–3491. [CrossRef]

5. Goldreich, O.; Ostrovsky, R. Software protection and simulation on oblivious RAMs. J. ACM (JACM) 1996, 43, 431–473. [CrossRef]
6. Song, D.X.; Wagner, D.; Perrig, A. Practical techniques for searches on encrypted data. In Proceedings of the 2000 IEEE

Symposium on Security and Privacy, S&P 2000, Berkeley, CA, USA, 14–17 May 2000; pp. 44–55.
7. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on

Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.
8. Boneh, D.; Di Crescenzo, G.; Ostrovsky, R.; Persiano, G. Public key encryption with keyword search. In Proceedings of

the Advances in Cryptology-EUROCRYPT 2004: International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, 2–6 May 2004; Proceedings 23; Springer: Berlin/Heidelberg, Germany, 2004; pp. 506–522.

9. Yang, G.; Tan, C.H.; Huang, Q.; Wong, D.S. Probabilistic public key encryption with equality test. In Proceedings of the Topics in
Cryptology-CT-RSA 2010: The Cryptographers’ Track at the RSA Conference 2010, San Francisco, CA, USA, 1–5 March 2010;
Proceedings; Springer: Berlin/Heidelberg, Germany, 2010; pp. 119–131.

10. Tang, Q. Public key encryption supporting plaintext equality test and user-specified authorization. Secur. Commun. Netw. 2012,
5, 1351–1362. [CrossRef]

11. Tang, Q. Towards public key encryption scheme supporting equality test with fine-grained authorization. In Proceedings of
the Australasian Conference on Information Security and Privacy, ACISP 2011, Melbourne, Australia, 11–13 July 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 389–406.

12. Huang, K.; Tso, R.; Chen, Y.C.; Rahman, S.M.M.; Almogren, A.; Alamri, A. PKE-AET: Public key encryption with authorized
equality test. Comput. J. 2015, 58, 2686–2697. [CrossRef]

13. Ma, S.; Zhang, M.; Huang, Q.; Yang, B. Public key encryption with delegated equality test in a multi-user setting. Comput. J. 2015,
58, 986–1002. [CrossRef]

14. Ma, S.; Huang, Q.; Zhang, M.; Yang, B. Efficient public key encryption with equality test supporting flexible authorization. IEEE
Trans. Inf. Forensics Secur. 2014, 10, 458–470. [CrossRef]

15. Ma, S. Identity-based encryption with outsourced equality test in cloud computing. Inf. Sci. 2016, 328, 389–402. [CrossRef]
16. Lee, H.T.; Ling, S.; Seo, J.H.; Wang, H. Semi-generic construction of public key encryption and identity-based encryption with

equality test. Inf. Sci. 2016, 373, 419–440. [CrossRef]
17. Wu, T.; Ma, S.; Mu, Y.; Zeng, S. ID-based encryption with equality test against insider attack. In Proceedings of the Information

Security and Privacy: 22nd Australasian Conference, ACISP 2017, Auckland, New Zealand, 3–5 July 2017; Proceedings, Part I 22;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 168–183.

18. Wu, L.; Zhang, Y.; Choo, K.K.R.; He, D. Efficient and secure identity-based encryption scheme with equality test in cloud
computing. Future Gener. Comput. Syst. 2017, 73, 22–31. [CrossRef]

19. Alornyo, S.; Asante, M.; Hu, X.; Mireku, K.K. Encrypted traffic analytic using identity based encryption with equality test for
cloud computing. In Proceedings of the 2018 IEEE 7th International Conference on Adaptive Science & Technology (ICAST),
Accra, Ghana, 22–24 August 2018; pp. 1–4.

http://doi.org/10.1109/TDSC.2022.3208706
http://dx.doi.org/10.1109/TIFS.2023.3283104
http://dx.doi.org/10.1145/233551.233553
http://dx.doi.org/10.1002/sec.418
http://dx.doi.org/10.1093/comjnl/bxv025
http://dx.doi.org/10.1093/comjnl/bxu026
http://dx.doi.org/10.1109/TIFS.2014.2378592
http://dx.doi.org/10.1016/j.ins.2015.08.053
http://dx.doi.org/10.1016/j.ins.2016.09.013
http://dx.doi.org/10.1016/j.future.2017.03.007

Electronics 2023, 12, 4326 29 of 29

20. Li, H.; Huang, Q.; Ma, S.; Shen, J.; Susilo, W. Authorized equality test on identity-based ciphertexts for secret data sharing via
cloud storage. IEEE Access 2019, 7, 25409–25421. [CrossRef]

21. Liao, Y.; Fan, Y.; Liang, Y.; Liu, Y.; Mohammed, R. Cryptanalysis of an identity-based encryption scheme with equality test and
improvement. IEEE Access 2019, 7, 75067–75072. [CrossRef]

22. Ling, Y.; Ma, S.; Huang, Q.; Xiang, R.; Li, X. Group id-based encryption with equality test. In Proceedings of the Information
Security and Privacy: 24th Australasian Conference, ACISP 2019, Christchurch, New Zealand, 3–5 July 2019; Proceedings 24;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 39–57.

23. Ming, Y.; Wang, E. Identity-based encryption with filtered equality test for smart city applications. Sensors 2019, 19, 3046.
[CrossRef]

24. Susilo, W.; Duong, D.H.; Le, H.Q. Efficient post-quantum identity-based encryption with equality test. In Proceedings of the 2020
IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), Hong Kong, 2–4 December 2020; pp. 633–640.

25. Alornyo, S.; Zhao, Y.; Zhu, G.; Xiong, H. Identity Based Key-Insulated Encryption with Outsourced Equality Test. Int. J. Netw.
Secur. 2020, 22, 257–264.

26. Ramadan, M.; Liao, Y.; Li, F.; Zhou, S.; Abdalla, H. IBEET-RSA: Identity-based encryption with equality test over RSA for wireless
body area networks. Mob. Networks Appl. 2020, 25, 223–233. [CrossRef]

27. Lin, X.J.; Wang, Q.; Sun, L.; Qu, H. Identity-based encryption with equality test and datestamp-based authorization mechanism.
Theor. Comput. Sci. 2021, 861, 117–132. [CrossRef]

28. Zhu, H.; Xue, Q.; Li, T.; Xie, D. Traceable Scheme of Public Key Encryption with Equality Test. Entropy 2022, 24, 309. [CrossRef]
29. Al-Riyami, S.S.; Paterson, K.G. Certificateless public key cryptography. In Proceedings of the International Conference on the

Theory and Application of Cryptology and Information Security, Taipei, Taiwan, 30 November–4 December 2003; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 452–473.

30. Qu, H.; Yan, Z.; Lin, X.J.; Zhang, Q.; Sun, L. Certificateless public key encryption with equality test. Inf. Sci. 2018, 462, 76–92.
[CrossRef]

31. Susilo, W.; Guo, F.; Zhao, Z.; Wu, G. PKE-MET: Public-key encryption with multi-ciphertext equality test in cloud computing.
IEEE Trans. Cloud Comput. 2020, 10, 1476–1488. [CrossRef]

32. Fujisaki, E.; Okamoto, T. Secure integration of asymmetric and symmetric encryption schemes. In Proceedings of the Annual
International Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 1999; Springer: Berlin/Heidelberg, Germany, 1999;
pp. 537–554. [CrossRef]

33. Fujisaki, E.; Okamoto, T. Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 2013, 26, 80–101.
[CrossRef]

34. Boneh, D.; Boyen, X.; Shacham, H. Short group signatures. In Proceedings of the Annual International Cryptology Conference,
Santa Barbara, CA, USA, 15–19 August 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 41–55.

35. Smart, N.P.; Vercauteren, F. On computable isomorphisms in efficient asymmetric pairing-based systems. Discret. Appl. Math.
2007, 155, 538–547. [CrossRef]

36. Galbraith, S.D.; Paterson, K.G.; Smart, N.P. Pairings for cryptographers. Discret. Appl. Math. 2008, 156, 3113–3121. [CrossRef]
37. Chatterjee, S.; Menezes, A. On cryptographic protocols employing asymmetric pairings—The role of Ψ revisited. Discret. Appl.

Math. 2011, 159, 1311–1322. [CrossRef]
38. Boneh, D.; Franklin, M. Identity-based encryption from the Weil pairing. In Proceedings of the Annual International Cryptology

Conference, Santa Barbara, CA, USA, 19–23 August 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 213–229.
39. Boyen, X.; Mei, Q.; Waters, B. Direct chosen ciphertext security from identity-based techniques. In Proceedings of the 12th ACM

Conference on Computer and Communications Security, Alexandria, VA, USA, 7–11 November 2005; pp. 320–329.
40. Zhao, M.; Ding, Y.; Tang, S.; Liang, H.; Yang, C.; Wang, H. Dual-server certificateless public key encryption with authorized

equality test for outsourced IoT data. J. Inf. Secur. Appl. 2023, 73, 103441. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2899680
http://dx.doi.org/10.1109/ACCESS.2019.2920897
http://dx.doi.org/10.3390/s19143046
http://dx.doi.org/10.1007/s11036-019-01215-9
http://dx.doi.org/10.1016/j.tcs.2021.02.015
http://dx.doi.org/10.3390/e24030309
http://dx.doi.org/10.1016/j.ins.2018.06.025
http://dx.doi.org/10.1109/TCC.2020.2990201
http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1007/s00145-011-9114-1
http://dx.doi.org/10.1016/j.dam.2006.07.004
http://dx.doi.org/10.1016/j.dam.2007.12.010
http://dx.doi.org/10.1016/j.dam.2011.04.021
http://dx.doi.org/10.1016/j.jisa.2023.103441

	Introduction
	Related Work
	Our Contribution
	Organization

	Preliminary
	Asymmetric Bilinear Groups
	Bilinear Diffie–Hellman (BDH) Assumption in Asymmetric Bilinear Groups

	System Model, Definitions, and Security Models
	System Model of CLE-MET-PA
	Certificateless Encryption Supporting Multi-Ciphertext Equality Test with Proxy-Assisted Authorization
	Security Models of CLE-MET-PA

	The Proposed CLE-MET-PA Scheme
	Our Construction
	Correctness of CLE-MET-PA

	Security Proof
	Performance Analysis and Extension
	Performance Analysis of CLE-MET-PA
	Extension

	Conclusions
	References

