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Abstract: As a typical representative of a permissioned blockchain system, Hyperledger Fabric has
garnered substantial attention in recent years. Despite the application and promotion of Hyperledger
Fabric in fields such as smart grid and smart healthcare, challenges persist with respect to its
performance, especially its transaction latency. High latency always discourages Hyperledger Fabric
from latency-sensitive applications. In this paper, we focus on the execution phase of the unique
Execute-Order-Validate architecture of Hyperledger Fabric and conduct a comprehensive analysis
of its endorsement policies. We summarize three theorems and give corresponding mathematical
proofs based on the definition of the endorsement policy. To better analyze the generation of latency
during the endorsement process, we further developed a theoretical model using queuing theory.
Subsequently, we conducted multiple experiments on Hyperledger Fabric v2.0 for performance
evaluation. With the experiment results, we discuss the reasons for the performance differences
between different endorsement strategies and between equivalent logical expressions. Eventually,
this paper offers some suggestions for endorsement policy selection which can provide a reference
for the application of Hyperledger Fabric in the actual production environment.

Keywords: blockchain; latency performance; endorsement policy; Hyperledger Fabric

1. Introduction

Blockchain, initially introduced alongside crypto currencies like Bitcoin [1], has risen
to fame swiftly in recent years. Its remarkable capacity to establish trust among untrusted
parties is a key driver, eliminating the need for a trusted third entity. The widespread
application of blockchain technology has reshaped multiple industries both academically
and industrially [2]. For most blockchain-enabled IoT applications, blockchain serves as a
distributed and tamper-resistant ledger for storing IoT data. This effectively bridges the
gap in the authenticity and trustworthiness of device data to a certain extent [3,4].

At present, an escalating number of blockchain frameworks or platforms like Ethereum,
Hyperledger Fabric, Multichain, etc., have become available for development. This is
largely attributed to the growing contributions from both corporations and open-source
communities [5]. Among the numerous blockchain frameworks and platforms, Hyper-
ledger Fabric is one of the most popular, non-profit and enterprise-oriented blockchain plat-
forms of consortium blockchain maintained by the Linux Foundation since 2015 [6]. For Hy-
perledger Fabric, it delivers some key differentiating capabilities over other blockchain
frameworks or platforms like modular and configurable architecture, pluggable consensus
protocols, etc. In particular, arbitrary smart contracts authored in general-purpose pro-
gramming languages can be developed and run on Hyperledger Fabric, which realizes the
automation of multi-step processes [3].

Hyperledger Fabric is now being exploited for multiple IoT scenarios, ranging from
healthcare [7] to smart grids [8]. Furthermore, for latency-sensitive scenarios, applications
seeking to implement the corresponding functions on the basis of blockchain also need
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to consider responsiveness in addition to security and privacy concerns [9,10]. However,
Hyperledger Fabric tends to encounter high bandwidth overhead and latency during use,
which prevents it from being applied to latency-sensitive scenarios.

For Hyperledger Fabric, a unique architecture called the Execute-Order-Validate (EOV)
model is introduced for transaction processing and execution. The EOV model consists of
the following three phases: the endorsement phase, ordering phase and validation phase.
The endorsement policy mechanism plays an indispensable role in both phases, which
specifies some network peers to confirm, validate and, finally, subsequently append the
transaction to the ledger. In short, the endorsement policy is specified for a chaincode
when it is approved and committed to the channel. From the perspective of the EOV
model, the transaction latency can be seen as arising from those three phases, respectively.
Moreover, the major origins of transaction latency can be regarded as the endorsement
phase and ordering phase according to the conclusions presented by Thakkar et al. [11] and
Kwon et al. [12].

In this paper, we dive into the exploration of endorsement policy in Hyperledger Fabric
v2.0 and attempt to develop a comprehensive understanding of the trade-offs concerning
the endorsement involved. The contributions of our work are listed as follows:

• We present three theorems and provide rigorous mathematical proofs for each of them
in accordance with the definition of an endorsement policy in Hyperledger Fabric;

• We develop a latency analytical model focusing on the execution phase and theoreti-
cally explore the causes of latency based on the M/M/1 queue in queue theory and
Little’s law;

• We conduct multiple experiments under different endorsement policies on Hyper-
ledger Fabric v2.0 and find performance differences between different endorsement
strategies as well as between equivalent logical expressions;

• We discuss the impact of endorsement policies on the performance of a blockchain
network, analyze the reasons for performance differences between different policies
and offer some suggestions for policy selection.

The rest of this paper is organized as follows. The related work is surveyed in
Section 2, followed by an overview of the EOV architecture in Section 3. Section 4 provides
a detailed description concerning the endorsement policy of Hyperledger Fabric. And
then Section 5 develops a theoretical model for the latency performance analysis of the
endorsement process. Section 6 evaluates the performance of Hyperledger Fabric under
different endorsement policies and provides a discussion. Finally, Section 7 concludes with
remarks and future research directions.

2. Related Work

Despite its rising popularity, scalability remains a key challenge for blockchain tech-
nology. High scalability refers to the blockchain system’s capacity to efficiently manage and
process a substantial volume of transactions and data in order to satisfy the requirements of
its users. However, from the point of view of performance metrics, high scalability usually
requires a system with high throughput and low latency [13–15].

The magnitude of throughput is an important indicator of a blockchain system’s ability
to process transactions and many researchers have made great contributions to improving
the throughput of Hyperledger Fabric. Gorenflo et al. [16] make architectural changes
to Hyperledger Fabric, thus reducing computation and I/O overhead during transaction
ordering and validation. And the changes are fully plug-and-play. Nakaike et al. [17]
analyze the database systems used in Hyperledger Fabric and draw a conclusion that
performance bottleneck arises from accesses to the databases that store the latest key-value
pairs in the ledger data, indexes to transactions and the update history. Berendea et al. [18]
introduce a novel gossip design for Fabric that achieves the simultaneous optimization
of the propagation time, tail latency and bandwidth consumption. Such improvement
also performs well on high throughput and concurrent applications. Hang et al. [19]
propose a transaction traffic control approach based on fuzzy logic and implement it in
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a smart contract. The blockchain performance is significantly improved by this control
approach. Sharma et al. [20] explore Fabric from the perspective of database research and
try to migrate certain concepts and technology from the database into blockchain. Their
experiments demonstrate that this introduction improves performance by nearly a factor
of three.

In IoT applications, high latency stands out as a critical challenge. Presently, the pri-
mary objective in blockchain optimization is the minimization of latency. Endorsement pol-
icy, identified as one of three major performance bottlenecks of Hyperledger Fabric [11,21],
has attracted considerable interest in recent years. Thakkar et al. [11] propose to introduce
aggressive caching or parallelization technology for endorsement policy validation, which
effectively shortens the time required to verify the endorsement signature of a transaction.
In particular, Kwon et al. [12] achieve a substantial improvement in original read transac-
tion processing by distinguishing between read and write transactions in the endorsement
phase. Liu et al. [22] then consider how to make the distribution of endorsement tasks more
balanced for the endorsement phase of peer nodes in order to improve the performance of
a blockchain system in the case of high concurrency. Shammar [23] et al. investigate the
role endorsement plays in Hyperledger Fabric’s consensus and involve it in their proposed
control model, overcoming traditional centralized access control issues to a certain extent.
Qin et al.’s study [24] is also concerned with the significance of endorsement policy in
designing a control scheme and make dynamical modifications to the endorsement proto-
col according to their proposed user credibility incentive mechanism. The modifications
work well for the protocol. Wang et al. [25] acquire, through their experimental results,
proof that Hyperledger Fabric exhibits good scalability in the execution phase when the OR
endorsement policy is employed, but not when the AND endorsement policy is employed.
Soelman et al. [26] start from the common needs and requirements of blockchain networks
to study the impact of different endorsement policies on the data authenticity of a ledger
and give the corresponding improvement measures.

3. EOV Architecture of Hyperledger Fabric
3.1. Key Concepts

As an open-source blockchain platform designed for enterprise users, Hyperledger
Fabric provides an exceptional modular and extensible architecture that facilitates its
functionality and versatility. Here are several key concepts [27] that form the foundation
of Hyperledger Fabric, as shown in Figure 1. As a whole, a fabric network consists of
four modules, called Membership, Blockchain, Transactions and Chaincode, and the four
modules are connected by the event stream. For users and developers, they can easily use or
develop Hyperledger Fabric using the command line interface (CLI), software development
kit (SDK) and application programming interface (API).

• Ledger
Ledger refers to a tamper-resistant, distributed database that stores important factual
information concerning business in a blockchain network, including both the current
value of the attributes of the objects and the history of transactions that resulted in
these current values.

• Node
In Hyperledger Fabric, nodes play a crucial role as communication entities of the
blockchain network. They are distributed across the network and collaborate to
achieve consensus on the validity of transactions and maintain the shared ledger.
In Hyperledger Fabric v2.x, the types of nodes can be broadly classified into two
categories, i.e., peer nodes and orderer nodes. In addition, although all peer nodes are
identical in Fabric, they can assume multiple roles depending on the network configu-
ration and functional requirements. These roles include Committer, Leader, Endorser
and Anchor. Figure 2 below shows the connection between different nodes [28]. Thus,
the transaction process in Fabric can be viewed as a process of interaction among
multiple nodes.
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Figure 1. Key components in Fabric network.

CACAOrderer

CACAEndorsing
Peer

CACACommitting
Peer

Peer Nodes

CA

Client
(APP/SDK)

Enroll/Login

Proposal

Proposal Response

Submit Transaction

Sync

Deliver
Block

Submit Transaction

Relay

Figure 2. Connection between different nodes.

• Membership Service Providers (MSP)
An MSP is a Hyperledger Fabric component that offers an abstraction of membership
operations [29]. In particular, an MSP abstracts away all cryptographic mechanisms
and protocols behind issuing certificates, validating certificates, and user authentica-
tion. In other words, an MSP manages the identities and access control of participants
in the blockchain network. It is responsible for the authentication and authorization
of interacting entities within the network like organizations, peers and clients.

• Channel
In a fabric network, there can be multiple channels and each channel is isolated from
each other. Participants in the same channel have a separate ledger and maintain it
together. In addition, each transaction on the network is executed on a channel, where
each party must be authenticated and authorized to transact on the corresponding
channel using an MSP.

• Smart Contract/Chaincode
A smart contract is an agreement that automatically executes relevant contract clauses
based on business logic set by pre-written code in the context of a blockchain. In
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Fabric, a smart contract is also called a chaincode. It specifies how data should be
validated, processed and updated on the ledger [30,31].

3.2. Transaction Flow

Transactions flow through the various components of the Fabric network and require
the collaborative efforts of the nodes in the network, as illustrated in Figure 3. The EOV
process starts when the transaction is proposed and ends when the transaction is submitted
to the ledger [6]. First of all, the client creates a transaction and sends it to a number of
endorsing peers. Once receiving the transaction sent by the client, each endorsing peer
proceeds to execute the transaction against its own state database, ultimately computing
the read–write set specific to that transaction. If the transaction is executed without errors,
it signifies that the committed transaction has successfully passed the business rule checks.
As a consequence, the endorsing peer will provide its endorsement, signifying its approval
to the client. Later, the client waits for a sufficient number of endorsements and then sends
the transaction with its endorsement to the orderer nodes that implement the ordering
service. The ordering service returns a response to the client after the transaction has been
accepted for inclusion in the block. The orderer nodes will reach a consensus on the order
of incoming transactions and subsequently create individual blocks in succession from the
ordered transactions based on the BatchSize and BatchTimeout parameters configured by
the Fabric network. Once a block is created, the orderer nodes broadcast it to all peers who
subsequently proceed to carry out the following procedures. The peers then validate all
transactions within the block and commit the block to the ledger and state database once
it has passed. In addition, one of the peers will notify the client that the transaction has
been committed.

client endorser orderer committer

proposal request

 execute
 compute
 sign

proposal response

send transaction with endorsements

order

consensus

create blocks 

broadcast

broadcast the
created blocks

validate

commit

update
inform the client 

Execute Order Validate

Figure 3. Transaction flow in Fabric.

3.3. Endorsement Flow in Fabric

In order to have a closer look at the endorsement phase, we further explore the imple-
mentation details of the endorsement flow in Fabric. To begin, once a transaction proposal
is generated by the client, the client sends it to the endorsing peers along with its own
signature for execution. Subsequently, the client awaits the receipt of a proposal response
from the endorsing peers, which includes the simulation results and the endorsement
signatures. As for the endorsing peers, when they receive the transaction proposal from the
client, they utilize an MSP to validate and authenticate the identity of the client. Later, a
chaincode is executed for simulation in an isolated space within the container, which is also
called a sandbox. Notice that each endorsing peer executes the same transaction simulation
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independently and eventually generates an endorsement result for that transaction in the
execution phase. Through simulation, the endorsing peers get read–write sets of transac-
tions. The read set is a collection of key-value pairs that the transaction needs to read from
the ledger while the write set is a collection of key-value pairs that the transaction intends
to write or update to the ledger. Next, the read set will be validated and the write set will be
executed. If no error occurs at this point, the endorsing peers will provide the endorsement
signatures, attach them to the transaction proposal and send the endorsement signatures
back to the client. Once the client collects a sufficient number of endorsement signatures, it
proceeds to commit the transaction in the subsequent ordering phase. The pseudocode,
as shown in Algorithm 1, of how endorsement is implemented in Hyperledger Fabric’s
open-source code can help us better understand the process.

Algorithm 1: Endorsement phase in Fabric

1 begin
2 initialize;
3 check and validate the transaction proposal;
4 if the transaction proposal is valid then
5 execute chaincode for simulation;
6 acquire the read-write set concerning the transaction;
7 validate the read set;
8 execute the write set;
9 if no error then

10 get execution results;
11 perform endorsement signing;
12 send the endorsement results back to the client;
13 end
14 end
15 if the endorsement policy is satisfied then
16 client sends transaction with endorsements to orderer nodes;
17 proceed to the subsequent ordering phase;
18 end
19 end

4. Endorsement Policy of Hyperledger Fabric

The latency incurred by the Fabric network during the execution phase mainly con-
sists of two components: the network latency of the communication between client and
endorsing peers and the processing latency of each endorsing peer [32]. During the whole
endorsement process, the number of peers required to endorse a transaction is driven
by the corresponding endorsement policy that is specified in the Endorsement System
Chaincode (ESCC). As a result, the choice of endorsement policy exerts an influence on
the transaction latency of the fabric network during the endorsement process. A proper
endorsement policy is critical for improving network performance.

Fabric offers a domain-specific language with which it is possible to define endorse-
ment policies conveniently and flexibly. Principals are the component used to identify
entities or roles in the endorsement process, defining who is authorized to endorse transac-
tions. Principals can be described as MSP.ROLE, where MSP represents the required MSP ID
and ROLE represents one of the four accepted roles: member, admin, client and peer.

Furthermore, this language provides three basic logic operators, i.e., AND, OR and
k-OutOf. Without a loss of generality, let us denote the total number of endorsing peers or
organizations in a set specified by the corresponding endorsement policy as N for a better
description in the following. For expression AND, the transaction proposal is supposed to
get the signatures of all the specified N endorsers. And for expression OR, the transaction
proposal needs to acquire the signature of any of the specified N endorsers, while for
expression k-OutOf, the transaction proposal has to obtain the signatures of at least k
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endorsers from the specified N endorsers. Moreover, nested combinations of the above
three basic logical operators are also supported by Hyperledger Fabric.

The syntax of the endorsement policy language is EXPR(E[, E...]), where EXPR is
either AND, OR or OutOf, and E is either a principal (with the syntax described above) or
another nested call to EXPR. Equations (1)–(4) give examples of different endorsement
policies. Thus, by setting different endorsement policies, a specified number of peers on a
channel can be assigned to execute the chaincode and endorse the corresponding results.

Example 1 (the AND endorsement policy).

AND(′Org1MSP.member′,′Org2MSP.member′,′Org3MSP.member′) (1)

Example 2 (the OR endorsement policy).

OR(′Org1MSP.member′,′Org2MSP.member′) (2)

Example 3 (the OutOf endorsement policy).

OutO f (2,′Org1MSP.member′,′Org2.member′,′Org3.member′) (3)

Example 4 (the nested endorsement policy).

OR(′Org1MSP.member′, AND(′Org2MSP.member′,′Org3MSP.member′)) (4)

Although there are many forms of endorsement policies that we can combine using
the standard syntax and operators [27] like Equations (1)–(4), we come to some common
conclusions, as in Theorems 1–3 below. Based on these three theorems, we can trans-
form the expression of an endorsement policy freely between different operators, as in
Equations (5) and (6), to meet the actual needs.

Theorem 1. An endorsement policy that contains only the operator OR and N endorsers is logically
equivalent to an endorsement policy that contains only the operator 1-OutOf.

Proof of Theorem 1. Let us denote the set of endorsing peers or organizations as S, and let
|S| represent the cardinality of S, i.e., the number of endorsing peers or organizations in set
S. For OR policy, the transaction needs to receive an endorsement signature from any one
of the specified peers or organizations in S, while for the 1-OutOf policy, the transaction
must obtain at least one signature from the specified peers or organizations in S. In the
case where the OR policy is satisfied, the transaction receives a signature from any one
peer or organization in S. At this point, the condition of the 1-OutOf policy can also be
satisfied. In the case where the 1-OutOf policy is satisfied, the transaction receives at least
one signature from the peers or organizations in S. At this point, the condition of the OR
policy can also be satisfied. Therefore, the policies OR and 1-OutOf are equivalent for any
number of endorsing peers or organizations.

Theorem 2. An endorsement policy that contains only the operator AND and N endorsers is
logically equivalent to an endorsement policy that contains only the operator N-OutOf.

Proof of Theorem 2. Like the proof of Theorem 1 above, let us predefine set S and its
cardinality |S|. For the AND policy, the transaction needs to receive endorsement signatures
from all endorsing peers or organizations in S, while for the N-OutOf policy, the transaction
must obtain at least N signatures from the specified peers or organizations in S. In the
case where the AND policy is satisfied, the transaction receives N signatures from all peers
or organizations in S. At this point, the condition of the N-OutOf policy can also be
satisfied. In the case where the N-OutOf policy is satisfied, the transaction receives at
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least N signatures from the peers or organizations in S. The total number of signatures
is N, due to |S| ≤ N. At this point, the condition of the AND policy can also be satisfied.
Therefore, the policy AND and N-OutOf are equivalent for any number of endorsing peers or
organizations.

Theorem 3. An endorsement policy that contains the operator k-OutOf can be converted into an
endorsement policy consisting of a combination of the operator AND and OR.

Proof of Theorem 3. Similar to the previous operation, let us predefine set S and its cardi-
nality |S|. For the case where the k-OutOf policy is satisfied, then the transaction obtains at
least k endorsement signatures from the peers or organizations in S. Notice that there are
Ck

N schemes for the elements set ci(ci ⊂ S, 1 ≤ i ≤ Ck
N) that provide the signatures. Then,

for a particular ci, the corresponding endorsement can be expressed as the form of the AND
operation on all elements of the set ci. After that, the result of the internal AND operation
with each set ci is performed on the OR operation. At this point, it is sufficient for at least
any k elements to provide endorsement signatures to make the expression hold after the
transformation. In this way, we convert the original k-OutOf endorsement by processing
the elements inside each set with the AND operator and then combining their results using
the OR operator.

Example 5.
OutO f (2,′Org1.member′,′Org2.member′)⇔

AND(′Org1MSP.member′,′Org2MSP.member′)
(5)

Example 6.

OutO f (2,′Org1.member′,′Org2.member′,′Org3.member′)⇔
OR(AND(′Org1.member′,′Org2.member′),

AND(′Org1.member′,′Org3.member′), AND(′Org2.member′,′Org3.member′))

(6)

5. Latency Performance Analysis using Theoretical Modeling for Endorsement Process

From a macro perspective, transaction latency is a network-wide view of the amount
of time taken for a transaction’s effect to be usable across the network [6], while from
a perspective of the EOV transaction flow, the transaction latency can be divided into
three parts corresponding to three phases, i.e., the latency of the execution phase, latency
of the ordering phase and latency of the validation phase. The latency of the execution
phase or endorsement phase accounts for a significant proportion of the overall transaction
latency [33]. On the one hand, the endorsing peers cause latency when simulating the
execution of a chaincode in the docker containers. On the other hand, the client needs to
wait for a sufficient number of endorsement signatures to satisfy the endorsement policy,
which also incurs latency.

In the following, we attempt to theoretically model the latency generated by the
execution phase in the Hyperledger Fabric system with the reference of the analytical
latency model proposed by Xu et al. [34].

Initially, the client sends the transaction proposal to the endorsing peers, requesting
them to provide endorsement signatures. The time it takes for a proposal to propagate
through a network is related to the size of the packet being propagated, the bandwidth
of the network and the average propagation latency of the network. It is assumed that
the packet size of transaction proposals is α bits, that the bottleneck bandwidth of the
network path is B bps and the average propagation latency of a network is D. Therefore,
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the communication latency of transaction proposals from client to endorsing peers T1 is
Equation (7).

T1 = α/B +D (7)

Then, the endorsing peers simulate the execution of a transaction by ESCC and the
execution process of the endorsement peers incurs latency. We further assume that the
arrival of new transactions follows the Poisson Point Process with the arrival rate λ. So
the arrival rate of data is λα bit/s. And we define the nodes dealing with transactions in
a first-in-first-out manner with the unlimited waiting rooms and the service time at each
node follows the exponential distribution with mean µ. Additionally, the amount of data
that each node can process per second can also be denoted as µ. Hence, we model the
execution of transaction proposals as an M/M/1 queue, where arrivals are determined by
a Poisson process and job service times have an exponential distribution. For the queue,
it will process the transactions in order of arrival. Therefore, the traffic intensity ρ can be
calculated as Equation (8). According to Little’s law [35], the expected time T2 for each
endorsing peer to execute a transaction is Equation (9).

ρ =
λα

µ
(8)

T2 =
1

µ− λα
=

1
µ(1− ρ)

(9)

Eventually, the endorsing peers are supposed to return the endorsements to the client
after completing the simulated execution of a transaction. Let us denote the packet size
of an endorsement as β. Therefore, the communication latency of endorsements from
endorsing peers to client T3 is Equation (10).

T3 = β/B +D (10)

In summary, the overall latency in the endorsement process Tendor can be calculated
using Equation (11) below. The latency of the endorsement process arises and grows little
by little in the cycle of sending the transaction proposals, waiting for the transactions to be
executed and returning the endorsement signatures.

Tendor = T1 + T2 + T3 =
α

B +D +
1

µ(1− ρ)
+

β

B +D =
α + β

B +
1

µ(1− ρ)
+ 2D (11)

6. Performance Evaluation and Analysis

The Hyperledger Fabric v2.0.1 is evaluated in our experiments. We deploy a 1-channel
fabric network on four physical servers in an isolated LAN with a 1000 MB/s network
bandwidth. The hardware configuration of each server is a 4-Core CPU, 16 GB main
memory and 1TB magnetic disk; the Ubuntu Server 20.04LTS 64bit operating system
is installed on each server. And four organizations are deployed on the servers with
two peer nodes and one orderer node, respectively, as the topological structure shown
in Figure 4. One organization is run on each physical server using docker containers.
Four organizations, R1, R2, R3 and R4, build a network on channel C1 with the channel
configuration CC1. Taking organization R1 as an example, peer nodes P1, P2 and an orderer
node O1 belong to it. Peer nodes are primarily responsible for providing endorsement
and broadcasting transactions, while orderer nodes are mainly responsible for managing
the system channel and facilitating consensus mechanisms. In addition, organization R1
also hosts a copy of the distributed ledger L1 and smart contract S1. The remaining three
organizations, R2, R3 and R4, are similar to those of organization R1.
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In terms of network configuration, the BatchSize is 100 and BatchTimeout is 1 s.
The BatchSize is the maximum number of transactions a block can contain and the
BatchTimeout is the maximum time elapsed for the duration of creating a block. In addition,
Hyperledger Caliper [36], an open-source benchmarking tool for blockchain performance
evaluation, is employed to measure the performance of a blockchain network against
several predefined use cases. Our experiments are performed with different endorsement
policies by sending transaction requests ranging from 20 Transactions Per Second(TPS) to
220 TPS with a 20 TPS interval. Table 1 provides a detailed reference of our experimental
settings.

Table 1. Experimental Settings.

Parameter Value Unit

Number of Organizations 4 /
Number of Peer Nodes 2 per organization

Number of Orderer Nodes 1 per organization
BatchSize 100 /

BatchTimeout 1 second

Sending Rate
20/40/60/80/100/120/140/

160/180/200/220/240 TPS

6.1. Experiment I: Impact of Parameter k in k-OutOf Policy

In the k-OutOf policy, the parameter k can be regarded as a variable with the range
of any integer from 1 to N. The different values of k indicate the minimum number of
endorsement signatures required in the endorsement policy. In order to explore the impact
of different OutOf policies varying k on the transaction latency of a blockchain network,
we test the average latency of four cases, 1-OutOf, 2-OutOf, 3-OutOf and 4-OutOf, as
depicted in Figure 5. It can be found that, when the sending rate is at a relatively low
value, the average latency of the four strategies is close with little difference. As can be seen
from the figure, when the sending rate is at a relatively low value, from 20 TPS to 140 TPS,
the average latency of the four policies is close with little difference. However, from 140 TPS
onwards, the latency gap between different strategies has become noticeable and has been
getting bigger. Overall, however, there is a trend that the larger the k, the higher the average
latency at the same sending rate. That is, the larger the value of k becomes, the more
endorsement signatures are required by the OutOf strategy, which means that it takes
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longer to collect enough signatures to complete the endorsement process. In other words,
an increase in the value of parameter k leads to an increase in the number of endorsing
nodes that need to provide endorsement signatures. Accordingly, the communicating
latency T3 in our proposed model becomes larger and thus the overall transaction latency
becomes larger.
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Figure 5. Average latency varying OutOf polices.

6.2. Experiment II: Comparison between OR Policy and AND Policy

Due to their logical simplicity and ability to cover most application scenarios, OR and
AND are two of the most commonly used endorsement policies. In this paper, we also
compare the performance of a blockchain network under these two policies, as shown in
Figure 6. From an overall point of view, the AND policy has a higher latency than the OR
policy at different sending rates. In particular, we can observe from the figure that from
200 TPS, the average latency of the AND policy shows a substantial increase compared to
the average latency of the OR policy. When the sending rate reaches 220 TPS, the average
latency of the AND policy even reaches nearly five times that of the average latency of the
OR policy. At this point, the Fabric network has reached a performance bottleneck for the
AND policy and the transaction latency will increase rapidly. The definition of the AND policy
determines that it usually needs to involve more endorsing peers compared to the OR policy,
which results in the need to communicate with more peer nodes. The network overhead of
interacting with more nodes has an impact on the performance of Fabric and increases the
latency of the blockchain system. However, the AND policy, which requires all the endorsing
nodes to provide signatures, also provides system security, to some extent, compared to
other endorsement policies.

6.3. Experiment III: Latency Comparison of Simple Equivalent Expressions

According to Theorem 1 and Theorem 2 above, the OR policy and AND policy can be
equivalently transformed into a 1-OutOf policy and 4-OutOf policy, respectively, without
adding complexity to the expression. Figures 7 and 8 represent the latency comparison of
simple equivalent expressions. In terms of the comparison between the OR policy and the
1-OutOf policy, the performance of the 1-OutOf policy is slightly better than that of OR when
the sending rate is less than 140 TPS. At the point where the sending rate receives 160 TPS,
the difference between the two becomes very small. However, as the sending rate increases
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further, the performance of the OR policy outperforms the performance of the 1-OutOf
policy. The performance gap between the two becomes more and more obvious and the
1-OutOf policy will reach the performance bottleneck earlier than the OR policy. The OR
policy only needs to communicate with any one of the nodes making the endorsement,
while the 1-OutOf policy needs to communicate with at least one node. This causes a
relatively large communication latency when TPS is high.
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Figure 6. Average latency between OR policy and AND policy.

20 40 60 80 100 120 140 160 180 200 220
Sending Rate (TPS)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

La
te

nc
y 

(s
)

OR
1-OutOf

Figure 7. Average latency between OR policy and 1-OutOf policy.

In terms of the comparison between the AND policy and the 4-OutOf policy, 140 TPS
can be viewed as the dividing line. On the whole, the performance of the 4-OutOf policy
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will be better than the performance of the AND policy in terms of latency. However, when
the sending rate is less than or equal to 140 TPS, the performance difference between
the two policies is relatively small and the performance is very close. While the sending
rate exceeds 140 TPS, the latency of the AND policy grows rapidly and its average latency
exceeds 2 s at 220 TPS, reaching the performance bottleneck. At this time, the 4-OutOf
policy can still keep the average latency of the system within 1 s, and has not yet reached
the bottleneck.
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Figure 8. Average latency between AND policy and 4-OutOf policy.

Overall, the k-OutOf policy performs better than its simple equivalent expression
when the sending rate is kept at a low level. And this changes somewhat as the sending
rate increases and needs to be analyzed on a case-by-case basis.

6.4. Experiment IV: Latency Comparison of Complex Equivalent Expressions

As Theorem 3 suggests in its finding, an endorsement policy expression can be trans-
formed into an expression containing only the AND operator and the OR operator. This
equivalent transformation will not change the meaning of the expression, but it will com-
plicate it to some extent. Equation (12) is an equivalent expression of the 2-OutOf-4 policy.
Therefore, we test the performance of the 2-OutOf policy and its equivalent expression as
shown in Figure 9. As can be seen from the figure, the 2-OutOf policy and its equivalent
expression maintain the same trend in the average latency under different sending rates.
However, the average latency of the equivalent expression is consistently higher than
that of the original expression. And the latency gap between the two expressions is also
consistently increasing as the sending rate increases. The equivalent transformation of the
endorsement policy leads to many more sub-expressions appearing in the expression, that
is, it leads to the complication of the endorsement policy. Complexity makes it necessary
for the endorsing peers to execute more computation and communication to validate the
transaction, causing the endorsement process to become more time-consuming.

OutO f (2,′Org1.member′,′Org2.member′,′Org3.member′,′Org4.member′)⇔
OR(AND(′Org1.member′,′Org2.member′), AND(′Org1.member′,′Org3.member′),

AND(′Org1.member′,′Org4.member′), AND(′Org2.member′,′Org3.member′),

AND(′Org2.member′,′Org4.member′), AND(′Org3.member′,′Org4.member′))

(12)



Electronics 2023, 12, 4322 14 of 17

20 40 60 80 100 120 140 160 180 200 220
Sending Rate (TPS)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e 

La
te

nc
y 

(s
)

2-OutOf
equivalent expression combining two basic operators

Figure 9. Average latency between 2-OutOf policy and its corresponding endorsement policy.

When we look at Figures 5–9 together, we see that, as the sending rate increases,
the overall average latency appears to increase and then decrease, followed by a gradual
leveling off, and then finally a sudden increase. This trend of variation can be attributed to
the settings of the parameters, BatchSize and BatchTimeout. When the sending rate is low,
the number of transactions processed within the BatchTimeout does not reach BatchSize.
At this point, BatchTimeout is a major factor in the creation of a block. But when the
send rate is higher, blocks can be created based on BatchSize instead of BatchTimeout.
And the higher the sending rate, the faster the blocks are created. Additionally, the latency
fluctuation is relatively stable over a range of high sending rates, from 80 TPS to 180 TPS
in our experiments. This is because the time taken to create a block within BatchTimeout
is relatively constant. And the final steep increase is due to the system reaching a perfor-
mance bottleneck.

Taking the four experiments we conducted together, we can summarise the following
conclusions for reference when configuring an endorsement policy for the Fabric network.
When choosing a k-OutOf endorsement policy, it is necessary to reduce the value of k as
low as possible. An increase in the value of k leads to a degradation of the performance
of a network, which is not conducive to application in latency-sensitive scenarios. In the
case of the OR policy and the AND policy, the performance of the OR policy is better than
the performance of the AND policy. Notice that this performance gap becomes more and
more obvious as the sending rate of transactions increases. Thanks to Hyperldger Fabric
providing a clear and concise syntax to define endorsement policies, it is possible to achieve
easy transformation between different operators. However, we have found through ex-
periments that, although there may be no logical difference between different expressions
that can represent the same meaning, there are performance differences between logically
equivalent expressions in actual tests. For simple transformations that do not increase the
complexity of the expression, the k-OutOf policy performs well at low sending rates. When
the sending rate becomes higher, the policy needs to be chosen according to the actual
situation. For equivalent transformations that increase the complexity of the expression,
the increase in complexity implies an increase in sub-expressions. This requires commu-
nicating with more nodes and processing more information, leading to a rapid increase
in latency.
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Combining the results of these four experiments, some inspirations on how to choose
appropriate endorsement strategies can be summarized. If a developer is torn between the
OR policy and the AND policy, the difference in performance between the two is not very
significant when the sending rate of the transactions is kept at a low level. But when the
transaction is sent at a larger rate, the OR policy is more recommended. Moreover, as far
as the determination of the parameter k for the k-OutOf policy is concerned, the larger
the value of parameter k, the higher the average latency of the transaction corresponding
to that policy. Thus, a smaller value of k is worthwhile. Based on our three theorems
presented above, there are cases where the expression of endorsement policies can be
rewritten through transformations. Notice that logical equivalence does not necessarily
imply equivalence in terms of production performance. The choice of the most suitable
expression should be contingent upon the specific sending rate and operational demands.

7. Conclusions and Outlook

In order to promote blockchain-based IoT applications, this paper focuses on the trans-
action latency in the execution phase, i.e., the endorsement process, from the perspective of
EOV architecture. We review the EOV architecture of Hyperldger Fabric and analyze the
process of endorsement flow in it. And we summarize three theorems from the definition
of the endorsement policy of Hyperldger Fabric, and give rigorous proofs for the three
theorems from a mathematical point of view. In addition, based on queuing theory and
Little’s law, we develop a latency analytical model to analyze the composition of latency
in the endorsement process and the reasons for its formation. Last but not least, we test
and compare the transaction latency for different endorsement policies at different sending
rates. We also analyze the reasons for the differences in performance between different
endorsement policies and give suggestions on the choice of endorsement policies.

In further research, the EOV architecture of Hyperldger Fabric will be focused on con-
tinuously. We will continue to analyze the factors affecting the performance of Hyperldger
Fabric from the ordering phase and validation phase, in addition to the execution phase,
and will try to come up with optimizations for the performance of Hyperldger Fabric.
Simultaneously, we will also delve deeper into the endorsement policy of Hyperldger
Fabric and keep optimizing the endorsement process with fewer computational resources
and lower energy consumption.
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