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Abstract: Wafer characters are used to record the transfer of important information in industrial
production and inspection. Wafer character recognition is usually used in the traditional template
matching method. However, the accuracy and robustness of the template matching method for
detecting complex images are low, which affects production efficiency. An improved model based
on YOLO v7-Tiny is proposed for wafer character recognition in complex backgrounds to enhance
detection accuracy. In order to improve the robustness of the detection system, the images required
for model training and testing are augmented by brightness, rotation, blurring, and cropping. Several
improvements were adopted in the improved YOLO model, including an optimized spatial channel
attention model (CBAM-L) for better feature extraction capability, improved neck structure based
on BiFPN to enhance the feature fusion capability, and the addition of angle parameter to adapt to
tilted character detection. The experimental results showed that the model had a value of 99.44% for
mAP@0.5 and an F1 score of 0.97. In addition, the proposed model with very few parameters was
suitable for embedded industrial devices with small memory, which was crucial for reducing the
hardware cost. The results showed that the comprehensive performance of the improved model was
better than several existing state-of-the-art detection models.

Keywords: YOLO v7-Tiny; wafer character recognition; attention mechanism; BiFPN; rotation
detection

1. Introduction

Wafer characters are codes comprising numbers, letters, and symbols, and contain
production information for each wafer. If error of a wafer character recognition occurs
during production, the information cannot be matched, significantly reducing production
efficiency. Therefore, improvement of the accuracy of the wafer character recognition
method is significant for improving the production efficiency of the semiconductor industry.

Wafer character recognition belongs to the category of optical character recognition [1].
Before the advent of deep learning-based techniques [2], optical character recognition
was based on the template matching method [3]. The matching results were obtained by
this method through extracting characters from the image matrix and determining the
similarity between the characters and the template. Tian et al. [4] proposed the segmentation
of Chinese license plate characters by using multiscale template matching. Chen et al. [5]
used image segmentation, normalization, and template matching techniques for license
plate recognition. Ryan et al. [6] proposed character recognition on ID cards using template
matching. Zhang et al. [7] proposed a license plate character segmentation method based
on character contour and temple matching. Jung et al. [8] used template matching for
7-segment optical character recognition. However, before template matching, it is usually
necessary to extract the target region to be recognized. With less interference contained in
the extracted target region, the larger the area of the true target region, the better the results
obtained after matching with the template. When the background in the image is more
complex, then there are more intersections between the target region and the interference.

Electronics 2023, 12, 4293. https://doi.org/10.3390/electronics12204293 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12204293
https://doi.org/10.3390/electronics12204293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12204293
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12204293?type=check_update&version=1


Electronics 2023, 12, 4293 2 of 17

It would be difficult to extract the target accurately due to these interferences. Matching
results are greatly affected by the large differences between the extracted regions and
the template. Similarly, when template matching is performed using gradient and other
methods, the matching results will be greatly affected by the overlapping background
interference. After the emergence of deep learning-based technology, this technology had
been widely used in optical character recognition due to its advantages of higher detection
accuracy, great robustness, and time efficiency. Weng et al. [9] proposed a new deep
learning-based handwritten character recognition system on mobile computing devices.
Kim et al. [10] proposed a multi-task convolutional neural network system for license plate
recognition. Yang et al. [11] used a combination of CNN and ELM for learning deep features
related to Chinese characters. Rakhshani et al. [12] proposed a deep learning network for
license plate recognition. Cao et al. [13] utilized registered 3D models as well as classical
convolutional networks for wafer character recognition based on a priori information.

Wafer character recognition was often previously performed using the traditional method
with a small model size and simple structure in practical industrial applications [14–16].
However, the accuracy and robustness of recognition were weak. Therefore, combining
the excellent detection performance of the deep learning network and the characteristics
of wafer characters, this paper proposes an improved YOLO v7-Tiny network for wafer
character recognition in complex backgrounds. The main objective was to develop a robust,
accurate, computationally inexpensive detection system that was applicable to industrial
environments. The main contributions of this work are as follows: First, the wafer dataset
was established, which was acquired from an industrial camera and image collection. Then,
the network structure of YOLO v7-Tiny was improved in terms of the attention mechanism,
the feature fusion network structure, and the rotation detection frame. The improved YOLO
model achieved better detection performance while ensuring the model was lightweight.

2. Description of the Theories
2.1. Feature Extraction Module Based on Attention Mechanism

Processing efficiency and accuracy were improved under limited computational condi-
tions by the attention module via focusing on the target information that was more critical
to the current task among the many inputs, effectively obtaining more details related to the
target and filtering out irrelevant information [17]. Combining the deep learning network
with the attention mechanism module, the loss of important information in an image could
be reduced in passing information between network layers [18]. The attention module has
been widely used in practical detection [19].

2.2. Feature Fusion Network

The features in lower layers had a higher resolution and contained more location-
based and detailed information during the feature extraction process. Higher-level features
had stronger semantics but lower resolution and less location information and detail.
A top-down architecture with horizontal connectivity was structured by FPN (Feature
Pyramid Network for Object Detection) for constructing high-level semantic feature maps
at different scales [20]. The high-level features could be transferred by this structure to
complement the semantics of the lower levels while fusing high-level features with low-
level features. In this way, high-resolution and strong semantic features could be obtained,
facilitating multi-scale target detection. With the development of technology and research,
the new enhancement paths were created by PANet and BiFPN structures to strengthen the
tightness of information flow transfer in the network and enhance the network’s ability to
fuse feature information with good results [21,22].

2.3. Detection of Rotating Targets

A rectangular detection frame with a tilt angle of zero degrees has been previously
commonly used to contain the detection object in many detecting works. However, many
detection objects are unsuitable for such rectangular frames in practical application situ-
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ations. This detection frame is not adaptable to detection targets with tilt angles and the
inclusion of the object is not accurate enough. Meanwhile, problems such as decreasing the
area of the overlapping part of the detection frame and the real object will occur. Therefore,
a detection model with angular parameters has been used in many practical applications,
such as ship position detection [23,24], unconstrained license plate position detection [25],
insulator orientation detection [26], and remote sensing image detection [27].

3. Materials and Methods

The flow of the wafer character detection method proposed in this paper is shown in
Figure 1. In the first step, a batch of wafers was placed on a mobile device, and the images
of characters on the wafers were captured by an industrial camera during the moving
process. Afterward, data enhancement was performed on the images. The processed
images were collected to construct a wafer character dataset, and individual characters in
the image were labeled. Then, the YOLO network was trained on the constructed dataset.
Furthermore, the evaluation index was calculated to evaluate the detection results. Finally,
the improved model was used in industrial production for actual detection.
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3.1. Dataset
3.1.1. Data Acquisition

The dataset image acquisition in this paper was divided into two parts. The first part
involved using an industrial camera to capture 500 images of wafers in a real production
line. The camera model used was MV-CA050-20GM, which is a 5-megapixel CMOS
industrial camera with 4.8 µm pixel size and ML-MC 16HR lens. The camera shooting
position was fixed. The wafer was transferred to the camera lens by a conveyor for each
shot. Different wafer sizes and specifications were chosen for this test, so the size of the
photolithographed characters, the type of font, the font format, and the background on
which the characters are located would be different. A total of 100 images of characters
from related studies that are difficult to recognize were collected in the second part by
analyzing the related studies. The combined dataset was expanded to 1000 images by data
processing. By randomly grouping the images through the algorithm in the program, 70%
of the dataset was used as a training set, 10% as a validation set, and the other 20% was
used to evaluate the performance of the proposed detection system.

The font type used was mainly Semi. The Semi character class contains 26 English
letters, ten numbers, and two symbols. The Semi class is subdivided into traditional true
type fonts (BcsSEMI), single-density dot matrix fonts (SEMI), and double-density dot matrix
fonts (SEMIDouble). The three fonts are shown in Figure 2.
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3.1.2. Data Pre-Processing

Data augmentation is an effective method for comprehensively expanding datasets
to enrich training data variations. The generic ability of the network can be improved
by expanding the dataset in such a way that the overfitting problem of the network can
be mitigated. In this paper, techniques such as brightness change, image rotation, and
image scaling were used for dataset expansion. In order to simulate the actual situation of
light interference in different factory environments, the robustness of the network to light
interference was enhanced by using brightness adjustment on the image. When wafers
were transported to the lens on the flow line, each wafer’s relative position and angle
under the lens would inevitably be different. Therefore, the actual angular deviation was
simulated by rotating the original image at any angle. Moreover, the robustness of the
training dataset was further improved by scaling the image sizes simultaneously. After
pre-processing the captured photographs, the image characters were labelled using the
RolabelImg tool. The process of labelling involves drawing the bounding boxes of different
characters and distinguishing them by category.

3.2. The Proposed Improved YOLO Network Model

YOLO v7-Tiny is a lightweight improvement on YOLO v7. Compared to v7, the Tiny
network is less complex, and the network parameters are less computationally intensive.
Therefore, YOLO v7-Tiny is suitable for devices with small memory and low computation.
At the same time, the lightweight model requires less training time, which satisfies the re-
quirement of industrial production focusing on efficiency. However, due to the lightweight
structure of YOLO v7-Tiny, its detection accuracy is lower than that of YOLO v7 and other
algorithms, and the detection effect is weaker.

An improved YOLO model based on YOLO v7-Tiny was proposed to improve the
detection performance while it was applied to small memory-embedded devices. The
improved approach was based on an optimized attention mechanism module (CBAM-L),
enhanced feature fusion structure (Bi-FPN), and a detection frame composed of adapted
rotated characters.

3.2.1. Backbone Enhanced Feature Extraction Network

The backbone layer of the YOLO v7-Tiny network is located at the forefront of the
overall structure and is used for feature extraction of the input image. The feature ex-
traction process is composed of convolutional processing with sizes of 1 × 1 and 3 × 3,
maximum pooling layer processing, and merging and activation function processing. After
processing, the number of channels is expanded from 3 channels at the time of input image
to 512 channels. When the feature extraction is in the low layer, more positional information
is retained about the image. In contrast, more semantic information about the image is
retained in the deep layer. The backbone network of YOLO v7-Tiny is not focused on
feature extraction for a certain class of targets. Therefore, the detection accuracy is affected
by a part of the useless information which is extracted. The targets of detection in this
paper are wafer characters, including both words and symbols. With the long history
of writing characters and people’s reading habits, the characters are arranged in certain
relative positional relationships to be convenient for people to read. Characters in the image
are presented with certain spatial regularity in this positional relationship. Background
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interference similar to character shapes can be eliminated using spatial regularity to reduce
misjudgments and improve detection accuracy.

Therefore, in this paper, the CBAM (the spatial and channel feature attention mecha-
nism) was introduced in the backbone network and improved [28]. The LeakyRelu function
was introduced in CBAM to replace the original Relu function. When calculated, all values
in the negative part of the axis are taken to be zero in the Relu function. In contrast, the
negative values of the axes in the LeakyRelu function are multiplied by a very small constant
factor called Leak. This way, when the input value is less than zero, the information is
recorded fully, and the features are better preserved. The LeakyRelu function is calculated
as shown in Equation (1). The principles of the improved attention module are shown in
Figure 3.

LeakyRelu(x) =
{

x , x > 0
Leak ∗ x , x ≤ 0

}
(1)

where the coefficient Leak is usually set to 0.01.
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Figure 3. CBAM-L schematic.

The improved spatial channel attention mechanism module, CBAM-L, was added
to the backbone feature extraction network. At the same time, it was combined with the
C5 module in the backbone network to form the C5-CL module. Through the improved
network, the attention to the target spatial feature information was strengthened in the
process of information extraction to improve detection accuracy and reduce the interference
of similar backgrounds on the target characters. The detailed structure of the improved
backbone feature extraction network is shown in Figure 4.
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3.2.2. Feature Fusion Enhancement Network

There are top-down and bottom-up paths in the feature fusion part of YOLO v7-Tiny.
Compared to the FPN network structure with only top-down feature fusion, this structure
makes it easier to pass the bottom information to the top. However, after two paths, top-
down and bottom-up, the path of information flow is too long. The connection between the
feature layer of the backbone output and the bottom-up path is not tight enough, and some
important information plays a minor role in the fusion.

Therefore, in this paper, the structure of the feature fusion part of the YOLO v7-Tiny
network was improved by combining the BiFPN network structure. In the bottom-up path,
a path was added to connect the information output from the backbone network directly
to the fusion node, thus increasing the tightness of the information flow. Moreoever, the
fusion nodes were combined with the band-weighted fusion method. In contrast to simply
overlaying or adding feature maps, different input feature maps are set with different
contribution weight values by the weighted fusion method. The importance of different
input features can be understood by setting the weights so that different input features are
fused in a differentiated manner. There are three common ways of weighted feature fusion:

a. Unbounded fusion: This method, although simple, may be unstable during training
because the weights are unconstrained. The formula is shown in Equation (2).

O = ∑i Wi × Ii (2)

b. Softmax-based fusion: The weight range is limited to [0, 1] by this method, and the
training effect is stable but slow. The formula is shown in Equation (3).

O = ∑i
eWi × Ii

ε + ∑j Wj
(3)

c. Fast normalized fusion: Not only is the weight range limited to [0, 1] by this method,
but the training is faster and more efficient. The formula is shown in Equation (4).

O = ∑i
Wi × Ii

ε + ∑j Wj
(4)

Therefore, the Fast normalized fusion method was adopted in this paper. The multi-
branch fusion module Concat was replaced by the multi-branch fusion module Bi_Concat
with entitled values. At the same time, the feature fusion network structure of YOLO v7-
Tiny was improved by combining the BiFPN network structure. At the 40th layer position,
the feature layer output from the 21st layer was processed with the 1 × 1 Conv, BN, and
LeakyRelu activation functions. The processed feature layer was connected to Bi_Concat
in layer 59 to strengthen the tightness of information flow between layers, making the
information fusion richer and more valuable.

3.2.3. Character Rotation Detection

When calculating the loss function, IoU is one of the important calculation indexes. It
is the ratio of the intersection and concatenation of the ground truth and the prediction of
the detected target. The closer the calculated value is to 1, the closer the prediction is to the
real target, as shown in Figure 5.

R1 is the ground truth region in the figure, and R2 is the prediction region. The IoU
equation is shown in Equation (5).

IoU =
|R1∩ R2|
|R1∪ R2| (5)

The prediction frames are rectangular frames of different sizes with horizontal bottom
edges in most of the detection. However, for targets with tilted angles, a rectangular frame
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with a horizontal bottom edge will have a weak fit to the target. In a factory production
operation, each time a wafer was transferred under the camera, as shown in Figure 6, the
tilt of the characters was likely to change between shots.
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Therefore, to better cope with the weak fit between the detection frame and the tilted
font, the rotation angle theta was added to the Head of YOLO v7-Tiny in this paper. The
position of the prediction box was adjusted by five parameters (xc, yc, w, h, theta). Inclined
targets could be better included, reducing the area of the connecting region between
ground truth and prediction, increasing the area of the intersecting region, and improving
the overlap, thus increasing the IoU value. The overall structure of the improved model is
shown in Figure 7.
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4. Experiments and Discussion

Several experiments were conducted to verify the reliability and enhancement of the
improved model proposed in this paper for wafer character detection. The experimental
setup was first described. Then, the evaluation metrics were explained. Finally, the
experimental results were analyzed and discussed. The experiments in this paper were
conducted on a dataset composed of self-taken and collected images, and the data results
of the improved model proposed were compared with those of several YOLO models.

4.1. Experimental Setup

All experiments were performed on the Windows 11 64-bit operating system platform.
The AMD Ryzen-7-5800H 3.20 GHz processor, 16 GB RAM, and NVIDIA GeForce RTX
3050Ti graphics card were used. The YOLO-based models were trained in the Pytorch
framework. Hyperparameters were normalized for all YOLO-based models. The image size
was set to 640 × 640 pixels and the number of iterations was set to 250. The dataset images
were captured by a 5-megapixel CMOS industrial camera and contained 1000 character-
images after data processing. The deep learning model was run using Python 3.7.16.

4.2. Evaluation Metrics

Several key data metrics were referenced to evaluate the reliability and validity of the
recognition model in terms of detection and computation [29].

Pr (precision) and Rc (recall) are important metrics to show the performance of the
model. Pr is the proportion of samples judged to be “true” in all systems that are actually
true. When the ground truth boxes are matched by the predicted bounding boxes, Pr
measures the correct prediction. Rc is the proportion of samples that are judged to be
true out of the total number of samples that are indeed true. It also measures the proba-
bility of correct detection of ground truth objects. Pr and Rc are calculated as shown in
Equations (6) and (7).

Pr =
TP

TP + FP
(6)

Rc =
TP

TP + FN
(7)
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TP (True Positive) indicates that the positive category is predicted as positive, i.e.,
correct prediction; FN (False Negative) indicates that the positive category is predicted as
negative, i.e., incorrect prediction; FP (False Positive) indicates that the negative category is
predicted as positive, i.e., incorrect prediction; and TN (True Negative) indicates that the
negative category is predicted as negative, i.e., correct prediction. The details are shown in
Table 1. The positive category is indicated as 1, and the negative category as 0.

Table 1. Classification of sample prediction results.

Categories Real Value Predicted Value

TP 1 1
FN 1 0
FP 0 1
TN 0 0

The area enclosed by Pr and Rc at different thresholds is AP (average precision). A P–R
curve can be formed by Pr and Rc. If the P–R curve of one model is completely enclosed
by the curve of the other model, it can be asserted that the latter model outperforms the
former. However, sometimes the two worse curves are difficult to compare, so the F1 scores
are introduced.

An F1 score is defined as the reconciled average of precision and recall, often used as
the final measure in some multiclassification problems. The value of F1 scores ranges from
0 to 1, with 1 being the best and 0 the worst. AP is calculated as shown in Equation (8), and
F1 score is calculated as shown in Equation (9).

AP =
∫ 1

0
Pr(Rc)dRc (8)

F1 = 2× Pr× Rc
Pr + Rc

=
2× TP

2× TP + FN + FP
(9)

In addition, the detection time required by the model to detect the images, the number
of model parameters, and the model loss function curve were calculated to evaluate the
detection speed as well as the detection performance of the model.

4.3. Experimental Results

The proposed improved model was measured in this section. The performance of
different models obtained at different locations with the improved attention module was
compared. Meanwhile, the improved YOLO model proposed in this paper was com-
pared with several other state-of-the-art detection models (including YOLO v7, YOLO
v7-Tiny, and YOLO v5s) in terms of detection speed and detection accuracy to validate the
performance of the improved model.

4.3.1. Comparison of Performance

Firstly, ablation experiments were performed on the improved part of the backbone
network. The effect of adding the improved CBAM-L and C5-CL modules at different
locations in the backbone network on model performance was compared. In each set of
experiments, the feature fusion network and the detection part were kept the same, and the
positions of CBAM-L and C5-CL in the backbone network were changed. The reasonability
of the improvement scheme proposed in this paper was verified by comparing the loss
function curves of the experimental output of each group. The specific added positions
and loss function curves are shown in Table 2 and Figure 8.
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Table 2. Comparison table of module-specific addition positions.

Experiment No. CBAM-L Addition Layer Location C5-CL Addition Layer Location Loss

1 0, 1 Layer None 0.01696
2 0, 1 Layer 2–7, 9–14 Layer 0.0162
3 0, 1 Layer 2–7, 9–14, 16–21 Layer 0.01736
4 None 2–7, 9–14, 16–21 Layer 0.01762
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It was shown that, after the convergence of the loss function curves, the convergence
values from the first group to the fourth group were 0.01696, 0.0162, 0.01736, and 0.01762,
respectively. From the loss function data, it was clear that the second group of ablation
experiments had the smallest values. Therefore, the module addition location used in this
paper was the best location to improve the performance of the whole network. It was also
illustrated by the experimental data that the appropriate location of the improvement was
important for the improvement of the performance of the model.

The improved YOLO model proposed in this paper was compared with YOLO v7,
YOLO v7-Tiny, and YOLO v5s. The performance of the improved model in this paper was
verified by comparing the final loss function curve and the AP curve when the training
phase was stable. The resulting curves are shown in Figure 9. When the function converged,
the lowest value of the loss function of each model were obtained as 0.0151, 0.0155, 0.0178,
and 0.0226, in that order. From the data, it could be seen that the loss function of the
improved model was significantly lower than that of YOLO v7-Tiny and YOLO v5s, and
slightly lower than that of the YOLO v7 model with a complex structure. Therefore, the
improvements in this paper could be verified to have a significant improvement on the
model performance.
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Then, the performance of the improved model in this paper was further verified from
the perspective of the AP value. An AP comparison curve based on the YOLO model is
shown in Figure 10. According to the curves in the figure, the AP values obtained from
the training of the improved model were significantly higher than those of YOLO v7-Tiny
and YOLO v5s. The specific values of each model’s performance are shown in Table 3.
It is worth noting that, among the improved models, YOLO v7-Tiny and YOLO v5s, the
improved model obtained the highest mAP value at 0.5 IoU, with a value of 0.9944; the mAP
value of YOLO v7-Tiny was 0.9796 and that of YOLO v5s was 0.9463. The improved model
was 1.48% better than the original model. YOLO v5s is the lightweight model in the YOLO
v5 series, with a backbone consisting only of convolutional layers and a C3 module with
fewer layers. Hence, the mAP value obtained was lower than that of the YOLO v7-Tiny
model with more layers in the backbone network. The attention module was added to
the backbone network of the improved model. The structural complexity and information
exchange density of the feature fusion part was also increased. As a result, the improved
model was better at extracting and fusing target image features.

The outperformance of the improved model proposed in this paper over the v7-Tiny
model and the YOLO v5s model was also verified in terms of higher mAP values. At
IoU = 0.5:0.95, the mAP value obtained by the model was 0.7711, which was higher than the
0.7459 and 0.7588 obtained by the YOLO v5s and YOLO v7-Tiny models, respectively. At
high IoU thresholds, it could be proven that the detection frames of the model were closer
to the tilted characters at different angles. In terms of F1 score, the score of the improved
model in this paper was 0.97, which was close to the score of YOLO v7 and higher than the
scores of the other two YOLO models. Therefore, the improved model was better in terms
of overall precision and recall.

YOLO v7 and the improved model were compared using the data shown in Table 3.
Although some values of the improved model were slightly lower than v7 in terms of
detection performance, the difference in mAP values was 0.0013 at the IoU = 0.5 threshold,
0.0104 at IoU = 0.5:0.95, and 0.01 at F1 score. However, in terms of the number of model
parameters and structural complexity, it can be seen from Table 4 that the number of
parameters in YOLO v7 was 5.3 times higher than that of the improved model, and the
training time was 1.99 times higher. While the computational performance of the model
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could be improved by more convolutional layers and complex structures, the size of the
model was greatly increased.
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Table 3. Comparison of detection performance for several detection models.

Method Loss mAP@0.5 mAP@0.5:0.95 F1 Score Pr Rc

YOLO v7 0.0155 0.9957 0.7815 0.98 0.9698 0.9905
YOLO v7-Tiny 00178 0.9796 0.7588 0.94 0.9533 0.941
YOLO v5s 0.0226 0.9463 0.7459 0.90 0.8947 0.9103
Improved
YOLO 0.0151 0.9944 0.7711 0.97 0.9551 0.9906

Table 4. Computational performance of detection models.

Method Training Time Parameters (Millions) Detection Time (s)

YOLO v7 6 h 22 min 32.42 7.307
YOLO v7-Tiny 2 h 54 min 6.10 4.395
YOLO v5s 3 h 7 min 7.11 4.282
Improved YOLO 3 h 12 min 6.13 4.61

Smaller size models are more suitable for small memory-embedded devices in indus-
trial production. At the same time, the requirements for hardware configuration and CPU
performance are lower for small-sized models. Therefore, it is very important to develop
small-size models. The performance was improved for various detections while ensuring
the appropriate model size. In Table 4, the improved model was shown to be at the same
level as YOLO v7-Tiny and YOLO v5s in terms of the number of parameters. However,
the improved model was better in terms of performance, verifying the effectiveness and
usability of the improvement scheme proposed in this paper.
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4.3.2. Detection on Factory Test Images

One hundred images were collected by an industrial camera in a practical factory
environment as a dataset for the experimental detection of the model to further test the
reliability of the improved model. Different lighting conditions, wafer specifications,
character tilt angles, and complex character background interferences were contained in
the images in the dataset. The detection robustness and accuracy of the improved model
were tested through the dataset images. Some images of the detection results at different
brightness levels on a simple background are given in Figure 11. The size and shape of
the characters are different depending on the specification and type of the wafer. Some of
the detected images for different font formats are given in Figure 12. The effectiveness of
character detection was greatly affected by the complexity of the background. Most of the
background interference was from the pattern of the lattice, the surrounding colloid, and
scratches on the wafers during shipping and storage. Several images of the effect of wafer
character detection on different complex backgrounds are given in Figure 13. Finally, the
effect image adapted for character tilt detection is shown in Figure 14. With the detection
result graphs, the improved model can be proven to have higher detection accuracy and
better robustness under different lighting, complex background, and font shape conditions.
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5. Conclusions

An improved model based on YOLO v7-Tiny was proposed in this paper for wafer
character detection on complex backgrounds in industrial production environments. The
CBAM-L module was improved from CBAM, where the Relu function was improved to
the LeakyRelu function. Negative axis information could be effectively retained by the
improved module during data computation. The CBAM-L module was combined with
the C5 module in the backbone network to form the C5-CL module. The feature extraction
capability was improved by adding the C5-CL module into the backbone network, thus
enhancing the spatial attention to the character images. Then, the feature fusion network
part was improved based on the BiFPN structure to enhance the feature fusion capability of
the network. Finally, the angle parameter was added to the detection part to accommodate
the character image detection with angular deviation and to improve the overlap between
the prediction and the ground truth. It was shown that the performance of the improved
YOLO model was better in terms of detection and computation. The convergence values
for the loss function of the model were 0.0151, 0.9944 for mAP@0.5, 0.7711 for mAP@0.5:0.95,
and 0.97 for F1 score. As a result of the overall analysis, it can be concluded that the
developed improved model was suitable for small memory-embedded capture devices
in industry and was more effective in detecting wafer characters. With this method,
visual information could be provided for the development of a wafer character detection
system under complex backgrounds. With the improved model, higher accuracy and better
robustness were achieved in detecting fonts under different lighting, complex backgrounds,
and font shapes.
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