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Abstract: We aimed to determine whether the hemorrhage risks of cerebral arteriovenous malfor-
mation (AVM), evaluated through digital subtraction angiography (DSA) using a neural network,
were superior to those assessed through angioarchitecture. We conducted a retrospective review of
patients with cerebral AVM who underwent DSA from 2011 to 2017. Angioarchitecture parameters,
age, and sex were analyzed using univariate and multivariate logistic regression. Additionally,
a neural network was trained using a combination of convolutional neural network (CNN) and
recurrent neural network (RNN) architectures. The training dataset consisted of 118 samples, while
29 samples were reserved for testing. After adjusting for age at diagnosis and sex, single venous
drainage (odds ratio [OR] = 2.48, p = 0.017), exclusive deep venous drainage (OR = 3.19, p = 0.005),
and venous sac (OR = 0.43, p = 0.044) were identified as independent risk factors for hemorrhage. The
angioarchitecture-based hemorrhagic prediction model achieved 69% accuracy with an AUC (area
under the ROC curve) of 0.757, while the CNN–RNN-based model achieved 76% accuracy with an
AUC of 0.748. We present a diagnostic performance for hemorrhagic risk assessment of AVMs that
is comparable to the angioarchitectural analysis. By leveraging larger datasets, there is significant
potential to enhance prediction accuracy further. The CNN–RNN algorithm not only can potentially
streamline workflow within the angio-suite but also serves as a complementary approach to optimize
diagnostic accuracy and treatment strategies.

Keywords: cerebral arteriovenous malformation; digital subtraction angiography; angioarchitecture;
deep neural network

1. Introduction

The prevalence of cerebral arteriovenous malformations (AVM) is approximately 18 per
100,000 people [1]. AVMs contribute to 4–33% of primary intracerebral hemorrhage, with
case fatality up to 20% at 30 days following hemorrhage [1,2]. The crude annual risk of
initial hemorrhage occurrence is approximately 2%; however, within the first year, the risk
of hemorrhage recurrence can escalate significantly, reaching as high as 18% [1,2]. Various
treatment options are available for AVMs, such as medication, embolization, microsurgery,
and stereotactic radiosurgery. The risk of hemorrhage associated with AVMs has been
a focus of research, since the ARUBA (A randomized trial of unruptured brain arteriove-
nous malformations) study demonstrated that medical therapy alone is superior to any
interventional therapy for unruptured AVMs [3]. However, concerns have arisen regarding
the potential underestimation of hemorrhagic risk due to the insufficient follow-up interval
in the ARUBA study, which is 33 months [3]. Therefore, it is crucial to carefully assess the
risk of hemorrhages to achieve the goals of precision medicine.
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The Spetzler–Martin grade, widely used worldwide, is employed to predict the prog-
nosis of patients with AVM undergoing microsurgery. However, flaws were observed in
this approach in terms of assessment of hemorrhagic risk. For example, some studies have
reported a positive association between AVM size and hemorrhage risk, while others have
found no significant association or even indicated that smaller size AVMs are more prone to
rupture [4–11]. Previous research has explored risk factors for AVM-associated hemorrhage,
including age, deep location, flow-associated aneurysm, single venous drainage, exclusive
deep venous drainage, venous stenosis, venous sac, and nidus size. However, results based
on these factors have been inconsistent across studies [4,6,9,12–16].

Studies have also explored the hemodynamics of cerebral AVMs, measured by quanti-
tative digital subtraction angiography (QDSA), in relation to hemorrhage, but conclusions
have been inconsistent primarily because of limited case number and differences in imaging
modalities [17,18]. In Lin et al., the latest research on hemorrhagic risk prediction using
quantitative digital subtraction angiography (QDSA), the findings indicated comparable
predictive capabilities between QDSA and conventional DSA angioarchitecture. [15].

Artificial intelligence (AI) has been shown to be successful in medical imaging appli-
cations, such as feature detection or survival estimation [19,20]. However, only very few
studies were conducted with regard to AI implementation in medical imaging interpreta-
tion of AVMs [21]. The performance of AI prediction models utilizing logistic regression
and random forest with angioarchitecture parameters obtained from DSA was found to be
suboptimal in Tao et al. [22]. On the contrary, Hong et al. showed promising results in de-
tection of hemorrhagic brain AVMs using quantitative parameters derived from QDSA and
random forest algorithm [23]. The study achieved a significantly higher level of accuracy,
even in comparison with experienced neuroradiologists [23]. Furthermore, Allison et al.
demonstrated a successful development of a deep learning model for detecting clinically
significant intracranial aneurysms on computed tomographic angiography (CTA) [24]. In
Huang et al., unsupervised machine learning was effectively employed to introduce a novel
concept called the “compactness index”. This index proved valuable as a predictive factor
for radiosurgery outcomes in individuals with unruptured brain arteriovenous malforma-
tions [25]. Based on these successes, it is evident that integrating an AI-assisted diagnostic
model has the potential to improve clinician performance by offering reliable and accurate
predictions, thereby optimizing patient care.

In view of this, the aim of this study was to evaluate the feasibility of utilizing neural
network analysis of DSA to produce results comparable to traditional assessments based
on angiographic anatomical characteristics.

2. Materials and Methods
2.1. Patient Selection

In this retrospective study, we recruited patients with cerebral AVMs who had un-
dergone DSA studies between 2011 and 2017, based on available records in the radiology
system in Taipei Veterans General Hospital. Patients who had received prior treatments
including microsurgery, embolization, or gamma knife radiosurgery were excluded from
this study. Additionally, patients with suboptimal angiographic imaging due to poor
visualization of the AVM, severe motion artifacts, or non-standardized protocols, were
also excluded. We further excluded patients who had experienced cerebral hemorrhage
within one month prior to the angiographic study, as increased intracranial pressure could
potentially influence hemodynamic measurements [11]. This study received approval from
the local institutional review board, and informed consent was waived as per the approval.

2.2. Study Parameters

The clinical presentation and morphological characteristics obtained for AVMs were
collected for analysis. The clinical presentation included age at diagnosis, sex, seizure his-
tory, headache, and focal neurologic deficits. Notable angioarchitecture features related to
hemorrhage were identified in previous studies [4,6,14,26]. All parameters were interpreted
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by two neuroradiologists with 12 and 25 years of experience, respectively. AVM-related
hemorrhage was analyzed using magnetic resonance (MR) or computed tomography (CT)
images. Clinical data, including hemorrhagic outcome, were blinded until morphological
identification was complete.

2.3. DSA Acquisition

DSA acquisition was carried out using a standardized clinical protocol in the same
angio-suite (Artis zee®, Siemens Healthcare, Forchheim, Germany). A power injector
(Liebel-Flarsheim Angiomat®, Illumena, San Diego, CA, USA) was utilized to administer
a contrast bolus following the placement of a 4-French angiocatheter in the common
carotid artery at the level of the C4 vertebral body. A bolus of 12–14 mL of diluted iodine
contrast medium was injected in 1.5 s. No additional contrast medium or radiation was
employed. Image acquisition commenced 0.2 s prior to the injection of the contrast medium.
Image capture was conducted with a progressive frame rate during the DSA acquisition.
Specifically, the images were initially captured at a rate of 7.5 frames per second for the first
5 s. This was followed by a reduced frame rate of 4 frames per second for 3 s, 3 frames per
second for 2 s, and finally, 2 frames per second for 2 s. The complete DSA acquisition lasted
12 s, but it was manually extended if necessary to visualize opacification of the internal
jugular vein from the normal brain parenchyma [15,27].

2.4. Angioarchitecture

In accordance with the terminology provided by a joint committee led by the American
Society of Interventional and Therapeutic Neuroradiology, our investigation focused on
several characteristics associated with cerebral AVMs. These characteristics included single
venous drainage, the presence of a flow-related aneurysm, deep location of the nidus,
exclusive superficial or deep venous drainage, periventricular drainage, venous stenosis,
venous sac, and intranidal venous sac [4,26].

To provide more specific definitions, deep location is defined as basal ganglia, internal
capsule, thalamus, corpus callosum, cerebellum, and brain stem. Deep venous drainage
was considered any drainage through the internal cerebral veins, basal veins, or precentral
cerebellar vein [26]. A flow-related aneurysm was considered if an aneurysm was present
upstream of the ipsilateral internal carotid artery. The main drainage vein was identified as
the vein with the shortest peak time among all drainage veins. Venous stenosis was defined
as any focal luminal narrowing to less than 50% of the adjacent normal venous diameter in
the main drainage vein. A venous sac was defined as a more than 200% change in venous
diameter in any drainage vein.

2.5. Neural Network Analysis

To analyze visual imagery, deep learning employs the convolutional neural network
(CNN), whereas sequential data is commonly analyzed using the recurrent neural network
(RNN). To achieve our objective of predicting the hemorrhagic risk of cerebral AVM using
DSA, a dynamic medical imaging technique, we employed a methodology that involved
combining CNN with RNN.

Our analysis of DSA series using neural networks consists of two main parts: data
pre-processing and model training. To build the model, we utilized TensorFlow 2.6 as the
library and executed the code on the Google Collaboration platform. For each individual,
both anterior-posterior and lateral views of the DSAs were collected. The hemorrhagic
and non-hemorrhagic groups were randomly divided into training and test sets. Out of
147 patient data, 118 were used for training, and the remaining 29 were used for testing (see
Table 1). Owing to the limited number of cases, we did not create a validation set. We only
used the first 50 frames of DSA for each series, as the later frames contained normal venous
structures. Additionally, we resized the images to 120 × 120 pixels to optimize subsequent
processes. Each DSA series was classified as 1 if it belonged to a hemorrhagic individual
and 0 if it belonged to a non-hemorrhagic individual.
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The CNN–RNN model comprised a total of eight layers, including two input layers,
two time-distributed layers (each consisting of four convolution layers, three max-pooling
layers, and one flatten layer), two LSTM layers (long short-term memory), one concatenate
layer, and one dense layer. Figure 1 illustrates the overall structure of the CNN–RNN
model. As depicted in the figure, the CNN–RNN model could be divided into four parts
in order: the input layer, the time-distributed layer, the LSTM layer, and the final part
used to generate prediction. The time-distributed layer included several convolutional
layers and maximum-pooling layers, which constituted the “CNN” part of the CNN–RNN
model, while LSTM constituted the “RNN” part of the model. The anterior–posterior and
lateral views of the DSA series were processed separately. Thereafter, the concatenate layer
combined the results from both views and passed the information to the fully connected
layer to generate the prediction, which ranged from 0 to 1.

Table 1. The composition of training set and test set.

Total Number of Samples Number of Hemorrhagic Samples Number of Non-Hemorrhagic Samples

Training set 118 59 59
Test set 29 14 15 1

1 The training set and the test set are well balanced.
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The parameters for each layer of our CNN–RNN model are described in detail below.
The neural network includes two input layers: one for the anterior-posterior view of

the DSA series and another for the lateral view. The shape of the input layer is (none, 50,
120, 120, 1), indicating that each patient has 50 grayscale images of size 120 × 120 pixels,
with one color channel. The “none” dimension represents the batch dimension.

Following the input layers, there is a time-distributed layer and an LSTM layer, as
depicted in Figure 1. The time-distributed layer operates on each of the 50 time-steps of the
DSA series and consists of four 2D convolutional layers, three 2D max-pooling layers, and
one flatten layer. Three convolutional layers are followed by a max-pooling layer, while
one convolutional layer is followed by a flatten layer at the end of the time-distributed
layer. In each of the four convolutional layers, convolutional filters of size 3 × 3 are applied
to the data, with the number of filters set as 16, 16, 32, and 8, respectively. The padding is
set to ‘SAME’, and no activation function is applied. Each of the three max-pooling layers
uses a pooling size of 2 × 2.

After the time-distributed layer extracts important features from each image in the
DSA series, the LSTM layer is employed to capture time-dependent features. The last cell
in the LSTM layer has 32 output units, and only the output of the last cell is utilized.

Subsequent to the time-distributed and LSTM layers, a concatenate layer combines
the extracted information from both the anterior-posterior and lateral DSA series. This
is followed by a fully connected layer at the end of the model. The fully connected layer
consists of a single unit with the sigmoid activation function, which provides the output
indicating the likelihood of hemorrhage in the patient.

During the model compilation, the loss function is set as ‘binary cross-entropy’, and
the optimizer is ‘Adam’. The learning rate of the optimizer is 0.00001. The input data is
trained for 50 epochs, with a batch size of 5.

2.6. Statistical Analysis

To assess differences related to categorical variables such as sex, presentation of
seizures, history of headache, focal neurologic deficit, and Spetzler–Martin grades, Pear-
son’s chi-square test was employed. In order to determine significant associations with
AVM-associated hemorrhage, univariate logistic regression was performed on all parame-
ters. The angioarchitecture parameters with p values less than 0.1 in the univariate logistic
regression were subsequently analyzed with multivariate logistic regression, adjusting for
age, sex, and AVM nidus volume.

To compare the diagnostic performance of the angioarchitecture predictive model with
that of the CNN–RNN analysis, ROC curve analysis was employed. The data analysis was
conducted using IBM SPSS 20 statistical software (2010; IBM SPSS, Chicago, IL, USA).

3. Results

A total of 199 patients with cerebral AVMs who had undergone both angiographic
evaluations were initially identified. After excluding 36 patients with prior AVM treatment,
11 patients with suboptimal DSA image quality and 5 patients who experienced hemorrhage
within one month before angiography, a final cohort of 147 patients remained for subsequent
analysis (Figure 2). Among these patients, 85 (58%) were male and 62 (42%) were female.
The range of their age spanned from 12 to 80 years. Out of the cohort, 48 (33%) patients
presented with hemorrhage at the time of initial diagnosis. Comparing the two groups, the
hemorrhagic group exhibited more frequent headaches and a lower incidence of seizure
history compared to the non-hemorrhagic group. Table 2 provides a summary of patient
characteristics. Notably, the average age of the hemorrhagic group was significantly
lower (33.7 ± 16.9 years) than that of the non-hemorrhagic group (39.9 ± 14.4) (p = 0.019).
Seizures were more common in the non-hemorrhagic group (38%) than in the hemorrhagic
group (12%).
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Table 2. Characteristics of study population.

Total
n = 147 (100%)

Hemorrhage
n = 73 (50%)

Non-Hemorrhage
n = 74 (50%) p Value 1

Age at diagnosis 39.9 ± 14.4 33.7 ±16.9 0.019
Male, no. (%) 85 (58) 43 (59) 42 (57) 0.403

Female, no. (%) 62 (42) 30 (40) 32 (45)
Seizure, no. (%) 37 (25) 9 (12) 28 (38) 0.01

Headache, no. (%) 66 (45) 31 (42) 35 (47) 0.38
Focal neurologic deficit, no. (%) 36 (24) 18 (25) 18 (24) 0.41

Spetzler–Martin grade 0.33
Grade I, no. (%) 40 (27) 20 (27) 20 (27)
Grade II, no. (%) 49 (33) 23 (31) 26 (35)
Grade III, no. (%) 40 (27) 20 (27) 20 (27)
Grade IV, no. (%) 17 (12) 9 (12) 8 (11)
Grade V, no. (%) 1 (1) 1 (2) 0 (0)

1 Statistical significance is defined as p < 0.05.

3.1. Logistic Regression

In univariate logistic regression, age at diagnosis (odds ratio [OR] ≤ 0.04, 95% confi-
dence interval [CI] ≤ 0.04 to 0.05; p = 0.019) exhibited a correlation with AVM hemorrhage.
For angioarchitectures, single venous drainage (OR = 3.61, 95% CI = 1.82–7.19; p = 0.001)
and exclusive deep venous drainage (OR = 4.46, 95% CI = 1.98–10.07; p = 0.001) were
associated with a high chance of bleeding. On the contrary, the venous sac (OR = 0.34,
95% CI = 0.16−0.72; p = 0.005) was less associated with hemorrhage. The significance of
the angioarchitecture parameters was tested using multivariate logistic regression with
adjustment for age at diagnosis and sex (Table 3). Age was an insignificant predictor, while
single venous drainage, exclusive deep venous drainage, and venous sac were independent
predictors of hemorrhage.
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Table 3. Univariate and multivariate logistic regression of age, sex, and angioarchitecture in associa-
tion with hemorrhage in cerebral arteriovenous malformation.

Hemorrhage
n = 73 (50%)

Non-
Hemorrhage
n = 74 (50%)

Univariate Multivariate

p Value Odds Ratio
(95% CI) p Value Odds Ratio

(95% CI)

Clinical factors
Age at diagnosis, year,
mean (range) 33.7 ± 16.9 39.9 ± 14.4 0.019 1.00 (−0.04–0.05) 0.073 0.979 (0.957 −1.002)

Male, no. (%) 41 (55) 44 (60) 0.666 1.14 (0.60–2.20)

Angioarchitecture
Deep location, no. (%) 25 (34) 18 (24) 0.188 1.62 (0.79–3.33)
Single venous
drainage, no. (%) 43 (59) 21 (28) 0.001 1 3.61 (1.82–7.19) 0.017 2 2.48 (1.23–5.78)

Exclusive superficial
venous drainage,
no. (%)

32 (44) 40 (54) 0.216 0.66 (0.34–1.27)

Exclusive deep venous
drainage, no. (%) 30 (41) 10 (14) 0.001 1 4.46 (1.98–10.07) 0.005 2 3.19 (1.32–7.69)

Periventricular
drainage, no. (%) 13 (18) 7 (9) 0.14 2.01 (0.78–2.63)

Venous sac, no. (%) 13 (18) 29 (39) 0.005 1 0.34 (0.16–0.72) 0.044 2 0.43 (0.190–0.975)
Intranidal venous sac,
no. (%) 12 (16) 18 (24) 0.238 0.61 (0.27–1.38)

Venous stenosis,
no. (%) 25 (34) 18 (24) 0.188 1.62 (0.79–3.73)

1 Statistical significance is defined as p < 0.1. CI = Confidence interval. 2 Statistical significance is defined as
p < 0.05. CI = Confidence interval.

3.2. Neural Network Analysis

Before we trained the neural network, we preprocessed the data by enhancing the
contrast of each image. We multiplied the pixel values of the images in each DSA series
by a certain value, so that the maximal pixel value of each DSA series was equal to 255.
Owing to the RAM constraint on Google Collaboration, we reshaped the images from
960 × 960 to 120 × 120. Figure 3 shows the representative images before preprocessing (a)
and after preprocessing (b). The original image (a) was from the radiology system in Taipei
Veterans General Hospital.
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The diagnostic performance levels of our CNN–RNN model compared with the
multivariate regression model are shown in Table 4. Our neural network model had an
accuracy of 100% on the training set and 76% on the test set, while the regression model
had an accuracy of 69%. The optimized threshold was set to 0.500, which means that the
patient was considered hemorrhagic if the output was greater than or equal to 0.500, or
vice versa. Our neural network model had an area under curve (AUC) of the ROC of 0.999
in the training set and 0.748 in the test set, while the regression model had an AUC of 0.757
(Figure 4). The datasets generated and analyzed during the current study are available
from the corresponding author on reasonable request.

Table 4. Performance level of the multivariate regression model and our neural network model.

Multivariate Regression Model (n = 147) 1 Training Set (n = 118) 2 Test Set (n = 29) 3

Accuracy (%) 100 (69) 118 (100) 22 (76)
True positive (%) 46 (73) 59 (100) 11 (79)
False positive (%) 18 (24) 0 (0) 4 (27)
True negative (%) 56 (76) 59 (100) 11 (73)
False negative (%) 27 (37) 0 (0) 3 (21)
Area under ROC curve 0.757 0.999 0.748

1 The performance level of multivariate regression model on the whole dataset. 2 The performance level of our
neural network model on the training set. 3 The performance level of our neural network model on the test set.
(Accuracy 76% with 22 out of 29 samples being correctly predicted.).
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4. Discussion

The prevalence of cerebral AVMs is estimated at only 0.2%, which is likely underes-
timated given the asymptomatic nature of many lesions and the lack of routine screen-
ing [1,16]. Despite its low prevalence, cerebral AVMs contribute to up to 33% of primary in-
tracerebral hemorrhage, with case fatality up to 20% at 30 days following hemorrhage [1,2].
The overall risk of hemorrhage for cerebral AVMs is 2–4% per year [16]. However, hemor-
rhagic risk among individuals varies. Since the ARUBA study demonstrated that medical
therapy alone is superior to any interventional therapy for unruptured AVMs [3], reliable
and accurate individualized evaluation of AVM-related hemorrhagic risk is crucial to op-
timize patient outcome. Despite numerous research that has examined risk factors for
AVM-associated hemorrhage based on angioarchitecture, results have been inconsistent
across studies [4,6,9,12–16].
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In our study, we demonstrated that age was an insignificant predictor, while single
venous drainage, exclusive deep venous drainage, and venous sac were independent
predictors of hemorrhage. In line with previous meta-analyses, we found a significant
association between exclusive deep venous drainage and AVM-related hemorrhage [12,28].
However, our study contradicted the notion that deep location is a significant risk factor.
Our study supports the results of Costa et al. and Lin et al. [15,29]. This finding is further
corroborated by the microcatheter measurements of feeder-artery pressure reported by
Duong et al. [7]. We believed that the main reason for inconsistent results among research
was that the definition of deep location for the nidus has varied across studies. While all
studies included the thalamus, basal ganglia, and corpus callosum as deep locations, Stefani
et al., Yamada et al., and Lin et al. also included the cerebellum and brainstem [4,15,30].
Stapf et al. and Costa et al., on the other hand, classified the cerebellum and brainstem as
separate factors under the infratentorial location [6,29].

Hemodynamic studies of AVM had been conducted during microsurgery in the late
1990s and early 2000s. Through direct intraluminal intraoperative measurement, Young
et al. reported that feeding-artery pressure was correlated with a relatively high risk
of bleeding [31]. High drainage venous pressure has also been observed in ruptured
AVMs [32,33]. In the present study, the dilated venous sac implied better remodeling in
response to increased venous pressure and therefore was less likely to rupture compared to
undilated venous outlets. Given a fixed volume of the nidus, the pressure was also higher
intra-luminally in the single venous drainage system than in the multiple venous drainage
system. As a result, this provides the rationale behind this study’s suggestion that single
vein drainage is a risk factor for rupture.

Given the recent success of implementing AI in medical imaging [19–24], we assessed
the feasibility of using neural network analysis of DSA to generate results that are compa-
rable to traditional assessment methods based on angioarchitecture. Owing to the dynamic
nature of DSA in medical imaging, we devised a CNN–RNN model structure. Fine-tuning
of the model’s hyperparameters was conducted to minimize the decreased accuracy from
our training set to test set, including the learning rate, number of layers, neurons, and filters.
We also experimented with the inclusion or exclusion of normalization layers, activation
layers, and dropout layers. Although we were unable to completely eliminate the issue of
overfitting, we achieved a relatively favorable outcome when compared to the regression
model based on angioarchitecture. Our test set yielded an accuracy of 76% and an AUC of
0.75, while angioarchitecture-based analysis yielded an accuracy of 69% and an AUC of
0.76 (Figure 4).

As of our current understanding, only two studies have delved into the integration of
AI in the interpretation of medical imaging related to cerebral AVMs, with a particular focus
on the prediction of hemorrhagic risk. The pioneering study conducted by Lin et al. in 2020
employed logistic regression as the algorithm to enhance the predictive precision of their AI
model designed for assessing hemorrhagic risk [15]. Their methodology was grounded in
the analysis of hemodynamics utilizing QDSA. They achieved an AUC of 0.73 using QDSA,
which was on par with the results from conventional angioarchitectural analysis based
on DSA [15]. Nevertheless, their model’s validity was not established for infratentorial
AVMs due to their exclusion from the study. Additionally, patients under 18 years old were
excluded due to distinct hemodynamics compared to adult AVMs [15]. The subsequent
study by Tao et al. in 2021 employed both logistic regression and random forest techniques
to augment the predictive capability of hemorrhagic risk assessment [22]. Their analysis
yielded average AUC values of 0.70 and 0.68, respectively, from the two algorithms. It is
noteworthy that their model relied on hemorrhagic risk predictors extracted from every
DSA series, with interpretations conducted by two experienced neuro-radiologists [22]. The
interpretation of DSA series is a skill demanding years of professional training due to the
intricate nature of cerebral angioarchitecture. In contrast, our proposed CNN–RNN model
enables immediate and automated assessment of hemorrhagic risk without necessitating
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expert interpretation, while still maintaining accuracy levels comparable to those achieved
through angioarchitectural analysis.

The primary challenge in our research was the limited availability of images. After
excluding ineligible data, we were left with a relatively small dataset consisting of only
147 patients with cerebral AVM. This size was insufficient for a neural network, which
typically requires a larger dataset to produce reliable results. The decrease in accuracy
observed from the training set to the test set further confirmed the limitations imposed
by the sample size. In the future, the model’s optimization is expected to improve with
a larger input of AVM data.

Overfitting occurs when a model fits the training data too closely, resulting in strong
classification performance on the training data but poor performance on independent
testing data. An extensive review of the most recent AI applications and challenges
in cerebrovascular diseases was made in Chen et al. [21]. They concluded that when
it comes to cerebrovascular diseases, associated medical imaging datasets often have
small sample sizes and lack sufficient patient-level data, given the low prevalence of
certain diseases such as brain AVMs [21]. This inherent characteristic renders models
susceptible to overfitting. Even though some studies used scanning slices or sliding patches
as inputs [21], the count of medical imaging samples remained significantly lower than
that of natural images. To address overfitting, neural networks commonly employ various
strategies. These include K-fold cross-validation, regularization, and applying appropriate
data augmentation techniques such as generative adversarial networks (GANs). However,
these methods might not be as effective for deep learning models. From a foundational
standpoint, using a large amount of training data remains one of the primary ways to tackle
overfitting [21]. Thus, we propose that future efforts concentrate on gathering extensive
data from multiple centers, as well as adjusting the structure of neural networks to prevent
overfitting. This approach would enable the development of a more precise, dependable,
and unbiased model.

This study has a few limitations worth noting. Firstly, due to the retrospective nature
of this study, while we managed to identify risk factors for AVM-associated hemorrhage,
establishing causal relationships was not feasible. Therefore, further longitudinal studies
are necessary to delve into this matter. Secondly, while previous studies have highlighted
the significance of hemorrhage presentation as a risk factor for future AVM bleeding, our
analysis only considered associated risk factors at the time of initial diagnosis [4,6,12,14,28,29].
Furthermore, we did not account for rebleeding during the follow-up period. Additional
studies are needed to customize models for different cerebral hemodynamic conditions.

To the best of our knowledge, this study is one of the few to apply the CNN–RNN
structure to dynamic medical imaging. Conventionally, interpreting DSA requires years
of professional training due to the complexity of cerebral hemodynamics and angioarchi-
tectures. With the assistance of AI, accurate diagnoses and hemorrhage risk assessments
can be obtained immediately within the angio-room. AI-assisted diagnosis not only allows
interventionists to focus on procedures but also assists radiologists in making comprehen-
sive differential diagnoses. In general, the integration of AI helps reduce human errors and
has the potential to improve patient outcomes.

5. Conclusions and Future Work

Our CNN–RNN model demonstrated a diagnostic performance for hemorrhagic risk
assessment of AVMs that is comparable to those achieved through angioarchitecture analy-
sis. This represents a promising complementary, non-invasive, and automated approach to
augment the intricate hemodynamic and anatomic insights obtained from DSA, without
necessitating expert interpretation, as well as without the need for additional radiation or
contrast media.

To facilitate the development of a more precise and unbiased model, we recommend
that future efforts concentrate on two pivotal aspects. Firstly, comprehensive data should be
gathered from multiple medical centers, as AI models typically require extensive datasets
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for the production of dependable outcomes. Given the low incidence of cerebral AVM, it is
imperative to undertake large-scale studies. Secondly, it is also crucial to refine the model
structure to mitigate overfitting, which may be achieved by implementing techniques
such as K-fold cross-validation, regularization, and the appropriate application of data
augmentation. Through the utilization of larger datasets and the optimization of model
architecture, there exists significant potential to further enhance prediction accuracy.

Consequently, we advocate for the incorporation of AI algorithms in a comprehensive
hemorrhagic risk assessment of cerebral AVMs. This inclusion can potentially enhance the
precision and efficacy of treatment planning for patients with cerebral AVMs, ultimately
leading to improved clinical outcomes.
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