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Abstract: The growing popularity of edge computing goes hand in hand with the widespread use
of systems based on artificial intelligence. There are many different technologies used to accelerate
AI algorithms in end devices. One of the more efficient is CMOS technology thanks to the ability
to control the physical parameters of the device. This article discusses the complexity of the semi-
conductor implementation of TinyML edge systems in relation to various criteria. In particular, the
influence of the model parameters on the complexity of the system is analyzed. As a use case, a CMOS
preprocessor device dedicated to detecting heart rate in wearable devices is used. The authors use the
current and weak inversion operating modes, which allow the preprocessor to be powered by cells of
the human energy harvesting class. This work analyzes the influence of tuning hyperparameters of
the learning process on the performance of the final device. This article analyzes the relationships
between the model parameters (accuracy and neural network size), input data parameters (sampling
rates) and CMOS circuit parameters (circuit area, operating frequency and power consumption).
Comparative analyses are performed using TSMC 65 nm CMOS technology. The results presented
in this article may be useful to direct this work with the model in terms of the final implementation
as the integrated circuit. The dependencies summarized in this work can also be used to initially
estimate the costs of the hardware implementation of the model.

Keywords: VLSI; TinyML; wearable devices; power-efficient architecture; model hyperparameters

1. Introduction

Modern society produces such large amounts of data that their processing using
computing centers is inefficient. Therefore, the processing of data from sensors using
artificial intelligence (AI) algorithms is carried out as close as possible to the data source.
This method of data processing is referred to as edge computing. From the industry
perspective of edge computing, AI accelerators using neural networks are gaining key
importance [1]. Hardware processing requires taking into account not only AI model
parameters but also the physical limitations of devices, e.g., low power consumption or
low-latency communication. The task of data processing is entrusted to devices, such
as graphics processing units (GPUs), field-programmable gate arrays (FPGAs), central
processing units (CPUs), video processing units (VPUs) and tensor processing units (TPUs),
among others. However, a special place among these devices belongs to application-
specific integrated circuits (ASICs). There are many examples presenting acceleration with
dedicated integrated circuits in relation to convolutional neural networks [2], imaging
technologies [3], cryptography in soft processors [4] or biomedical signal processing [5]. In
this work, the authors focus mainly on biomedical data processing and medical applications.
The main advantages of ASICs are particularly evident in these areas [6]: low cost of
fabrication, low power consumption, scalability, high accuracy, high throughput, rapid
measurements in biomedical research and disease diagnosis. In the analyses carried out in
2023, the Gartner agency identifies medical diagnostics as one of the main areas of edge
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computing, which will be supported by artificial intelligence in the near future [7]. In turn,
research conducted by the Pew Research Center shows that the greatest social awareness of
the use of artificial intelligence mechanisms concerns wearable fitness trackers [8]. Both
edge AI application forecasts and social research clearly show that the wearable devices
market will be dominated by solutions based on artificial intelligence in the coming years.

It is worth emphasizing, however, that developing models based on artificial intel-
ligence algorithms is a relatively simple task thanks to the numerous frameworks and
platforms supporting engineers. Unfortunately, integrating this fairly common knowledge
with specialized knowledge related to device architecture, and especially ASIC devices,
is a huge challenge. Various computing engines are used for this purpose, e.g., those
using charge-trap transistors as multipliers [9]. Another approach is based on the use of
individual neurons as building blocks and optimization of objective functions to obtain
bias parameters and weights [10]. Many approaches use current-mode computation to
improve the power efficiency and very specific circuits to implement the activation function,
e.g., a Gaussian kernel circuit [11]. The above examples use models trained in Matlab or
TensorFlow. The process of hardware implementation of a neural network model often
involves additional synthesis tools and hardware description languages, e.g., VHDL [12],
which enable the transition from the model stage to the implementation stage. Electronics
design automation (EDA) tools are certainly not as popular as neural network training
frameworks. However, AI sector engineers often wonder about the hardware complexity
of their models.

Taking into account the above trends, IC benefits and technological limitations, the
authors of the current article analyze the results of the migration process of trained neural
network models to ASIC circuits implemented in CMOS technology. This process takes
place on the border of three types of hyperparameters: model parameters (e.g., accu-
racy, precision or neural network size), input data parameters (sampling rates or range of
changes) and physical parameters of CMOS structure (e.g., area, operating frequency or
power consumption). The authors have decided to determine the costs of implementing
individual model parameters, i.e., to estimate the linear, polynomial or exponential impact
of model parameters on the cost of hardware implementation in CMOS technology. It is
assumed that the approach should enable preliminary cost estimation before transistor
implementation of the model, which would enable the model training process to be di-
rected toward the appropriate criteria. Optimizing a device’s power consumption enables a
further reduction in the cell’s area, expanding the potential applications of the final system.
Furthermore, a smaller active area brings the benefit of reduced production costs. Finally,
the optimization of the operating frequency may open up new application domains. The
presented approach should be as universal as possible, i.e., independent of the technology
used. Technology dependence is limited to determining a small number of technological pa-
rameters. The example used in the presented analyses is a heart rate detection preprocessor,
which refers to wearable devices and healthcare applications. Hardware processing of heart
rate signals is one of the flagship examples of wearable devices applications that have been
discussed for many years [13]. The literature presents the use of sensor techniques in such
applications [14] and methods of preprocessing biometric signals [15]. The preprocessor
architecture is based on modules operating in the current mode. The weak inversion power
supply mode is also used.

This work is organized as follows. Section 2 describes the preprocessor operating
mode, its structure and the physical parameters of the component modules. Section 3
introduces the concept of TinyML as an approach that allows you to train models with
highly reduced complexity dedicated to hardware implementations. Section 4 presents the
network model used in the analyses and the medical data used in the model training process.
Section 5 shows the relationships of the model hyperparameters and the parameters of
the generated CMOS structures. This work ends with a short summary and discussion in
Section 6.
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2. Weak Inversion Mode

Depending on the supply voltage used, there are three basic operating modes of CMOS
circuits: weak inversion, moderate inversion and strong inversion [16]. In this work, the
weak inversion mode is used, i.e., the most strongly reduced supply voltage [17]. In this
mode, the condition VGS < VT − 100 mV is met [18], where VGS means the voltage at the
gate of the transistor and VT is the threshold voltage of the transistor. Due to the mentioned
voltage condition, the transistor is sometimes said to be in the subthreshold region [19].
Such a strong reduction in the supply voltage limits the maximum operating frequency
fMAX , but above all, it limits the maximum power consumption PMAX [20]. However, the
ratio of these two parameters is better than in the strong inversion mode, i.e., with the
standard supply voltage in a given technology. The inequality (1) describes the relationship
of these two parameters for the three mentioned modes.

fMAX(VwGS)

PMAX(VwGS)
>

fMAX(VmGS)

PMAX(VmGS)
>

fMAX(VsGS)

PMAX(VsGS)
, (1)

where VwGS, VmGS, VsGS are gate voltages for the weak, moderate and strong inversion
modes, respectively, and the dependence (2) is satisfied.

VwGS < VmGS < VsGS (2)

The use of the weak inversion mode can reduce the power consumption by up to six
orders of magnitude [21], i.e., to the level of a single nW per transistor. Despite this, the
processing frequency remains at the level of several hundred to several thousand samples/s.
These parameters are sufficient for the analysis of heart rate signals whose frequency is not
higher than several hundred Hz. On the other hand, low power consumption allows the
use of power typical for human energy harvesting cells. The efficiency of such cells is from
several dozen to several hundred µW/cm2 of the cell surface in the case of obtaining energy
from the temperature of the human body [22]. Therefore, with a very strong reduction
in power consumption, the size of the cell can be comparable to the surface area of the
integrated circuit [23].

The preprocessor used in this work was designed in TSMC Taiwan Semiconductor
65 nm CMOS technology. The standard power supply in this technology is 1.2 V. Due to
the weak inversion mode used, it is reduced to a voltage of 0.3 V. The architecture of the
preprocessor is based on three modules: a digitally reconfigurable current mirror (RCM)
(used to implement connection weights), sigmoidal function-shaping module (SFSM) (used
to implement the activation function) and common-mode rejection ratio [24] removal
module (CMRR) (used for noise reduction in analog processing). The preprocessor works
in the current mode; therefore, the addition operations are carried out in the nodes in
accordance with the first Kirchhoff’s law and do not require the use of any additional
circuits. The preprocessor additionally uses other modules, e.g., single- and multi-output
current mirrors (CMs) [25], the size and number of which depend on the structure of
the classifier. The implementation details of the modules and the preprocessor itself are
described in paper [5]. The physical parameters of the modules are summarized in Table 1.

Table 1. Parameters of the preprocessor modules.

RCM SFSM CMRR

number of transistors 234 16 18
active area (µm2) 4500.92 362.57 12.59

power consumption (nW) 4.19 0.76 0.13
maximum frequency (samples/s) 37,285.61 11,728.83 16,452.78

In this work, we will not describe the individual modules in detail, because this article
focuses on the analysis of the relationship between the complexity of the final structure
of the CMOS classifier and the learning process itself. Let us only briefly describe the
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general structure of the preprocessor visible in Figure 1. The figure shows the structure
for a network with one hidden layer. Each layer consists of three arrays of the mentioned
RCM, SFSM and CMRR blocks. The RCM blocks are reconfigurable using 12-bit digital
vectors and implement the weights of the trained model. Due to the current mode, signal
routing between layers is carried out using CM modules that reproduce the signals. The
structure of a single implemented neuron is marked in Figure 1 in green.

Figure 1. General structure of the preprocessor. The implementation of a single neuron is marked in
green.

We have devised a bespoke TensorFlow model parser for the purpose of transferring
pre-trained neural networks into Very Large-Scale Integration (VLSI) circuits, utilizing the
SPICE language. We perform model weight extraction and identify the nearest multiplica-
tive factors associated with the RCM component, thereby constructing the preprocessor
architecture. The weight values are additionally validated to ensure they are within the pre-
processor’s operational range—if their values exceed a given threshold, the corresponding
model is discarded and is not further evaluated. In the process of training the classifiers,
the parameters from Table 1 are not modified, i.e., the structure of the modules does not
change. Only the number of modules and the number of their connections are modified.
The next chapter describes the TinyML concept and its use in the learning process. Section 4
presents the analyzed models of the trained networks.

3. TinyML

The evolution of data processing system architectures has resulted in the development
of various computing paradigms [26]. The integration of AI technologies with Internet
of Things (IoT) technologies [27] has led to the popularization of smart applications, e.g.,
smart healthcare, smart offices or smart classrooms [28]. Mobile platforms are now not only
tools for data processing but also a place for storing data [29]. The convergence of the areas
of AI and IoT has led to the creation of new system modeling paradigms: edge intelligence
(edge AI) and the artificial intelligence of things (AIoT) [30]. The use of end devices with
usually severely limited computing and memory resources requires training models using
algorithms that reduce the hardware complexity of specific implementations. The literature
presents the test results of the commonly used preprocessing algorithms (e.g., Grubbs Test,
Butterworth Filter and DBSCAN) or algorithms for training AI models (e.g., Random Forest
and Support Vector Machine) with a manufacturing domain setting [31]. When it comes to
neural networks implemented in IoT devices, special attention should be paid to TinyML
issues. The author of one of the key review works on TinyML defined this concept as a
paradigm that facilitates the launch of machine learning on embedded edge devices [32].
There are many frameworks that support the implementation of TinyML models [32,33].
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Most of them are compatible with well-known libraries, such as TensorFlow, ONNX, Caffe,
PyTorch, Keras and Scikit-learn. We can identify four main techniques used in the TinyML
approach to reduce the complexity of neural networks:

• Quantization—involves reducing the precision of the network parameters;
• Pruning—involves removing unnecessary parameters or entire neurons from the

network;
• Fusing—involves reducing the number of parameters by combining them;
• Structure optimization—involves the reduction in the total number of network param-

eters;
• Hardware acceleration—involves delegating calculations to dedicated hardware mod-

ules, e.g., DSP (Digital Signal Processing) blocks.

Applying the above techniques means sacrificing the accuracy and precision of the
model. In the IoT, these parameters give way to other important system parameters: power
consumption or cost [34]. When it comes to ASICs, tensor processing units (TPUs) are one
of the most popular examples of the TinyML paradigm [35]. The approach is also used, for
example, in systems for visual processing with a built-in ASIC-based neural co-processor
(NCP) [36] or to convert signals acquired from digital Micro-Electro-Mechanical Systems
(MEMS) and processed by CMOS circuitry closely coupled with microphones [37].

In the current work, the authors rely mainly on three of the mentioned TinyML
methods. The first one, quantization, is imposed by the structure of RCM blocks. Due to the
feasibility of the network parameters, their values must have a sufficiently small dispersion.
The details of this implementation are described in Section 4. Another technique used
is structure optimization to reduce the number of RCM and CM blocks. Additionally,
hardware acceleration is used to implement neurons using RCM and SFSM blocks.

4. Neural Network Architecture

The current section presents the implementation details of the trained model. The next
subsections describe the dataset used in the training process and the architecture of the
neural network in relation to the preprocessor architecture.

The general structure of the edge system for monitoring and processing heart rate
signals is shown in Figure 2.

Figure 2. The concept of a heart rate signal preprocessing system.

One of the most frequently used sensors for heart rate detection is carbon nanotubes
(CNTs) integrated with clothes [38]. They provide data in the form of analog currents that
can be collected in an analog shift register (ASR). Such registers are based, for example, on
second-generation SI memory cells [39]. The algorithm in Figure 2 illustrates the procedure
for processing analog data for the subsequent samples collected at time j. The data collection
is described in lines 2–5. When the ASR register is full, data in the form of a vector of
analog values are fed to the preprocessor (line 6). The size IN of the ASR register is equal to
the sampling rate of the heart rate signal. The preprocessor is an analog circuit operating
in continuous time. Therefore, the clock signal, which is attached to the preprocessor
and to the ASR, only manages the feeding of data. The preprocessor has a differential
current output, so it is necessary to convert the output signal into Low-Voltage Differential
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Signaling (LVDS) (line 7). This conversion is performed using buffer circuits [40]. In this
form, the signal can be further analyzed digitally. The power source for all the system
modules can be a human energy harvesting cell.

4.1. Dataset

The dataset utilized for training the model is the ECG-ID database, available on
PhysioNet [41,42]. The creator of the database is Tatiana Lugovaya [42]. It comprises
310 different electrocardiogram (ECG) recordings collected from 44 male and 46 female
participants, totaling 90 individuals aged between 13 and 75 years. Each recording is
composed of the following:

• Two ECG signals—one raw and one filtered;
• Ten pairs of annotations, representing R- and T-wave peaks from an automated

detector;
• Metadata, such as the basic information about a patient, including the age, gender and

recording date.

Furthermore, every recording had a small number of apparent misplacements in the
annotations (typically one or two), which were manually rectified. Subsequently, the raw
data underwent processing to generate pairs of sampled signal data and binary outcomes.
The entire ECG signal was partitioned into windows of a predefined length (window_length),
from which a specific number of points (sampling_frequency) were uniformly sampled. A
window was labeled as true (indicating the presence of a heartbeat) if it contained a peak.
Both the width of the windows and the number of points are hyperparameters that were
later optimized. Examples of the ECG signals obtained from three randomly selected
patients are shown in Figure 3.

Figure 3. Sample segments of ECG signals obtained from three randomly selected patients. The red
part of the signal and the gray shaded regions represent heartbeat windows.

4.2. Neural Network

While designing the neural network’s structure, we had to consider a trade-off be-
tween the performance of the neural network and the physical parameters of the final
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semiconductor structure. In particular, the parameters of the power consumption, process-
ing speed and surface area of the circuit are important. The latter parameter translates
into production costs. A more complex architecture can achieve better accuracy at the
cost of an increased number of trainable parameters, resulting in a larger physical device
requiring more power. The propagation of signals in a circuit with a larger structure will
have a negative impact on its maximum operating frequency. Given the above limitations,
the focus was on networks with a single hidden layer. There are many examples in the
literature of implementing perceptrons, such as CMOS circuits [10,43–46].

The standard architecture of the neural networks utilized in this study is as follows:

• Input layer—comprising window_length (8 to 18 inputs);
• Hidden layer with an activation function—comprising 6 to 16 neurons;
• Output layer with an activation function.

The weights of each layer were initialized using the Glorot (Xavier) normal initializer
and were subject to regularization by an L2 norm.

The activation function available in the IPcore preprocessor was a slightly modified
sigmoidal function. The function implemented in the SFSM module can be approximated
by Equation (3).

σ(x) =
2

1 + e−37∗x − 1 (3)

The activation function returns values in the range of −1 and 1, similar to the hyper-
bolic tangent; however, the former is substantially steeper. Figure 4 depicts the comparison
of a hyperbolic tangent and SFSM activation function.

Figure 4. Comparison of a hyperbolic tangent - and SFSM custom activation function -.

In order to train the neural network, it was imperative to temporarily modify the
output of the classifier so that it produced values in the range of 0 and 1. This modification
was necessary due to a binary cross-entropy loss function, which assumes its inputs to
be within the range of 0 and 1. To achieve this behavior, the transformation according to
Equation (4) was applied to the output of the neural network.

σmodi f ied(x) =
σ(x) + 1

2
(4)

Another constraint emerged as a limitation, wherein the RCM module could produce
a finite number of multipliers. Each combination of a 12-bit input corresponded to a real
value ranging from 0.02 to 1.46 [5]. The training process was carried out with an upper
limit of the weight values of 1.5 and no limit on the lower weight values (values below
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0.02 were acceptable). Finally, the weights were adjusted to replace each weight with the
nearest value producible by the RCM module.

At the end of each epoch, the model was evaluated on a validation test, and the
training was stopped if the best validation loss had not improved for the selected number
of epochs (usually 10). Following the training phase, the model was evaluated twice on
a test set. The first evaluation was performed with unmodified weights, after which the
weights were replaced with the closest values producible by the RCM module, and the
evaluation was repeated. The next section presents the preprocessor tests for a total of
36 models varying in complexity. The preprocessor was implemented in TSMC 65 nm
technology and the results were obtained using the Eldo simulator from Siemens Digital
Industries. The simulator uses the SPICE language syntax.

5. Hardware Complexity

The general relationship between the model size and its basic accuracy parameter is
illustrated in Figure 5. The smallest models (with the smallest hidden layer) are close to
each other regardless of the sampling rate. The spread increases as the complexity of the
model increases. The complexity of the model itself does not clearly have a positive effect
on accuracy. However, a beneficial effect on accuracy of increasing the sampling rate can
be observed.

Figure 5. Accuracy obtained according to combinations of common sampling frequency and hidden
layer size.

The analog implementation of the trained model entails a loss of the original accuracy
due to parameter scatter. Figure 6 shows this accuracy drop after model implementa-
tion. Scores greater than 0 represent configurations for which the preprocessor performed
better than the corresponding neural network. The accuracy spread is of the order of
±6%. However, it is noteworthy that the deterioration is only observed for the largest
architectures. Paradoxically, for smaller architectures, the analog implementation improves
the accuracy slightly. This does not seem to be accidental, as there is a positive inverse
correlation between the size of the input layer (IN) and the improvement in the accuracy
rate (ACC). According to the data depicted in Figure 7, a notable decrement in the recall
score is observed in the context of the 16-neuron implementation. In Figure 8, we plot the
relationship between the model size and F1 score of the VLSI implementation. Figure 9
reveals an absence of noticeable trends or statistically significant patterns, indicating a lack
of clear associations among the variables under investigation.
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Figure 6. Decrease in accuracy between the model and the VLSI implementation.

Figure 7. Evaluating VLSI implementation performance with recall score.
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Figure 8. F1 score of VLSI implementation obtained according to combinations of common sampling
frequency and hidden layer size.

Figure 9. Evaluating VLSI implementation precision across scenarios.

The results for all the metrics are presented in Table 2. To maintain brevity, only the
best architecture for each sampling rate value is featured in the table. The architecture of
a sampling rate of 14 and a hidden layer size of 14 turns out to perform best on 3 out of
4 metrics, which we consider to be the best architecture overall.

Further analyses of the parameter relations are based on the comparison of different
configurations of the sizes of the input (IN) and hidden (HL) layers or the total number of
model parameters (NP). The results of the subsequent tests show the influence of the model
complexity on the parameters of the semiconductor structure: active surface (Figure 10),
maximum power consumption (Figure 11) and maximum processing speed (Figure 12).
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Table 2. Aggregated results for each sampling rate. Each row corresponds to the best architecture
for a given sampling rate value. The highest metric values and the indication of the best model are
marked in bold.

Sampling Rate Hidden Neurons Accuracy F1 Precision Recall

8 14 0.857 0.817 0.800 0.835
10 12 0.862 0.819 0.821 0.818
12 8 0.871 0.834 0.820 0.848
14 14 0.897 0.862 0.882 0.844
16 6 0.884 0.847 0.851 0.844
18 8 0.889 0.859 0.833 0.887

Figure 10. Active area of VLSI implementation obtained according to combinations of common
sampling frequency and hidden layer size.

Figure 11. Maximum power consumption of VLSI implementation obtained according to combina-
tions of common sampling frequency and hidden layer size.
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Figure 12. Maximum processing speed of VLSI implementation obtained according to combinations
of common sampling frequency and hidden layer size.

Based on the analyses performed, estimates of the parameter dependencies are deter-
mined and collected in Table 3 (in terms of the area parameter), Table 4 (in terms of the
power parameter) and Table 5 (in terms of the frequency parameter). The estimates pre-
sented in the tables are approximating functions obtained using the least squares method.
The forms of the approximating functions are determined by minimizing the objective func-
tion defined by Equation (5), where y(p1) is the sought approximating function depending
on the p1 variable, yp1 is the value read from the analyses for the p1 variable and f is the
objective function depending on the optimized coefficients c1 ÷ cj.

f (c1...cj) = ∑
p2

∑
p1

[yp1 − y(p1)]
2 (5)

The variables p1, p2 are the model parameters (e.g., the size of the input layer (IN), the
size of the hidden layer (HL) or the number of all network parameters (NP)). The number of
coefficients c1 ÷ cj. depends on the result of the optimization process, although it is worth
ensuring that their number is as small as possible so that the form of the approximating
function is as simple as possible. For the simplest, i.e., linear approximation function,
the objective function may have the form as in Equation (6), where the sum of squares is
calculated for all architectures, i.e., according to the sizes of the input layer IN and hidden
layer HL.

f (c1, c2) = ∑
HL

∑
IN
[yIN − (c1 · IN + c2)]

2 (6)

In some cases, the approximation function may depend on more than one model
parameter. This was the case of estimating the maximum operating frequency (visible in
Table 5). Then, the additional model parameter p2 is taken as the objective function variable,
as in Equation (7).

f (p2, c1...cj) = ∑
p2

∑
p1

[yp1(p2)− y(p1, p2)]
2 (7)

The optimized coefficients c in the functions are typical for the technology used. All
estimating functions accept model parameters as variables and thus allow for the estimation
of circuit parameters at the model training stage, i.e., before its transistor implementation.
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Table 3. Approximate relationship between model hyperparameters and circuit area.

Area (mm2)

sampling rates (IN) ca1 · IN + ca2
number of parameters (NP) ca3 · NP2 + ca4 · NP + ca5

ACC (%) ca6 · ca7
ACC + ca8 · ACC + ca9

F1 (%) ca10 · ca11
F1 + ca12 · F1 + ca13

recall (%) ca14 · ca15
recall + ca16 · recall + ca17

precision (%) ca18 · ca19
precision + ca20 · precision + ca21

Coefficients for 65 nm CMOS technology:
ca1 = 0.1, ca2 = −0.45, ca3 = 6.3 · 10−6, ca4 = 0.0022, ca5 = 0.13, ca6 = 2.5 · 10−11, ca7 = 1.31,
ca8 = −0.01, ca9 = 1, ca10 = 9 · 10−12, ca11 = 1.34, ca12 = −0.01, ca13 = 1.05, ca14 = 2.4 · 10−12,
ca15 = 1.35, ca16 = −0.01, ca17 = 1.1, ca18 = 2.8 · 10−12, ca19 = 1.35, ca20 = −0.01, ca21 = 1

Table 3 summarizes the dependence of the CMOS preprocessor area on the parameters
of the neural network model. The presented relationships allow for the estimation of
the final area of the active region. To estimate the relationship with the sampling rates
(identical to the size of the input layer (IN)), implementations with the hidden layer size
(HL) giving the highest accuracy value are used. This relationship is linear. In practice, this
means that increasing the sampling rates by 1 increases the circuit area by another 8 ÷ 10%.
Determining a simple relationship with respect to the total number of neurons is quite
difficult, because the size of the circuits affects both the input and hidden layers. It is much
easier to identify the dependence on the parameter referred to as the number of channels
(NC) [47]. This parameter translates directly into the number of parameters (NP) of the
trained model. To a close approximation, it can be assumed that the relationship between
the active area of the chip and the NP parameter has a polynomial character. This is due to
the current processing mode and the need to use current signal replication CMs circuits
shown in Figure 1. The number of these circuits increases as the size of the input layer
increases. Additionally, the size of these circuits also increases as the number of neurons
in the hidden layer increases. For the TSMC 65 nm technology used, each subsequent
parameter covers from a 0.003 mm2 (for the smallest architectures) to 0.006 mm2 (for the
largest architectures) CMOS structure area. Network architectures ranging in size from
8-6-1 to 18-16-1 are used in the analyses. The relationship with the accuracy, F1, recall and
precision scores is the least favorable because of an exponential nature in each of the above
cases. In practice, this means, for example, that for every 1% increase in the accuracy of the
model, the active area of the circuit increases by another 25 ÷ 45%. At the bottom of Table 3,
the coefficients ca1 ÷ ca21 values for the TSMC 65 nm technology used in the analyses are
collected.

Table 4. Approximate relationship between model hyperparameters and circuit maximum power
consumption.

PMAX (nW)

sampling rates (IN) cp1 · IN + cp2
number of parameters (NP) cp3 · NP2 + cp4 · NP + cp5

ACC (%) cp6 · cp7
ACC + cp8 · ACC + cp9

F1 (%) cp10 · cp11
F1 + cp12 · F1 + cp13

recall (%) cp14 · cp15
recall + cp16 · recall + cp17

precision (%) cp18 · cp19
precision + cp20 · precision + cp21

Coefficients for 65 nm CMOS technology:
cp1 = 50, cp2 = −250, cp3 = 0.0017, cp4 = 1.57, cp5 = 32, cp6 = 6.7 · 10−17, cp7 = 1.61,
cp8 = 0.6, cp9 = 110, cp10 = 6.7 · 10−16, cp11 = 1.604, cp12 = 0.6, cp13 = 110, cp14 = 7 · 10−17,
cp15 = 1.61, cp16 = 0.6, cp17 = 135, cp18 = 6 · 10−16, cp19 = 1.59, cp20 = 0.6, cp21 = 85
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Table 4 shows the dependence of the maximum power consumption of the CMOS
preprocessor on the parameters of the neural network model. The coefficients cp1 ÷ cp21
of the estimating functions are summarized at the bottom of the table. The relationships
are of a similar nature as in the case of previous analyses regarding area occupancy. The
relationship shows that increasing sampling rates by 1 results in an increase in power
consumption from 9% (for high current sampling) to 33% (for low current sampling).
When it comes to increasing the size of the entire neural network, each subsequent model
parameter increases the power consumption by a value from 1.78 nW (for a small 8-6-1
architecture) to 2.55 nW (for a large 18-16-1 architecture). Improving the accuracy, F1,
recall or precision scores of the model by 1% results in an exponential increase in power
consumption. For example, with an ACC below 87%, the increase in power consumption
is less than 10% for every 1% ACC. With an ACC in the range of 87–90%, this increase is
several percent. With an ACC above 90%, the increase exceeds 30% for each additional
1% ACC. The remaining parameters, F1, recall and precision, have a similarly exponential
influence.

The summary of the above analyses is a comparison of the power consumption for
individual preprocessor implementations with the efficiency of human energy harvesting
cells. This summary is presented in Figure 13. The figure shows the power consumed by a
preprocessor with a given area and the power generated by a cell with the same area. The
analysis assumes that the cell efficiency is 60 µW/cm2 [22]. Based on the comparison, it
can be concluded that regardless of the complexity of the model, this value is sufficient for
the preprocessor to work without an additional power source and without increasing the
surface area of the final device.

Figure 13. Comparison of the power consumption of the active area with the efficiency of a human
energy harvesting cell.

Table 5 shows the dependence of the processing speed on the IN and NP parameters.
These relationships are of a slightly different nature than in previous analyses. Increasing
the size of the model mainly results in the widening of the preprocessor layers, but this does
not translate into its depth. The relationships of the parameters listed in Table 5 are linear.
Sampling rates alone are not sufficient to estimate the maximum processing speed. It is
necessary to take into account the HL size of the hidden layer. The relationship shows that
increasing the signal sampling by one sample results in a change in the processing speed by
approximately −2 ÷ 11% of the current speed depending on the HL width. Deterioration is
observed for structures with a wider hidden layer. For small architectures with a narrower
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hidden layer, this relationship is reversed and may result in an increase in the maximum
processing frequency. As for the dependence on NP, each additional model parameter (each
weight) means a speed decrease of 1.05 samples/s.

Table 5. Approximate relationship between model hyperparameters and circuit maximum processing
frequency.

fMAX (Samples/s)

sampling rates (IN) IN · (c f 1 · HL + c f 2) + c f 3 · HL + c f 4
number of parameters (NP) c f 5 · NP + c f 6

ACC, F1, recall, precision (%) -

Coefficients for 65 nm CMOS technology:
c f 1 = −5.25, c f 2 = 79, c f 3 = 44, c f 4 = −244 c f 5 = −1.05, c f 6 = 549

Unfortunately, there is no visible dependence of the processing speed on the train-
ing parameters (ACC, F1, recall and precision). This is confirmed by Figure 14 which
illustrates the distribution of the area, power and speed parameters, which shows greater
independence of the processing speed from the ACC. The distribution of the points in this
analysis is more horizontal than in relation to the area occupied or the power consumed.
The distribution for the remaining training parameters (F1, recall and precision) is of a
similar nature.

Figure 14. Dependence of CMOS preprocessor parameters on model accuracy.

The linear, polynomial or exponential dependencies presented in Tables 3–5 are char-
acteristic of CMOS circuits operating in the current mode and were also observed by the
authors during their previous research based on 180 nm and 350 nm technologies [12,48].
Only the ca1 ÷ ca21, cp1 ÷ cp21 and c f 1 ÷ c f 6 parameters are specific to a specific technology.
In this work, the authors present analyses based on TSMC 65 nm CMOS technology and
the values of the mentioned coefficients refer only to this specific technology. Similarly,
Table 6 summarizes the cost estimates for the semiconductor implementation of model
parameters and these values are valid only for previously mentioned technology and when
using current and weak inversion modes. The table presents the increase in, e.g., the
maximum power consumption derived from the preprocessor, with respect to, e.g., a 1%
improvement in accuracy. The parameters are divided according to two stages of model
training: fast training (initial training with lower ACC, F1, recall and precision values) and
precise training (training the model with optimization of higher values of these parameters).
Comparing the costs of the model’s various parameters leads to a conclusion that the cost
of improving the overall model’s performance is greater for precise training. For example,
the accuracy gain of 1% in relation to the area of the preprocessor for fast training is roughly
10 times lower than for precise training. As shown in Table 3, the relationship between the
accuracy and area is exponential, which makes it considerably more expensive to improve
the accuracy score for an already optimized, well-performing model. The costs given in
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the table are a certain simplification of complex relationships and can be used only as a
preliminary estimate of the final results of implementing a computing CMOS device.

Table 6. Costs of implementing model parameters using TSMC 65 nm CMOS technology.

CMOS Structure Parameters Fast Training Precise Training

Area

0.1 mm2/1 sampling rate 0.1 mm2/1 sampling rate
0.003 ÷ 0.006 mm2/1 weight 0.003 ÷ 0.006 mm2/1 weight

0.022 mm2/1% ACC 0.2 mm2/1% ACC
0.021 mm2/1% F1 0.14 mm2/1% F1

0.01 mm2/1% recall 0.13 mm2/1% recall
0.004 mm2/1% precision 0.15 mm2/1% precision

PMAX

50 nW/1 sampling rate 50 nW/1 sampling rate
1.78 ÷ 2.55 nW/1 weight 1.78 ÷ 2.55 nW/1 weight
4.3 ÷ 10.3 nW/1% ACC 25.7 ÷ 105 nW/1% ACC

6.5 ÷ 11.2 nW/1% F1 44.2 ÷ 112 nW/1% F1
0.8 ÷ 3.1 nW/1% recall 16.8 ÷ 42.7 nW/1% recall

0.9 ÷ 3.5 nW/1% precision 47.1 ÷ 118 nW/1% precision

fMAX
−37 samples/s/1 sampling rate −37 samples/s/1 sampling rate

1.05 samples/s/1 weight 1.05 samples/s/1 weight

Finally, let us briefly analyze the limitations of the presented approach to estimating
implementation costs. The forms of the presented approximation functions are independent
of the technology, but the values of the c coefficients are typical only for a specific technology.
This necessitates their designation when technology changes. This work is also limited to
circuits operating in the current mode and weak inversion mode. These are indeed some of
the most frequently used operating modes in medical applications of nanometer CMOS
technology. However, the presented dependencies will not be met for other operating and
power supply modes.

6. Conclusions

This work addresses the problem of combining the field of artificial intelligence with
the technology of producing edge devices using semiconductors. Based on the reconfig-
urable architectures operating in the current mode, several dozen sample preprocessors
implementing neural networks of various complexity were implemented. Based on the
analyses, correlations between the parameters of the trained models and the physical
parameters of semiconductor structures were determined. First of all, the complexity of
the hardware implementation was determined, which is linear in relation to the size of the
analyzed data (sampling rates), polynomial in relation to the size of the neural network
and exponential in relation to the hyperparameters of the learning process. Next, analytical
methods in the form of simple approximating functions for estimating the costs of imple-
menting specific model parameters in the CMOS structure were proposed. The forms of
the approximating functions are independent of technology and allow for a preliminary
estimate of the result of the future synthesis of the model as an integrated circuit. This work
determines the function coefficients for the selected technology and compares the costs of
improving model parameters for two network training scenarios: fast and precise. The use
of the presented methods for subsequent process nodes requires only the determination of
coefficients characteristic of a given technology. We hope that these approaches along with
cost estimation will prove useful when training TinyML class models and will allow you to
direct the implementation process according to the right criteria.
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have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Statutory Activity No. 0311/SBAD/0726 of the Faculty
of Computing and Telecommunications at the Poznan University of Technology in Poland.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACC Accuracy
AIoT Artificial Intelligence of Things
ASIC Application-Specific Integrated Circuit
CM Current Mirror
CMRR Common Mode Rejection Ratio
FPGA Field-Programmable Gate Arrays
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