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Abstract: Our previous work introduced the LW-YOLOv4-tiny and the LW-ResNet18 models by
replacing traditional convolution with the Ghost Conv to achieve rapid object detection and steering
angle prediction, respectively. However, the entire object detection and steering angle prediction
process has encountered a speed limit problem. Therefore, this study aims to significantly speed
up the object detection and the steering angle prediction simultaneously. This paper proposes the
GhostBottleneck approach to speed the frame rate of feature extraction and add the SElayer method
to maintain the existing precision of object detection, which constructs an enhanced object detection
model abbreviated as LWGSE-YOLOv4-tiny. In addition, this paper also conducted depthwise
separable convolution to simplify the Ghost Conv as depthwise separable and ghost convolution,
which constructs an improved steering angle prediction model abbreviated as LWDSG-ResNet18
that can considerably speed up the prediction and slightly increase image recognition accuracy.
Compared with our previous work, the proposed approach shows that the GhostBottleneck module
can significantly boost the frame rate of feature extraction by 9.98%, and SElayer can upgrade the
precision of object detection slightly by 0.41%. Moreover, depthwise separable and ghost convolution
can considerably boost prediction speed by 20.55% and increase image recognition accuracy by 2.05%.

Keywords: ghostbottleneck; SElayer; object detection; LWGSE-YOLOv4-tiny; steering angle
prediction; LWDSG-ResNet18

1. Introduction

In recent years, developing control systems for self-driving cars has become a crit-
ical research project in artificial intelligence (AI). Numerous cars moving on the roads
simultaneously is a complex system for vehicles that is difficult to control. Several studies
exploit vision sensing techniques for effective self-driving car control systems as emerging
developments, for example, Tesla. Therefore, this study aims to significantly improve
real-time object detection and image recognition using novel visual algorithms to boost the
response of self-driving control in order to minimize the risk of wrong steering judgment
as much as possible.

Many AI visual algorithms can rapidly fuse object detection and steering angle pre-
diction to real-time response to the exact steering control for safe self-driving. A notable
model, YOLOv4-tiny [1], derived from the original YOLOv4 [2], can achieve object detec-
tion properly due to its lightweight architecture. This visual algorithm can rapidly detect
vehicles and traffic signs before a car. On the other hand, a remarkable model, ResNet18 [3],
a variant of ResNet models [4], can predict the steering angle precisely at the lane intersec-
tion or multi-lanes of a road. If a self-driving system cannot respond to identified objects
early enough to correctly maintain driving control, it could induce the risk of severe car
accidents. Even though our previous work [5] proposed the lightweight version of models
LW-YOLOv4-tiny and LW-ResNet18 implemented with rapid object detection and steering
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angle prediction to respond to self-driving control quickly, the entire object detection and
steering angle prediction process has encountered a speed limit problem. In other words,
the method proposed in the last paper cannot achieve a response time as short as possible
for self-driving control. The delayed steering angle prediction could cause the risk of severe
car accidents. Thus, the speed is more important than precision in this case. Accordingly,
we are looking for an improvement to speed up the execution speed and enhance the image
recognition accuracy concurrently.

Therefore, this study aims to propose a further speed-up approach for improving
LW-YOLOv4-tiny and LW-ResNet18 models where a modified GhostBottleneck [6] and
SElayer [7] replace CSP_Block (called LWGSE-YOLOv4-tiny). This can reduce the compu-
tation loading and maintain high detection precision where CSP_Block makes the input
and output of feature maps the same size so that the model can learn more features. A
simplified depthwise separable [8] and ghost convolution is substituted for ghost convo-
lution (LWDSG-ResNet18), which can shorten the computational burden and maintain
high prediction accuracy. In such a way, the proposed approach can significantly reduce
the model inference time to speed up the entire process of self-driving control, which is
our main contribution to this study. According to our previous work [5], a model car
called Nvidia JetRacer [9] goes around a planar road map to imitate a self-driving vehicle
driving around an urban area autonomously. Meanwhile, this study also introduces several
YOLVO-related object detection models for checking the response time of self-driving
control. Similarly, this paper also conducted several RestNet-related steering angle models
in the test. The experiment will deliver the performance evaluation among them and check
which one can best boost the response of self-driving control.

2. Related Work
2.1. Literature Review

Techniques for developing advanced visual algorithms for rapid object detection are
outlined in the following papers. According to a remote-controlled car, Karni et al. [10]
constructed a small-sized self-driving vehicle using a vision-based CNN network to mimic
self-driving control. Wei et al. [11] combined millimeter-wave radar and vision fusion to
detect the obstacle precisely. There are three fuse methods: data-level, decision-level, and
feature-level fusion. Rajaram et al. [12] developed an iterative region-of-interest pooling
framework using a CNN model to predict increasingly tight object boxes and explained
limitations. On the other hand, several methods of how to enhance the precision of object
detection are mentioned in the following articles. According to images sized 1242 × 375,
the proposed method achieves up to 6% improved accuracy in detection at 0.22 s per frame.
Wu et al. [13] devoted to SqueezeDet for self-driving, a fully CNN network with instant
inference speed for detecting objects, guaranteeing timely car control with a small model
and running in an energy efficiency embedded platform. The SqueezeDet+ model can
obtain a frame rate of 32.1 FPS and a precision mAP of 80.4% in the detection of objects. Y.
Cai et al. [14] presented a framework, YOLOV4-5D, to increase detection precision based
on a real-time operation of YOLOv4. This proposed algorithm can detect objects at 66 FPS
where they experimented on an NVIDIA GTX 2080Ti with CUDA 10.0 and cuDNN v10.0.
Nevertheless, we improved visual algorithms to increase the speed and precision of object
detection simultaneously in our previous work [5]. Chang et al. [5] incorporated Ghost
Conv into the YOLOv4-tiny for detecting objects rapidly, abbreviated as LW-YOLOv4-tiny,
and the ResNet18 for predicting steering angles quickly, abbreviated as LW-ResNet18. As a
result, the proposed combination can achieve 56.1 fps and 0.0683 mean square error. This
work experimented on an NVIDIA Maxwell architecture with 128 NVIDIA CUDA® cores
in Jetson Nano and NVIDIA GTX 1080Ti in a GPU workstation.

2.2. Model Car and Planar Road Map

Our previous work [5] shows a small model car, NVIDIA JetRacer, and uses it to
realize self-driving scenario simulation. JetRacer is an autonomous AI racer using NVIDIA
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Jetson Nano. Simulation examples and interactive programming can be accessed from a
web browser using a JetRacer, which features optimized high frame rates for high-speed
movement. A self-driving scenario was made using a JetRacer, with seven cameras around
a planar road map for the simulation and self-driving test, as shown in Figure 1. In Figure 1,
many small-sized speed limit signs, turn signs, and traffic lights are installed on the planar
road map where the JetRacer can be operated to drive and follow traffic rules.
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Figure 1. Model car and planar road map [5].

2.3. Rapid Response from LW-YOLOv4-Tiny and LW-ResNet18 Models

In our previous work [5], we improved YOLOv4-tiny and ResNet18 network architec-
ture to speed up the response of detecting objects and predicting steering angles, which
resulted in their corresponding lightweight networks, abbreviated as LW-YOLOv4-tiny and
LW-ResNet18, as shown in Figures 2 and 3. This combination can shorten the response time
of driving control to reduce the risk of severe car accidents. Regarding energy efficiency,
both lightweight models can consume less power in detecting objects and predicting steer-
ing angles. Furthermore, the previous paper [5] also provided the execution flow of fusing
the information and assisting the steering visually in detail. In object detection models, the
backbone network extracts features, the neck extracts some more complex features, and the
prediction or the head calculates the predicted output.
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3. Methods
3.1. High-Speed Response from LWGSE-YOLOv4-Tiny and LWDSG-ResNet18 Models

Even though LW-LYOLOv4-tiny and LW-ResNet18 proposed in our previous work [5]
can accelerate the response of self-driving promptly, this study continues to improve their
network architecture to boost the execution speed further. This study intends to alleviate
computation load to shorten the response time of the self-driving system and diminish
the risk of wrong control judgment. Moreover, the modified architecture can reduce
power consumption due to lower convolution computation, making it an energy-efficient
entity. According to the previous paper [5], this study proposed a modified architec-
ture of LW-YOLOv4-tiny to construct an enhanced object detection model abbreviated as
LWGSE-YOLOv4-tiny, as shown in Figure 4. Moreover, this study introduced a simplified
architecture of LW-ResNet18 to build an improved steering angle prediction model abbre-
viated as LWDSG-ResNet18, as shown in Figure 5. Combining LWGSE-YOLOv4-tiny and
LWDSG-ResNet18 can increase the frame rate and speed up the response to self-driving.
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The proposed LWGSE-YOLOv4-tiny uses the GhostBottleneck module [6] to replace
the CSP_Block module of the LW-YOLOv4-tiny model, as shown in Figure 4. In Figure 6,
the GhostBottleneck uses the ghost convolution instead of the traditional convolution.
Its improvement is to reduce the architecture complexity while maintaining precision in
feature extraction. The GhostBottleneck module combines feature extraction containing
multiple sub-layers, such as convolutional layers, batch normalization layers, and activation
function layers. When performing feature transformation, the GhostBottleneck module
uses fewer parameters than the CSP_Block module. Technically, GhostBottleneck first
performs feature calculations in lower dimensions and then projects the results back to the
original high-dimensional space. Such an approach helps reduce computational costs while
preserving key features. In addition, Equation (1) computes Randomized Leaky ReLU
(RReLU) [15], where pji represents input, qji stands for output, αji denotes the coefficient,
N shows the normal distribution, µ is the mean, σ is the variance, and ε is the upper bound.
Based on Equation (1), we replace the activation function ReLU in the GhostBottleneck
module with the activation function RReLU to further facilitate the feature learning of the
model and improve the gradient flow. The general ReLU function returns the positive
value when the input is positive but returns zero when the input is negative. RReLU allows
a small amount of negative output, which helps to alleviate the vanishing gradient problem
and improve the convergence speed and performance of the model.

qji =

{
pji i f pji ≥ 0
αji·pji i f pji < 0

, where αji ∼ N(µ, σ), µ = 0, σ ∈ [0, ε) (1)
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In Figure 4, this study adds the Squeeze-and-Excitation Layer (SElayer) [7] to the
GhostBottleneck module. It removes Maxpooling in the original CSP_Block module to
enhance feature representation in convolutional neural networks. The primary purpose of
the SElayer is to allow the model to automatically focus on critical features and suppress
trivial features, thereby improving the model’s overall performance, as shown in Figure 7.
The SElayer performs two key stages: extracting key features (Squeeze) and enhancing
importance (Excitation). In the Squeeze stage, the SElayer uses global average pooling
to reduce the scale of the feature map to generate a global feature descriptor. This func-
tion helps to focus on essential regions in the feature map. In the Excitation stage, the
SElayer exploits a small neural network called the Gating Network to selectively amplify
or compress the features of different channels. This part enables the model to learn the
importance of each channel to better capture key features. In other words, the SElayer
can automatically adjust the weight of features so that the model can focus on critical
features more precisely while reducing the interference of unnecessary information on the
model. Moreover, we set the SElayer to improve the activation function from traditional
ReLU to RReLU. This improvement allows the model to handle negative inputs better and
helps solve the vanishing gradient problem, enhancing the model’s feature learning and
training efficiency. Finally, ghost convolution [6] performs feature extraction in the neck
and prediction parts.
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In Figure 5, the proposed LWDSG-ResNet18 model adopts a highly efficient convo-
lution called depthwise separable convolution (DS Conv) [8] substituted for a traditional
convolution to produce a set of intrinsic feature maps before entering ghost convolution.
The primary purpose of DS Conv is to reduce the computational cost while maintaining
the model’s performance, as shown in Figure 8. In addition, we also propose RReLU
activation to replace the ReLU activation function in the DS Conv to optimize the model’s
performance further. In Figure 9, DS Conv consists of depthwise convolution and pointwise
convolution. In the depthwise convolution, each input channel applies a convolution filter
independently, effectively capturing the spatial relationships in the input image. In other
words, this convolution emphasizes feature interactions inside individual channels. Then,
in the pointwise convolution, the output channels of the previous convolution are linearly
combined to produce the final feature map of the output channels. It performs cross-
channel combinations, enabling the model to obtain satisfactory feature representations
with relatively few parameters. Regarding pointwise convolution, Figure 10 provides a
more detailed description of how to produce a set of intrinsic feature maps as input feature
maps in the subsequent ghost convolution. We can refer to the previous paper [5] to show
the steepest gradient descent algorithm, which can update the weight matrix continuously
Wghosti,j and the bias matrix Bghosti,j, optimizing the matrixes [5] for ghost convolution
during the training phase.

The overall process of DS Conv helps to reduce the computational cost because it
uses fewer parameters in the convolution operation of these two stages, which can achieve
computational efficiency while maintaining the performance of convolutions. Technically,
this study has simplified the original Ghost Conv to be depthwise separable and ghost
convolution (DSGhost Conv), which can construct the LWDSG-ResNet18 model, as shown
in Figure 11. Algorithms 1 and 2 provide the execution flow of DSGhost Conv in detail. In
Algorithm 1, DS Conv computes intrinsic feature maps. Then, in Algorithm 2, Ghost Conv
takes a series of simple linear transformations of intrinsic feature maps, generating ghost
feature maps.
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Algorithm 1 Depthwise Separable Convolution (DS Conv)

Input: Image X, pointwise convolution functions µh,i
Output: Intrinsic feature map Ins f mi

1. Execute a one-time traditional convolution of each input image xh, with its corresponding
filter fh by l × l independently to obtain the respective feature map f mh and complete
depthwise convolution where N is the number of input images, the input image
X = {xh, ∀ h = 1, 2, . . . , N}, and the depthwise filter F = { fh, ∀ h = 1, 2, . . . , N}.

2. Compute the output of the pointwise convolution: Ins f mi = µh,i( f mh) = f mh � p f i
∀ h = 1, 2, . . . , N, i = 1, 2, . . . , M where µh,i is a pointwise convolution to obtain intrinsic
feature maps Ins f mi, � shows a point-to-point product of the sum between the feature map
f mh and pointwise filter p f i, N represents the number of input images, and M stands for
the number of intrinsic feature maps.
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Algorithm 2 Ghost Convolution (Ghost Conv) [5]

Input: Intrinsic feature map Ins f mi, ghost modules with linear transformation functions ϕi,j
Output: Out f m

1. Compute the output of the pointwise convolution: Ins f mi = µh,i( f mh) = f mh � p f i
∀ h = 1, 2, . . . , N, i = 1, 2, . . . , M where µh,i is a pointwise convolution to obtain intrinsic
feature maps Ins f mi, � shows a point-to-point product of the sum between the feature map
f mh and pointwise filter p f i, N represents the number of input images, and M stands for
the number of intrinsic feature maps.

2. Compute the output of the ghost module:
Ghost f mi,j = ϕi,j(Ins f mi) = Wghosti,j

⊗
Ins f mi

⊕
Bghosti,j

∀ i = 1, 2, . . . , n, j = 1, 2, . . . , m where ϕi,j is a simplified convolution operation, Wghosti,j
shows a weight matrix of the ghost module, Bghosti,j implies a bias matrix of the ghost
module, n represents the number of intrinsic feature maps, m stands for the number of the
ghost modules, the symbol

⊗
denotes the pixel-wise product of two matrixes, and the

symbol
⊕

indicates the pixel-wise sum of two matrixes.
3. Transform intrinsic feature maps Ins f mi into the ghost feature maps Ghost f mi,j, with

multiple ghost modules.
Out f m = {Out f m1, Out f m2, . . . , Out f mn} = {Out f mi, ∀ i = 1, 2, . . . , n }
Out f mi = {Ins f mi, Ghost f mi.1, Ghost f mi.2, . . . , Ghost f mi.m}

=
{

Ins f mi, Ghost f mi.j, ∀ j = 1, 2, . . . , m
}

where Out f mi represents
the output feature maps, including the corresponding intrinsic feature map and ghost
feature maps, and Out f m stands for the whole output feature maps in a convolution layer.
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Technically, according to specific filters, our previous work [5] performed tradi-
tional convolution operations to obtain intrinsic feature maps and then took simple
linear transformations to obtain ghost feature maps. In such a way, we can fulfill the
overall feature maps and save time to compute traditional convolution operations. The
time complexity of the traditional convolution, ghost convolution, and depthwise separa-
ble and ghost convolution are O(∑u

l=1 r2
l ·s

2
l ·cl ·hl), O(∑u

l=1 (r
2
l ·s2

l ·cl ·vl + r2
l ·(hl − vl))), and

O(∑u
l=1 (r

2
l ·s2

l ·cl + t2
l ·u

2
l ·cl ·zl + r2

l ·(hl − zl))), respectively. We defined the notation of time
complexity as follows:

r : The side length of the output feature map
s : The side length of the filter
c : The number of channels of the input feature map
h : The number of channels of the output feature map
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v : The number of channels of a set of filters of the output feature map through a
traditional convolution operation

l: An index of the convolutional layer
u : The number of convolutional layers
t : The side length of the output feature map after depthwise convolution
u : The side length of the pointwise filter
z : The number of channels of a set of filters of the output feature map through a

pointwise convolution operation
The proposed depthwise separable and ghost convolution can better boost the con-

volution computation speed than pure ghost convolution. In addition, the proposed one
can slightly increase the prediction accuracy because it eliminates redundant information
about the convolution operations.

3.2. Scenario of Object Detection and Steering Angle Prediction

In Figure 12a, the front and rear panels of the installed JetRacer dual cameras capture
instant video streaming, and LWGSE-YOLOv4-tiny detects the live object and recognizes
the class of object. Our previous work [5] adopts visual odometry to measure the distance
between the detected objects and the vehicle. In Figure 12b, LWDSG-ResNet18 predicts the
steering angle timely along the route while the car is being operated. The expected values
partially caused keen steering angle changes that resulted in the car shaking from side to
side, making it swing dramatically during operation. Therefore, our previous work [5]
added the PID controller to alleviate swing phenomena.
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4. Experiment Results and Discussion

In the experiment, this study first tested remarkable object detection algorithms,
including LWGSE-YOLOv4-tiny, LW-YOLOv4-tiny [5], YOLOv4-tiny [1], YOLOv5s [16],
YOLOv5n [17], and YOLOv7-tiny [18]. Then, we tested notable steering angle prediction
algorithms, such as Nvidia-CNN [19], traditional CNN [20], ResNet18 [3], LW-ResNet18 [5],
and LWDSG-ResNet18. The NVIDIA Corporation has developed a specific convolutional
neural network, Nvidia-CNN [19], for self-driving cars’ image recognition and steering
angle prediction tasks. Compared with traditional CNN, Nvidia-CNN is suitable for
image classification, where it has a simple network architecture using convolutional and
fully connected layers and adopts a smaller filter. Initially, this study trained the object
detection model LWGSE-YOLOv4-tiny and the steering angle prediction model LWDSG-
ResNet18. After that, we examined different combinations of six object detection models
and five steering angle prediction models. Then, we combined LWGSE-YOLOv4-tiny and
LWDSG-ResNet18 running in Jetson Nano, which realized the self-driving of the JetRacer.
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4.1. Experiment Setting

With the exact hardware specifications as our previous work [5], this experiment
employs the GPU workstation and embedded platform Jetson Nano to train and test the
visual algorithms. Similarly, with the same software packages as the previous paper [5], this
experiment adopts TensorFlow and TensorRT to accelerate the execution speed of the deep
learning models. This experiment uses Anaconda 3 to build the executable environment
of deep learning models and collect the training and test images. It also modifies two
previous models, LW-YOLOv4-tiny and LW-ResNet18, mentioned in the last paper [5] to
be new ones, LWGSE-YOLOv4-tiny and LWDSG-ResNet18, to make them more suitable
for instantly implementing object detection and image recognition. Then, it deploys the
improved models, LWGSE-YOLOv4-tiny and LWDSG-ResNet18, to the embedded platform
Jetson Nano with an executable run-time environment. Finally, this study tests the previous
work and this proposal to compare performance.

4.2. Model Training, Inference, and Capability

In training object detection models, the experiment collected 1476 images as a training
data set and 366 images as a test data set, with each image at a size of 224 × 224. The
ratios of the amount of data are 65%, 16%, and 16% for training, validation, and test data,
respectively. The GPU workstation trained all models, and the epoch is 50. Equation (2)
evaluates the inference time of detecting the objects in test images where EITi is the
inference time of each test image, ITi represents total inference time (IT), i stands for the
ith model, I indicates the number of models, x denotes the xth image, and X means the
number of images.

ITi =
X

∑
x=1

EITi, where i = 1, 2, . . . , I, x = 1, 2, . . . , X (2)

In Table 1, the first row shows the training time of each model and the second row
indicates the inference time. To summarize the results of this training, LWGSE-YOLOv4-
tiny bests the others.

Table 1. Training and inference time of object detection models (unit: s).

Method LWGSE-YOLOv4-Tiny LW-YOLOv4-Tiny YOLOv4-Tiny YOLOv5s YOLOv5n YOLOv7-Tiny

Training 258 274 296 497 436 1314
Inference 4.13 4.98 5.32 6.64 6.48 5.75

In steering angle prediction training, the experiment collected 14,710 images as a
training data set and 1000 images as a test data set, with each image at a size of 224 × 74. The
GPU workstation trained all models, and the epoch is 30. Likewise, Equation (2) evaluates
the inference time of predicting the steering angle in test images, where i represents the ith
model.

In Table 2, the first row indicates the training time of each model, and the second row
shows the inference time. To summarize this training, training LWDSG-ResNet18 is much
longer than CNN-related models, but its inference time is slightly better than the others.

Table 2. Training and inference time of steering angle prediction models (unit: s).

Method LWDSG-ResNet18 LW-ResNet18 ResNet18 CNN Nvidia-CNN

Training 2745 2832 2880 360 364
Inference 20.17 23.79 25.18 21.27 21.56

Speaking of model size, Table 3 gives the parameters of object detection models, and
Table 4 mentions the parameters of steering angle prediction models. YOLOv5s has the
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most parameters, and YOLOv5n the least. On the other hand, ResNet18 has the most
parameters and CNN the least.

Table 3. Parameters of object detection models.

Method LWGSE-YOLOv4-Tiny LW-YOLOv4-Tiny YOLOv4-Tiny YOLOv5s YOLOv5n YOLOv7-Tiny

# of
parameters 3,567,329 3,940,751 5,892,596 7,043,902 1,776,094 6,036,636

Table 4. Parameters of steering angle prediction models.

Method LWDSG-ResNet18 LW-ResNet18 ResNet18 CNN Nvidia-CNN

# of parameters 5,468,711 6,367,975 11,180,161 776,289 1,872,643

4.3. Losses in Training and Validation

The experiment uses a tool to visualize the training process and applies a callback
function to save the parameters of the best-performed model. After 50 training epochs,
Figure 13 shows six loss plots from the proposed object detection model. The results from
the other models can refer to our previous work [5]. In Figure 13, the first row shows
the training losses, and the second row displays the verification losses. The first column
shows the positioning loss, the second column displays the confidence level loss, and the
third column indicates the loss of the predicted frame matching the actual frame. In short,
LWGSE-YOLOv4-tiny achieved the minimum loss.
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Figure 13. Losses in training and validation for LWGSE-YOLOv4-tiny. (a) Loss in box training.
(b) Loss in objectness training. (c) Loss in classification training. (d) Loss in box validation. (e) Loss
in objectness validation. (f) Loss in classification validation. Each plot indicates that the x-axis
represents the error value and the y-axis stands for the number of epochs.



Electronics 2023, 12, 4281 13 of 18

Figure 14 shows loss plots from LWDSG-ResNet18 resulting from 30 training epochs.
Our previous work [5] has given the results of the other models, such as LW-YOLOv4-tiny,
YOLOv4-tiny, YOLOv5s, YOLOv5n and YOLOv7-tiny. In Figure 14, the blue indicates the
training loss, and the green is the verification loss. LWDSG-ResNet18 lowers the verification
loss to 0.0313.
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4.4. Model Testing

Equation (3) computes the speed of detecting objects by frames per second (FPS),
where IRAIT j indicates the time of instantly detecting an object using the jth model, the
FPSj represents the FPS of the jth model, and J stands for the number of models.

FPSj =
1

IRAIT j
, where j = 1, 2, . . . , J (3)

The mean Average Precision (mAP) represents the precision of object detection for
a given model, and we can obtain it from the mean of each category’s average precision
for all categories. Equation (4) computes the precision mAPl of all object detection models,
where APkl

denotes the precision of a specific category in the lth model, mAPl stands for
the mean Average Precision of the lth model, kl means a specific category in the lth model,
Cl indicates the number of identified categories in the lth model, and L represents the
number of models.

mAPl =
∑Cl

kl=1 APkl

Cl
, where kl = 1, 2, . . . , Cl , l = 1, 2, . . . , L (4)

We can compute the execution speed and precision of each model by testing the
object detection of 366 images. Figure 15 plotted the precision–recall curve, called the
PR curve. In Figure 15, each point represents a particular recall and precision, where the
recall is indicated on the x-axis and the precision is denoted on the y-axis. Our previous
work [5] has given the results of the other models, such as LW-YOLOv4-tiny, YOLOv4-
tiny, YOLOv5s, YOLOv5n and YOLOv7-tiny. In Table 5, Equation (3) computes FPS, and
Equation (4) calculates mAP. To summarize this test, YOLOv5s obtained the best outcome
and YOLOv7-tiny demonstrated the poorest outcome.
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Table 5. Speed and precision of object detection.

Metrics LWGSE-YOLOv4-Tiny LW-YOLOv4-Tiny YOLOv4-Tiny YOLOv5s YOLOv5n YOLOv7-Tiny

FPS 61.7 56.1 46.8 30.4 41.7 43.1
Precision (%) 97.7 97.3 97.2 99.1 97.7 97.0

Equation (3) computes the FPS of predicting steering angles by frames per second
(FPS), where j is the jth model. Equation (5) calculates the mean square error (MSE) of
predicting steering angles, where ŷi is the predicted value, yi means the actual value,
N stands for the number of images, k indicates the kth image, and MSE represents the
accuracy of a prediction model. The smaller the MSE, the higher the accuracy of predicting
the steering angle.

MSE =
∑N

k=1(yk − ŷk)
2

N
, where k = 1, 2, . . . , N (5)

We can compute the execution speed and accuracy of each model by testing the
steering angle prediction of 1000 images. Figure 16 plotted the predicted and actual values.
In Figure 16, “−1” represents turning right, “1” stands for turning left, and “0” means going
straight where the turning point has a limited scale between −1 and 1. The red indicates
the actual steering angle, and the blue shows the predicted steering angle. The results from
the other models can refer to our previous work [5]. In Table 6, Equation (3) computes
FPS, and Equation (5) computes MSE. In short, this test shows that the LWDSG-ResNet18
achieves the smallest MSE, and the Nvidia-CNN performs the worst.
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Table 6. Speed and loss of predicting steering angle.

Metrics LWDSG-ResNet18 LW-ResNet18 ResNet18 CNN Nvidia-CNN

FPS 39.3 32.6 27.0 31.9 31.5
MSE 0.0669 0.0683 0.0712 0.0849 0.0953

4.5. Self-Driving System Assessment

The evaluation indicator uses frame rate and mean square error when Jetson Nano
executes self-driving control. The self-driving control must instantly detect the object
and predict the steering angle simultaneously while JetRacer drives around the road map.
Longer to detect objects and insufficient time to complete steering angle prediction will
endanger self-driving. Thus, frame rate by frames per second (FPS) is probably the most
critical factor. Here, TensorRT can accelerate the FPS of detecting objects.

Equation (3) computes the frame rate of different combinations given a resolution of
224 × 224 per frame. In Table 7, LWGSE-YOLOv4-tiny obtains the best speed on average in
various combinations. Combining LWGSE-YOLOv4-tiny and CNN obtains the best FPS,
and combining YOLOv5s and ResNet18 is the least.

Table 7. FPS of model combination.

St. A. P.
O. D. LWGSE-

YOLOv4-Tiny
LW-YOLOv4-

Tiny
YOLOv4-

Tiny YOLOv5s YOLOv5n
YOLOv7-

Tiny

Nvidia-CNN 25.0 20.4 19.5 15.6 18.1 19.0
CNN 25.3 20.6 19.6 15.8 18.2 19.1

ResNet18 22.2 18.9 18.4 14.5 17.1 17.8
LW-ResNet18 23.8 19.4 18.9 15.1 17.8 18.6

LWDSG-ResNet18 24.9 21.8 21.3 18.2 18.9 21.0

Average 24.2 20.2 19.5 15.8 18.0 19.1

O. D.—object detection; St. A. P.—steering angle prediction.

Then, each combination examines the precision of detecting objects and the accuracy of
predicting steering angles given a resolution of 224 × 224 per frame. Equations (4) and (5)
compute the precision of detecting objects and the accuracy of predicting steering angles,



Electronics 2023, 12, 4281 16 of 18

respectively. In Table 8, YOLOv5s achieves the best precision and LWDSG-ResNet18 has
the lowest MSE.

Table 8. Accuracy and precision of model combination.

MSE

Precision (%) O. D.

LWGSE-YOLOv4-
Tiny

LW-YOLOv4-
Tiny YOLOv4-Tiny YOLOv5s YOLOv5n YOLOv7-Tiny

St. A. P.

Nvidia-CNN (0.0953, 97.7) (0.0953, 97.3) (0.0953, 97.2) (0.0953, 99.1) (0.0953, 97.7) (0.0953, 97.0)
CNN (0.0849, 97.7) (0.0849, 97.3) (0.0849, 97.2) (0.0849, 99.1) (0.0849, 97.7) (0.0849, 97.0)

ResNet18 (0.0712, 97.7) (0.0712, 97.3) (0.0712, 97.2) (0.0712, 99.1) (0.0712, 97.7,) (0.0712, 97.0)
LW-ResNet18 (0.0683, 97.7) (0.0683, 97.3) (0.0683, 97.2) (0.0683, 99.1) (0.0683, 97.7) (0.0683, 97.0)

LWDSG-ResNet18 (0.0669, 97.7) (0.0669, 97.3) (0.0669, 97.2) (0.0669, 99.1) (0.0669, 97.7) (0.0669, 97.0)

The first number within a parenthesis represents the steering angle prediction loss (MSE), and the second stands
for the object detection precision (%). O. D.—object detection; St. A. P.—steering angle prediction.

4.6. Discussion

The method proposed by Wei et al. [11] must combine millimeter wave and visual
detection, which may waste a lot of time when fusing information so that object detection
will be slower. The architecture proposed by Rajaram et al. [12] achieves impressive gains
in performance at a fast run-time speed of 0.22 s per frame, and such a speed of object
detection cannot respond timely to the control of a self-driving car when driving at high
speeds. The model SqueezeDet proposed by Wu et al. [13] is a fully convolutional neural
network for instantly detecting objects obtaining a rate of 32.1 FPS and precision in mAP
of 80.4%, where insufficient precision may cause a large misjudgment that may lower the
performance of object detection.

A study by Y. Cai et al. [14] conducted its experiment on an NVIDIA GTX 2080Ti as
the computing platform to implement object detection using 66 frames/s (fps). In contrast,
the proposed approach adopted a GPU workstation with NVIDIA GTX 1080Ti to train the
model and Jetson Nano with 128 NVIDIA CUDA® cores to realize the object detection
task in the experiment. The graphic computing speed of Jetson Nano is much slower
than that of NVIDIA GTX 1080Ti. Nevertheless, this study applied Jetson Nano with the
proposed visual algorithm to significantly implement object detection using 61.7 frames/s
(fps) in the self-driving system. In other words, the approach proposed in this study
can simultaneously perform object detection and steering angle prediction rapidly and
precisely.

The delayed steering angle prediction could cause the risk of severe car accidents.
Therefore, speed is more important than precision in this case. This study improves the
two previous models [5], LW-YOLOv4-tiny and LW-ResNet18, speeding up the execution
speed and enhancing the image recognition accuracy concurrently by introducing two
modified models, LWGSE-YOLOv4-tiny and LWDSG-ResNet18, respectively. As a result,
compared with LW-YOLOv4-tiny, LWGSE-YOLOv4-tiny can boost the frame rate of feature
extraction up to 9.98% and slightly upgrade the precision of object detection by 0.41%.
Compared with LW-ResNet18, LWDSG-ResNet18 can boost the prediction speed to 20.55%
and increase image recognition accuracy by 2.05%. Therefore, the proposed approach can
accomplish the primary goal of this study.

However, some drawbacks occurred in this case. The embedded platform Jetson
Nano encountered a problem with the hardware limitation. Jetson Nano cannot process
instant higher-resolution video streaming while the car is driving. Thus, we can replace
it with the Jetson AGX Xavier to capture and process higher-resolution video streaming.
Unfortunately, JetRacer cannot supply enough battery power to the Jetson AGX Xavier.
Therefore, there is a need for power-efficient model cars.

5. Conclusions

The main contribution of this study is the enhancement of the execution efficiency of
both the frame rate of the object detection and the image recognition accuracy of steering
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angle prediction results, which boosts the entire response time of self-driving control sig-
nificantly. In other words, the proposed approach achieved the objective of this study to
implement a highly efficient self-driving control by reducing the execution time consider-
ably. Compared with the previous work, the proposed approach can significantly speed up
the entire self-driving control by 1.28 times. The performance evaluation shows that the
proposed method also outperforms the other alternatives.

We must devote ourselves to object detection and steering angle prediction for further
improvements in future works. In addition, integrating ROS and high-performance visual
algorithms can effectively implement instant self-driving control. Since the self-driving
system performs advanced vision algorithms for an extended period while the car is driving
and has a high degree of computing power consumption, we will also seek low-power
and high-performance embedded platforms to execute advanced vision algorithms in
the future. Ultimately, we will also look for digital maps to provide some path planning
for self-driving control to facilitate automatic navigation. Thus, the above measures can
hopefully deal with the discussed limitations.
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