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Abstract: Remote sensing image super-resolution (SR) is a practical research topic with broad ap-
plications. However, the mainstream algorithms for this task suffer from limitations. CNN-based
algorithms face difficulties in modeling long-term dependencies, while generative adversarial net-
works (GANs) are prone to producing artifacts, making it difficult to reconstruct high-quality, detailed
images. To address these challenges, we propose ESTUGAN for remote sensing image SR. On the
one hand, ESTUGAN adopts the Swin Transformer as the network backbone and upgrades it to
fully mobilize input information for global interaction, achieving impressive performance with fewer
parameters. On the other hand, we employ a U-Net discriminator with the region-aware learning
strategy for assisted supervision. The U-shaped design enables us to obtain structural information at
each hierarchy and provides dense pixel-by-pixel feedback on the predicted images. Combined with
the region-aware learning strategy, our U-Net discriminator can perform adversarial learning only for
texture-rich regions, effectively suppressing artifacts. To achieve flexible supervision for the estima-
tion, we employ the Best-buddy loss. And we also add the Back-projection loss as a constraint for the
faithful reconstruction of the high-resolution image distribution. Extensive experiments demonstrate
the superior perceptual quality and reliability of our proposed ESTUGAN in reconstructing remote
sensing images.

Keywords: Swin Transformer; U-Net discriminator; remote sensing image; super-resolution; generative
adversarial network

1. Introduction

The rapid development of modern aerospace technology has put remote sensing im-
agery into wider use in the remote sensing field. Remote sensing images are essential for
applications such as target detection and tracking. However, obtaining high-resolution (HR)
remote sensing images can be challenging due to technical limitations and cost constraints.
Image super-resolution (SR) is a promising option and a heated technology in recent years
that provides critical research significance. In recent years, deep learning-based methods
for single image super-resolution (SISR) have made remarkable achievements. Since the
proposal of the SRCNN [1] by Dong et al. in 2014, CNN-based methods have significantly
advanced the field of SR. Scholars have continuously improved network architecture and
proposed elaborate structures [2–4], such as residual learning, dense connectivity, Laplace
pyramid, and so on. RCAN [5] has achieved another pinnacle of peak signal-to-noise ratio
(PSNR) by adding the channel attention module to the CNN-based architecture. How-
ever, CNN-based methods face an unavoidable obstacle when it comes to SR. Due to the
design of the convolutional layer, convolution kernels interact with the image in a content-
independent process. It is illogical to use the same convolutional kernel to reconstruct
different areas of the image. The transformer architecture [6–9] stands out in this case,
employing the self-attention mechanism for global interaction and achieving significant
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performance in several visual tasks. However, due to the quadratic complexity of pro-
cessing images, transformer-based models tend to generate a large number of parameters
and are computationally intensive. The Swin Transformer [10] was created to combine
the advantages of transformer- and CNN-based models, not only establishing long-term
dependencies between images, but also processing large-sized images through a local at-
tention mechanism. SwinIR [11] firstly applies the Swin Transformer to the field of SISR; it
achieves the optimal PSNR with fewer parameters and is an enormous prospect. HAT [12]
activates more input signals by concatenating the channel attention mechanism in the Swin
Transformer layer and proposes the overlapping cross-window attention mechanism to
optimize cross-window information interaction.

While the methods mentioned above have achieved high PSNR scores, they can
produce ambiguous results. This is because they often use MSE or MAE for the one-to-one
supervision of a single low-resolution (LR) image corresponding to a single high-resolution
(HR) image, which can lead to pixel averaging and overly smooth and blurred outcomes.
Remote sensing images are mainly used in the fields of object detection as well as geologic
analysis, and we believe that the over-smoothed and blurred results generated by these
networks will have a negative impact on some of the categories. To obtain more realistic
images, researchers have employed Generative Adversarial Networks (GANs) to recover
images with rich texture details [13–16]. Although these methods have made considerable
progress, further research is necessary due to their difficulty in training and tendency to
produce artifacts. An alternative approach proposed by [17] is the Best-buddy loss, which
breaks the strict mapping between LR and HR set by MSE or MAE. This approach allows
multiple patches close to ground truth to supervise SR, reducing the difficulty of network
training while improving the perceptual quality of reconstructed images.

The learning-based approaches mentioned above offer a new development direction
for the remote sensing image SR task. LGCNet [18] is the first CNN-based SR model for
remote sensing images that outperforms traditional methods and verifies the effectiveness of
deep learning methods. Jiang et al. [19] propose an edge enhancement network based on a
GAN to enhance the edge by learning noise masks. Some algorithms [20–26] have achieved
considerable success by adding elaborate structural designs or various attention mechanisms
to CNN. Currently, learning-based methods in remote sensing image SR are developing
rapidly and have achieved remarkable progress, but the challenges are still significant.

The selection of a reconstruction network better suited to the characteristics of remote
sensing images is a challenging problem, because remote sensing images are characterized
by a large spatial span, complex texture structure, and few pixels covered by objects, which
undoubtedly produce further difficulties to reconstruction tasks [27]. To faithfully restore
high-resolution images, we adopt the Swin Transformer as the backbone, which can realize
long-term dependency modeling with shift windows and exploit the internal self-similarity
within remote sensing images. Specifically, we adopt the Residual Hybrid Attention
Group (RHAG) proposed by HAT [12] and refine its network design to obtain significant
performance with fewer parameters, which is named the Enhanced Swin Transformer
Network (ESTN).

However, simply utilizing a more powerful reconstruction network will not completely
achieve satisfactory results in the remote sensing image SR task. This is because objects in
remote sensing images cover fewer pixels, and a ship may be represented by only several
pixels. Employing PSNR-based methods is vulnerable to blurred results, while GANs
offer a decent solution. In addition, remote sensing images contain more diverse texture
features and different regions with distinct texture differences [27]. We discovered that
regions with different texture complexity in remote sensing images should not adopt the
same supervision strategy. Adversarial learning should be performed for texture-rich
regions to facilitate the reconstruction of fine details. However, for the smooth region,
the PSNR-based method is sufficient to recover satisfactory results. Instead, feeding such
regions into the discriminator may lead to uncomfortable artifacts. Existing methods do
not take this concern into account. To resolve the above problems, we propose the U-Net
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discriminator with the region-aware learning strategy. On the one hand, the U-shaped
network design allows the discriminator to fully integrate the structural information at
each hierarchy level and finally obtain pixel-by-pixel feedback. On the other hand, it can
divide the areas according to texture complexity, and only the detailed regions are fed into
the discriminator, forcing the discriminator to focus on distinguishing complex areas and
greatly suppressing artifacts. Accordingly, our discriminator can effectively assist the ESTN
in predicting realistic and highly detailed images.

To further improve the perceptual quality, we also introduce the Best-buddy (BB)
loss [17] and Back-projection (BP) loss to break the rigid mapping from the LR space to the
HR space. This reduces the training difficulty and contributes to the recovery of realistic
texture details.

Overall, the main contributions of our work are as follows:

(1) We propose a promising framework, ESTUGAN, which adopts the Enhanced Swin
Transformer as the generator backbone and a U-Net discriminator. The Enhanced
Swin Transformer is capable of mobilizing more input information to model local
content, benefiting from united channel attention and self-attention. In addition, it em-
ploys an overlapping cross-attention mechanism to further aggregate cross-window
information with stronger representational capabilities. Extensive experiments demon-
strate that our proposed network outperforms other methods when targeting remote
sensing image SR.

(2) We propose a U-Net discriminator with the region-aware learning strategy to recon-
struct highly detailed remote sensing images. The region-aware learning strategy can
effectively suppress artifacts by masking flat regions and feeding only texture-rich
regions to the discriminator for adversarial training. Moreover, the U-shaped network
is designed with jumping connections that allows for the connection of shallow de-
tailed content with deep semantic information, providing intensive feedback for each
pixel’s authenticity.

(3) The BB loss and BP loss are employed to further enhance the visual quality of the
image. Multiple supervised signals that are similar to the ground truth are utilized to
flexibly guide the image reconstruction; this reduces the training difficulty and helps
to generate high-frequency information.

2. Related Works

The following contents list some aspects of the previously proposed methodology
related to our proposed ESTUGAN:

2.1. Swin Transformer

The Swin Transformer [10] is a universal backbone for vision tasks and represents
one of the first hierarchical vision transformers. Due to its excellent performance and
parallelization accessibility, it has become the state-of-the-art technology for various vision
tasks such as target detection and image segmentation. The core idea of the Swin Trans-
former is to compute self-attention within a non-overlapping movable window, which
makes the model computation linear with respect to the feature map resolution, and greatly
compresses the cost of self-attention. SwinIR introduces the Swin Transformer to image
SR for the first time, further refreshing the state of the art of SR tasks. However, there is
still substantial room for improvement in the Swin Transformer. The window attention
mechanism [28–30] has limitations, and the exchange of information across windows and
the shallow message mobilization both require further optimization.

2.2. Generative Adversarial Network

Nowadays, GANs have been widely explored and have achieved remarkable achieve-
ments in various image processing domains such as style migration, super resolution,
image complementation, and denoising tasks [31–33]. This approach is mainly inspired
by the idea of competition in game theory, which is applied to deep learning by construct-
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ing two deep learning models: a generative network G (generator) and a discriminator
network D (discriminator). The two models are then continuously played against each
other to make G generate realistic images, while D has the powerful ability to determine
the image authenticity. To reconstruct images with high perceptual quality, SRGAN in-
troduces a discriminator that guides the generator to recover the fine texture information
by adversarial loss. ESRGAN [15] proposes Residual-in-Residual Dense Blocks (RRDB) to
build the network and invokes the relativistic GAN to make discriminators predict relative
truthfulness, winning first prize in the PIRM 2018-SR Challenge. These approaches have
been widely adopted as the mainstream of perception-based image SR algorithms.

2.3. Loss Function on Deep Learning

It is obvious that SISR is inherently an ill-posed problem, where a LR image often
corresponds to multiple HR images. Proper guidance of the model to find the region in
the latent space closest to the real HR image is the key to the SR problem. Therefore, a
suitable loss function becomes particularly relevant. In existing studies, most algorithms
adopt MAE/MSE loss to make the SR image approximate to the ground truth pixel by
pixel. This pixel-level loss is beneficial to upgrade the PSNR but is detrimental to the
reconstruction of texture details [34]. To solve this problem, perceptual loss [35] is proposed
to compute the similarity of deep features to enhance the perceptual quality. Fuoli et al. [36]
propose Fourier spatial loss to facilitate the recovery of lost high frequency information.
Benefiting from perceptual loss and adversarial loss, SRGAN [13,14] and ESRGAN [15]
recover photo-realistic outcomes, but they face the possibility of annoying artifacts. Liang
et al. introduce the Local Discriminant Learning (LDL) strategy [37] that explicitly penalizes
artifacts without sacrificing real details, alleviating the artifact problem partly. Li et al.
suggest the Best-buddy loss [17] to address the above problems. The estimated patches
are enabled to seek optimal supervision dynamically during training, contributing to the
production of more reasonable details.

2.4. Deep Learning Based SISR for Remote Sensing Images

In recent years, deep learning based SISR has become mainstream due to the powerful
extraction capabilities of deep neural networks. And these approaches also lead to the
development and advancement of remote sensing image SR algorithms. The CNN-based
SISR was widely adopted by scholars in the early days; they retrained the network on
remote sensing images and designed elaborate network architectures for feature extraction.
LGCNet [18] learns hierarchical representations of remote sensing images by constructing
a “multifork” structure. DDRN [38] proposes ultra-dense residual blocks to construct a
simple but effective recursive network. Similarly, many refined structural designs have
been applied to the network with impressive achievements. However, the convolutional
kernel interacts with the image in a content-independent manner, which limits the recon-
struction of texture details. Some works enhance the expressive power of the model by
adding various attentional mechanisms, such as MHAN [39] and SMSR [40]. But these
approaches tend to be computationally intensive and still have long-term dependency
modeling difficulties. In addition, the above method adopts the learning strategy which
maximizes the PSNR and encourages the model to find the pixel mean, leading to blurred
results. Regarding this topic, several related works have made promising progress. On
the one hand, adversarial learning strategies have been employed by some works, such
as SRGAN and ESRGAN, in order to reconstruct photo-realistic images. MA-GAN [27]
and SRAGAN [41] combined a GAN with attention mechanisms to upgrade the visual
quality of remote sensing images. On the other hand, some loss functions [35–37] have been
proposed to motivate the generation of high-frequency content. However, these solutions
are still not perfect, since problems remain, like the difficulty of GAN training and the
potential for artifacts. Our work is based on a GAN, which employs the Swin Transformer
as the generator for long term dependency modeling, and a U-Net discriminator with
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the region-aware strategy to facilitate high-frequency detail generation while suppressing
artifacts to a certain extent.

2.5. Image Super Resolution Quality Assessment

SR image quality assessment is an effective way to evaluate and compare SR methods,
which is an important guide for model optimization and parameter selection. Subjective
human assessment represents a highly reliable evaluation approach, but it tends to be
time-consuming and laborious. The PSNR [42] is the most popular metric to assess the
reconstruction performance by calculating only the purely mathematical difference of
pixels. Wang et al. [43] simulate the human visual system and propose an evaluation
scheme based on structural similarity. However, these two options sometimes differ
from the human eye’s perceptual quality, leading to ambiguous predictions. In order
to maintain better consistency with subjective quality evaluations, a comparison of the
feature similarity between images is employed by Zhang et al. [44] to estimate the distance
from the prediction to the ground truth. The SFSN model [45] aims to find a balance
between structural fidelity and statistical naturalness. Then, SRIF [46] is proposed to
merge deterministic fidelity and statistical fidelity into a single prediction. Thanks to the
development of deep learning, Ref. [47] extracts deep features to appraise the Learned
Perceptual Image Patch Similarity (LPIPS) between two images, which is more in line
with the human perceptual situation. DeepSRQ [48] with deep two-stream convolutional
networks provides a satisfactory solution to the problem of no-reference evaluation.

3. Methods

In this section, we first present a brief overview on the workflow of our algorithm,
and then we give a detailed description for the generator, the U-Net discriminator with the
region-aware learning strategy, and the loss function employed by ESTUGAN, respectively.

3.1. Overview of ESTUGAN

For recovering images with superior perceptual quality, we designed the ESTUGAN
based on a GAN, which consists of the ESTN as the generator, and the U-Net discriminator.
The principal framework is shown in Figure 1. Given an LR image ILR ∈ RH×W×C, an SR
image ISR ∈ RrH×rW×C (r is the scale factor) can be obtained by the generator, denoted as

ISR = G(ILR) (1)

where G(·) denotes the generator. Subsequently, unlike the approach of [14], which feeds
ISR directly to the discriminator, in our approach, ISR is sent to the region-aware adver-
sarial learning stage, where we feed only regions with rich texture details to the U-Net
discriminator for authenticity judgments by regional division processing. Finally, the dis-
criminator outputs the real probability map and feeds it back to the generator, prompting
the generation of real abundant details. In a GAN, the generator is urged to deceive the
discriminator by creating realistic fake HR images, while the discriminator is trained to be
powerful in discriminating authenticity, and both of them compete against each other to
make the SR image distribution gradually approximate the real image distribution.

3.2. The Architecture of the Generator

As shown in Figure 2, we keep the high-performance architecture design of SwinIR [11],
and the whole generator is composed of three modules: shallow feature extraction, deep
feature extraction, and image reconstruction.

In the shallow feature extraction module, we employ a separate convolutional layer to
map the input image to a high-dimensional space. It helps the visual representation to be
learned better and optimized stably. The extracted shallow features can be expressed as

F0 = HSF(ILR) (2)
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where HSF(·) denotes the shallow feature extraction.
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Figure 1. The overview of our proposed ESTUGAN. The proposed U-Net discriminator with region-
aware learning strategy focuses on adversarial learning in texture-rich regions and outputs a map for the
true situation of each pixel. We use Best-buddy loss, Back-projection loss, perceptual loss, and adversarial
loss to supervise the generator, and adversarial loss to guide the optimization for the discriminator.
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Figure 2. The framework of our proposed ESTN generator, which consists of three modules in
total, including the deep feature extraction module, shallow feature extraction module, and image
reconstruction module.

In the deep feature extraction module, we adopt a new basic block inspired by
HAT [12], called Residual Hybrid Attention Group. And we rename it to Enhanced Swin
Transformer Block (ESTB) for the convenience of description, the architecture of which is
shown in Figure 2a. It integrates the channel attention mechanism and the overlapping
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cross-attention block (OCAB), which achieves an effective aggregation for cross-window
information. In addition, we insert a second residual mechanism after the convolution
kernel behind the fourth ESTB. Although the residual block [49] can increase the perceptual
field, we find that in low-level reconstruction tasks, such as image SR, excessively long
residual connections will on the contrary weaken the generation quality of the reconstructed
images, because overly abstract high-dimensional features can make network learning
more difficult and cause degradation in the performance of the generation network [50].
To further demonstrate the effect of the number of residual blocks and the number of
connection dimensions on the network performance, we set up three different networks in
the ablation study section to demonstrate the superior performance of our network. The
processes can be formulated as follows:

FDF = Hi
DF(F0) + F0 (3)

F′DF = Hi
DF(FDF) + FDF (4)

where Hi
DF(·) denotes the deep feature extraction module, containing i ESTB blocks and a

3 × 3 convolutional layer. In this paper, i is set to 4 in Equation (3), and in Equation (4), i is
set to 2.

In the image reconstruction module, we use jump connections to aggregate deep
features and shallow features and reconstruct high-resolution images with the pixel-shuffle
method [51]. It can be expressed as

ISR = HRec
(

F′DF
)

(5)

where HRec(·) indicates reconstruction module.

3.3. U-Net Discriminator with Region-Aware Learning Strategy

As for the discriminator, inspired by [52,53], we adopt the U-Net discriminator, which
essentially consists of an encoder and a decoder to be connected, as shown in Figure 3.
The encoder continuously downsamples the ISR in order to obtain the global information,
and finally reacts to the overall image reality. While the decoder is dedicated to the local
information authenticity judgment, it keeps performing progressive upsampling operations
to output the per-pixel reality with the same resolution as ISR. In addition, skip connections
are applied to facilitate the information communication between the two networks, further
promoting the detailed recovery. Such a structural design forces the discriminator to focus on
the structural and semantic message differences between fake and genuine samples, pursuing
the accuracy of the global context and local information of the reconstruction outcome.
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Figure 3. The framework of our proposed U-Net discriminator.

For addressing the artifacts of the GAN-based methods [17], the region aware strategy
is appended within the U-Net discriminator, as shown in Figure 1. The smooth regions
and texture-rich regions of ISR are separated by the statistical local pixel distribution of
IHR, and only texture-rich regions are fed into the U-Net discriminator for adversarial
learning. This not only avoids the generation of artifacts in smooth areas, but also permits
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the discriminator to focus on regions where fine realistic details are required to be recovered,
assisting the reconstruction of perceptually realistic images. Regarding the specific region-
aware learning strategy, we first perform the unfold operation with kernel size k on IHR to
obtain rH× rW patches Qi,j with size k2. The standard deviation std

(
Qi,j
)

is then calculated
for each patch, and the final binary feature map Mi,j is obtained by comparison with the
pre-set threshold, which is denoted as

Mi,j =

{
0, std

(
Qi,j
)
≤ θ

1, std
(
Qi,j
)
> θ

(6)

where i and j denote the specific locations of patches, and the pixel values are set to 0
for flat regions and 1 for texture-rich regions in the map. Finally, ISR_mask is obtained by
multiplying Mi,j with ISR.

In addition, we also introduce the spectral normalization regularization [54] to further
secure the stability of training and suppress artifacts.

3.4. Loss Function
3.4.1. Best-Buddy Loss

Since a single LR image can correspond to multiple HR images, SISR is intrinsically an
indeterminate problem. For a given HR-LR pair, the commonly adopted MSE/MAE loss
tends to perform a one-to-one rigid mapping, as shown in the blue diagram of Figure 4.
This overlooks the intrinsic uncertainty of SISR, resulting in reconstructed images lacking
high-frequency information. In order to overcome the limitation caused by the supervision of
ISR from a single IHR, we refer to [55–59] and adopt the BB loss. It allows diverse supervised
patches pi

hr∗ to positively steer the predicted patches psr and achieves the multiplicity of
supervision, as shown in the yellow diagram of Figure 4. For pi

hr∗ , it should be as close as
possible to both the predicted patches psr and the patch phr of IHR, which can be expressed as

pi
hr∗ = argmin

p∈B

∥∥∥p− pi
hr

∥∥∥2

2
+
∥∥∥p− pi

sr

∥∥∥2

2
(7)

where ‖·‖2 expresses L2 loss, B denotes the supervised candidate database [17] of this
image, which is obtained from the three-level image pyramid expansion achieved by the
bicubic downsample operation, and i denotes the number of iterations. Then, the BB loss of
this patch can be expressed as

LBB

(
pi

sr, pi
hr∗
)
=
∥∥∥pi

sr − pi
hr∗

∥∥∥
1

(8)

where ‖·‖1 denotes L1 loss.

3.4.2. Adversarial Loss

Adversarial loss is employed to facilitate perceptually realistic image generation, and
the adversarial loss of the generator and discriminator are respectively denoted as

Ladv_G = LBCE(D(ISR), Ureal) (9)

Ladv_D = LBCE(D(IHR), Ureal) + LBCE

(
D(ISR), U f ake

)
(10)

where LBCE(·) denotes binary cross entropy loss, D(·) denotes the output of the discrimi-
nator, which is a tensor of shape rH × rW × 1, Ureal and U f ake are tensors with the same
shape as D(·), where all the values of Ureal are 1 for real labels and all the values of U f ake
are 0 for fake labels.
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(ground truth), predicted HR patch, and Best-buddy HR patch in the current iteration, respectively.

3.4.3. Perceptual Loss

The perceptual loss is calculated utilizing the three layers, conv3−4, conv4−4, and
conv5−4, of the feature maps in the pre-trained VGG19 network, which can be expressed as

Lp = ∑5
i=3 αi‖convi−4(ISR)− convi−4(IHR)‖1 (11)

where αi denotes the weight occupied by each layer, and α3 = 1/8, α4 = 1/4, and α5 = 1/2,
respectively.

3.4.4. Back-Projection Loss

The adoption of BP loss forces the LR image obtained by downsampling ISR with
r times to match ILR, achieving further supervision for ISR in the low-resolution image
space, which can be denoted as

LBP = ‖bi(ISR, r)− ILR‖1 (12)

where bi(·, r) denotes the bicubic downsampling operation with a scale factor r.
Thus, the overall generator loss can be expressed as

LG = µ1LBB + µ2Ladv_G + µ3Lp + µ4LBP (13)
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4. Experiments and Analysis
4.1. Datasets in Experiments

To validate the effectiveness of our proposed method, we selected four public remote
sensing datasets, including the NWPU-RESISC45 dataset [60], the UCMerced dataset [61],
the RSCNN7 dataset [62], and the DOTA dataset [63]. These datasets all consist of numerous
RGB images and are extensively adopted in the remote sensing image SR field.

4.1.1. NWPU-RESISC45 Dataset

This dataset encompasses 45 classes of remote sensing images with high inter-class
similarity and intra-class diversity. It contains a total of 31,500 images with a resolution of
256 × 256 pixels. We randomly selected 10 images in each category as the testing set for
our experiments and used the rest as the training set. Some of the training set images are
shown in Figure 5.
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4.1.2. UCMerced Dataset

The UCMerced dataset is widely adopted for remote sensing image visual processing
tasks, consisting of 21 categories, with 100 images per category. The images were cap-
tured by the remote sensing satellites of the University of California, Merced, and have
a resolution of 256 × 256 pixels, covering various scenes, such as urban areas, forests,
and farmlands. We randomly selected 10 images in each category as the testing set for
our experiments, which can test the effectiveness of our approach and its robustness after
training on the NWPU-RESISC45 dataset.

4.1.3. RSCNN7 Dataset

The RSCNN7 dataset consists of seven categories covering 2800 images and each
image has 400 × 400 pixels. This dataset is sampled at different scales and takes into
account weather variability and seasonal changes.
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4.1.4. DOTA Dataset

The DOTA dataset consists of 2806 aerial images, each with pixel sizes ranging from
800 × 800 to 4000 × 4000, containing objects in various scales, shapes, and orientations.
These images are annotated for 15 common target categories, including airplanes, ships,
storage tanks, baseball fields, tennis courts, basketball courts, surface runways, harbors,
bridges, large vehicles, small vehicles, helicopters, roundabouts, soccer fields, and basket-
ball courts.

4.2. Quantitative Evaluation Metrics

In this paper, we judge the various methods using three typical image quality evalua-
tion metrics, which are the peak signal-to-noise ratio (PSNR), the structure similarity index
measure (SSIM), and the learned perceptual image patch similarity (LPIPS).

4.2.1. PSNR

The PSNR [42] is a common measure of signal reconstruction quality, and it is often
defined simply by the mean squared error (MSE). For two monochrome images I and K
with a size of m × n, their mean squared differences are defined as

MSE =
1

mn∑m−1
i=0 ∑n−1

j=0

∣∣∣∣∣∣I(i, j)− K(i, j)
∣∣∣|2 (14)

Thus, the PSNR can be expressed as

PSNR = 10log10

(
MAX2

I
MSE

)
(15)

where MAX I denotes the maximum pixel value in image I, and a higher PSNR value means
less distortion.

4.2.2. SSIM

The SSIM [43] is also a full-reference image quality evaluation criterion, which mea-
sures image similarity in terms of brightness, contrast, and structure, respectively. It can be
expressed as

SSIM =

(
2µxµy + C1

)(
2σxσy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (16)

where µx and µy denote the mean pixel values for the two images, respectively, σx and σy
denote the standard deviation for each image, and C1 and C2 are constants. The SSIM value
ranges from 0 to 1, and the higher the value, the less the image distortion.

4.2.3. LPIPS

The LPIPS [47] evaluates the perceptual similarity between images according to a deep
learning model, which corresponds more closely to human perception than the PSNR and
SSIM do [34]. The LPIPS can be expressed as

LPIPS(IHR, ISR) = ∑l
1
nl

∥∥∥ωl
⊙

(φ(IHR)l − φ(ISR)l)
∥∥∥2

2
(17)

where φ(·)l indicates the feature map of the l-th convolutional layer, and nl denotes the
quantity of elements in φ(·)l .

⊙
denotes the product operation in the channel dimension,

and ωl represents a learned weight vector. A lower value of LPIPS means that the two
images are more similar in human perception.
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4.3. Experimental Details

Our experiment was conducted on the NVIDIA Tesla V100 GPU. The input image
size was set to 48 × 48 and the batch size was eight. We employed the bicubic operation
to downsample the original high-resolution image to obtain the HR-LR training pair. The
channel of our ESTN was set to sixty, and the attention heads and the window size were set
to six and sixteen, respectively.

Adam was set as our optimizer and β1 = 0.9, β2 = 0.999, the learning rate was 1× 10−4

while the initial stage utilized preheating and cosine decay. k and θ were introduced in the
method were are set to 11 and 0.025, respectively. As for the loss function, µ1, µ3, and µ4
were set to 1, while µ2 was set to 0.005 (refer to [17]).

4.4. Comparison with State-of-the-Art Methods
4.4.1. Quantitative Comparison

In our experiments, we validated the performance of our model ESTUGAN by comparing
it with six deep-learning SR methods, including RCAN [5], RRDB, SwinIR [11], SRGAN [14],
ESRGAN [15], and BebyGAN [17]. We selected 31050 images from the NWPU-RESISC45
dataset as the training set and 450 images as the testing set. In addition, to verify the
generalizability of these models, we included 210 randomly selected images in the UCMerced
dataset, 800 randomly selected images in the DOTA dataset, and all the images in the RSCNN7
dataset as additional test sets. Under the same conditions, we tested all the methods with the
4× amplification and evaluated them using the PSNR, SSIM, and LPIPS metrics.

Table 1 shows the quantitative results. It can be seen that the proposed approach
achieves the most satisfactory results. In the comparison with the GAN-based methods
(SRGAN, ESRGAN, and BebyGAN), ESTUGAN achieves the maximum PSNR and SSIM,
and achieves the lowest LPIPS, demonstrating that it reconstructs images with optimal
accuracy and perceptual quality. It is worth mentioning that ESTUGAN still maintains the
best performance on three additional test sets, validating the scalability of our proposed
model. In contrast, the performance of SRGAN on the DOTA dataset shows a distinct
decline, reflecting the model’s shortcomings in generalizability. In the comparison with
CNN-based methods (RCAN, RRDB, SwinIR), the proposed method also achieves amazing
results, just slightly lower than SwinIR and higher than the other compared methods.
Although it is slightly lower than SwinIR in performance, the number of parameters and
FLOPs of our method are only one-fourth of those of SwinIR (illustrated in Section 4.6).
The proposed method greatly saves computational resources and efficiency in the SR task
for remote sensing images. The ESTN also achieves quite robust results with minimal
parameters when evaluated using three additional test sets.

We also compared these methods on 45 category scenarios from the NWPU-RESISC45
dataset; as shown in Table 2, ESTUGAN outperforms the comparison methods for each
scenario. Among them, the PSNR of ESTUGAN, in several scenes such as aircraft, desert,
circular farmland, and industrial area, is higher than BebyGAN by over 0.3 dB, and ESTU-
GAN achieves the lowest LPIPS in all scenes, which means the predicted images generated
by our method have the optimum visual effect. It also proves that our method can be
fine-tuned for different scenes to faithfully reconstruct the actual image distribution.

4.4.2. Qualitative Comparison

We also performed a qualitative comparison to verify the effectiveness of ESTUGAN,
as shown in Figure 6. Compared to SRGAN, ESRGAN, and BebyGAN, our proposed
method generates more accurate structure information and minimum artifacts, especially
in the flat areas. We also reconstruct sharper and more detailed results compared to
PSNR-based methods. The effectiveness of our method is well proven.
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Table 1. Qualitative comparison of PSNR, SSIM, and LPIPS in the NWPU-RESISC45, the UCMerced
dataset, the RSCNN7 dataset, and the DOTA dataset at a four-time scale factor.

Method
NWPU-RESISC45 UCMerced

PSNR SSIM LPIPS PSNR SSIM LPIPS

Bicubic 27.61 0.697 0.528 26.96 0.698 0.492
RCAN 29.23 0.772 0.346 28.86 0.776 0.318
RRDB 29.20 0.770 0.362 28.86 0.775 0.338

SwinIR 29.42 0.779 0.340 29.17 0.787 0.312
ESTN (ours) 29.39 0.777 0.341 29.11 0.785 0.312

SRGAN 25.26 0.644 0.233 24.13 0.645 0.258
ESRGAN 26.18 0.711 0.263 25.24 0.717 0.259
BebyGAN 27.80 0.718 0.261 27.28 0.724 0.257

ESTUGAN (ours) 28.12 0.725 0.204 27.81 0.739 0.208

Method
RSCNN7 DOTA

PSNR SSIM LPIPS PSNR SSIM LPIPS

Bicubic 27.99 0.684 0.592 30.89 0.809 0.431
RCAN 29.17 0.744 0.441 33.66 0.868 0.267
RRDB 29.16 0.744 0.449 33.65 0.868 0.273

SwinIR 29.33 0.751 0.436 33.98 0.873 0.264
ESTN (ours) 29.30 0.749 0.438 33.95 0.872 0.266

SRGAN 25.23 0.608 0.284 26.31 0.732 0.272
ESRGAN 26.24 0.692 0.331 28.19 0.824 0.246
BebyGAN 28.07 0.698 0.318 31.06 0.829 0.233

ESTUGAN (ours) 28.15 0.699 0.271 32.17 0.829 0.179

4.5. Ablation Study

We conducted ablation experiments on the test set to verify the performance of the
proposed components. In order to verify the performance of the U-Net discriminator,
we adopted BebyGAN and ESTUGAN as the baseline to test their performance with the
U-Net discriminator and regular discriminator [14,15] respectively. As shown in Figure 7,
after adopting the U-Net discriminator, the PSNR of BebyGAN improves by 0.22 dB, the
LPIPS decreases by 0.012, and the SSIM increases by 0.001 dB. When replacing the U-Net
discriminator with a regular discriminator in the proposed method, the PSNR drops by
0.146 dB, the LPIPS rises 0.008, and the SSIM decreases by nearly 0.01 dB, which significantly
affects the reconstruction performance. This shows that the U-Net discriminator provides a
more robust ability to identify authenticity. Meanwhile, we visualized the results of the
discriminator determination, and the results are shown in Figure 8c, where the black pixels
denote that the discriminator makes a negative judgment, while the white pixels indicate
that the discriminator generates a positive judgment. Such an accurate pixel-by-pixel
judgment facilitates the generator to produce better results for the LPIPS.

In addition, we also verified the effectiveness of the BB loss and the region-aware
learning strategy in our approach, as shown in Table 3. Due to the elimination of the
BB loss, the performance decreases on both test sets. Similarly, the PSNR, SSIM, and
LPIPS deteriorate after the removal the region-aware strategy. It is noteworthy that the
performance of the model without the BB loss and the region-aware learning strategy
deteriorates more significantly on the UCMerced test set than on the NWPU-RESISC45
dataset. This observation underscores the potential benefits of incorporating the BB loss
and the region-aware learning strategy to enhance the model generalizability.

Finally, to demonstrate the performance of our improved deep feature extraction
module in the generator, we compared it with two baselines which have the same deep
feature extraction module as HAT [12]. We set the number of channels to sixty and the
ESTB to four (denoted as baseline1) and six (denoted as baseline2), respectively. Table 4
records the comparison results of our ESTN with two baselines on the UCMerced dataset.
As can be seen from the experimental results, neither of the two baselines perform as well
as our network. Although baseline2 has a deeper network structure, the effect is not better
than baseline1. This proves that the residual structure will suffer performance degradation
in the long-term feature extraction phase, and that cascading between residual structures
will improve the performance of the remote sensing image SR task.
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Table 2. SR results for each class in the NWPU-RESISC45 dataset at a four-time scale factor.

Scene Class Bicubic
PSNR/LPIPS

RCAN
PSNR/LPIPS

SwinIR
PSNR/LPIPS

SRGAN
PSNR/LPIPS

ESRGAN
PSNR/LPIPS

BebyGAN
PSNR/LPIPS

ESTN (Ours)
PSNR/LPIPS

ESTGAN
(Ours)

PSNR/LPIPS

Airplane 28.57/0.434 31.05/0.229 31.42/0.225 26.84/0.168 26.15/0.207 29.24/0.207 31.32/0.224 29.99/0.153
Airport 27.83/0.551 29.13/0.394 29.26/0.393 25.63/0.244 25.90/0.284 28.01/0.287 29.22/0.395 28.17/0.242

Baseball diamond 27.69/0.520 29.69/0.314 29.88/0.312 26.23/0.201 26.81/0.226 28.44/0.238 29.85/0.312 28.40/0.175
Basketball court 26.53/0.510 28.74/0.276 29.06/0.265 25.75/0.205 26.18/0.253 27.40/0.249 29.01/0.264 27.37/0.176

Beach 30.05/0.485 31.30/0.350 31.36/0.346 27.13/0.205 26.13/0.281 29.23/0.275 31.36/0.347 30.26/0.227
Bridge 29.04/0.450 31.05/0.265 31.23/0.258 28.18/0.169 28.23/0.212 29.56/0.224 31.21/0.259 29.81/0.166

Chaparral 25.54/0.533 27.14/0.324 27.31/0.327 20.74/0.329 24.59/0.233 25.82/0.247 27.31/0.324 25.74/0.158
Church 24.49/0.568 26.39/0.321 26.60/0.315 23.50/0.207 24.43/0.264 25.28/0.276 26.57/0.318 25.25/0.194

Circular farmland 31.21/0.448 33.26/0.246 33.43/0.242 29.99/0.150 28.32/0.197 31.52/0.202 33.41/0.241 32.12/0.153
Cloud 34.81/0.362 36.21/0.267 36.38/0.275 29.07/0.168 27.92/0.159 32.37/0.164 36.35/0.274 34.73/0.153

Commercial area 25.98/0.576 27.53/0.341 27.67/0.334 24.45/0.239 25.38/0.275 26.50/0.282 27.66/0.333 26.51/0.207
Dense residential 22.43/0.660 23.84/0.411 24.01/0.391 20.20/0.257 22.56/0.286 23.02/0.294 24.00/0.391 22.87/0.206

Desert 32.17/0.472 33.13/0.361 33.23/0.361 27.03/0.214 25.05/0.289 30.76/0.270 33.26/0.359 32.08/0.230
Forest 28.47/0.653 29.00/0.553 29.03/0.547 22.33/0.392 27.79/0.358 28.11/0.319 29.04/0.546 27.64/0.288

Freeway 27.34/0.544 28.79/0.350 29.16/0.333 25.71/0.235 26.81/0.266 27.78/0.266 29.06/0.335 27.84/0.198
Golf course 29.26/0.531 31.11/0.340 31.20/0.342 27.53/0.188 28.56/0.243 29.81/0.259 31.20/0.340 29.83/0.188

Ground track field 27.22/0.520 28.89/0.327 29.19/0.318 24.99/0.203 26.55/0.230 27.64/0.239 29.10/0.321 27.75/0.168
Harbor 21.44/0.534 22.91/0.309 23.33/0.273 20.25/0.177 21.83/0.224 22.14/0.228 23.22/0.281 22.04/0.171

Industrial area 27.04/0.509 28.88/0.315 29.09/0.316 24.77/0.198 25.75/0.237 27.35/0.246 29.04/0.315 27.77/0.188
Intersection 23.44/0.587 25.19/0.340 25.38/0.323 22.50/0.269 23.19/0.306 24.02/0.308 25.43/0.327 24.29/0.226

Island 36.18/0.283 37.43/0.189 37.64/0.187 33.43/0.124 29.52/0.158 32.35/0.160 37.67/0.187 35.94/0.124
Lake 30.65/0.495 31.78/0.377 31.84/0.377 26.27/0.262 28.62/0.265 30.19/0.259 31.84/0.378 30.65/0.233

Meadow 29.36/0.675 29.61/0.610 29.63/0.608 24.80/0.357 28.43/0.480 28.92/0.366 29.63/0.605 28.62/0.363
Medium residential 27.45/0.639 28.67/0.442 28.77/0.436 24.97/0.267 26.95/0.310 27.73/0.341 28.74/0.435 27.53/0.242
Mobile home park 22.76/0.660 24.62/0.407 24.84/0.395 21.56/0.236 23.18/0.313 23.69/0.340 24.81/0.393 23.60/0.235

Mountain 29.70/0.555 30.55/0.444 30.60/0.444 26.74/0.268 27.23/0.290 29.45/0.293 30.60/0.443 29.54/0.257
Overpass 27.71/0.515 29.66/0.329 29.83/0.321 27.18/0.199 27.16/0.247 28.48/0.260 29.82/0.325 28.61/0.188

Palace 26.34/0.533 28.11/0.338 28.31/0.333 23.38/0.255 25.75/0.237 26.94/0.237 28.29/0.337 27.03/0.185
Parking lot 21.36/0.579 23.08/0.326 23.46/0.301 20.13/0.229 21.57/0.271 21.93/0.271 23.35/0.301 22.30/0.215

Railway 26.98/0.569 28.37/0.376 28.57/0.366 25.76/0.219 26.51/0.286 27.42/0.289 28.48/0.372 27.35/0.209
Railway station 25.95/0.547 27.65/0.367 27.93/0.360 24.76/0.212 25.13/0.258 26.49/0.253 27.91/0.361 26.82/0.203

Rectangular farmland 31.36/0.542 32.78/0.361 32.93/0.356 30.50/0.214 28.86/0.296 31.16/0.291 32.92/0.358 31.72/0.241
River 29.20/0.482 30.98/0.302 31.13/0.297 27.97/0.176 27.65/0.210 29.53/0.214 31.12/0.298 29.78/0.177

Roundabout 24.97/0.572 26.41/0.385 26.57/0.382 23.75/0.244 24.41/0.283 25.58/0.293 26.56/0.381 25.51/0.226
Runway 29.35/0.437 33.07/0.240 33.87/0.234 29.01/0.171 27.63/0.216 30.71/0.218 33.63/0.235 31.95/0.157
Sea ice 29.60/0.447 31.38/0.303 31.49/0.298 22.89/0.378 27.94/0.221 29.65/0.221 31.47/0.302 30.14/0.182
Ship 27.67/0.494 29.58/0.292 29.79/0.281 26.34/0.203 26.56/0.266 28.25/0.261 29.72/0.286 28.44/0.187

Snowberg 23.89/0.550 25.10/0.408 25.22/0.400 19.42/0.383 23.05/0.272 24.19/0.280 25.22/0.398 24.06/0.225
Sparse residential 26.94/0.657 27.95/0.506 28.08/0.505 24.57/0.319 26.10/0.395 27.15/0.391 28.04/0.503 26.98/0.313

Stadium 26.70/0.506 28.49/0.326 28.65/0.325 24.49/0.223 25.32/0.228 27.15/0.239 28.61/0.324 27.44/0.183
Storage tank 25.72/0.494 27.94/0.282 28.17/0.278 24.98/0.181 25.12/0.204 26.80/0.219 28.12/0.277 26.84/0.154
Tennis court 25.65/0.601 27.51/0.373 27.63/0.366 24.22/0.223 25.31/0.281 26.27/0.295 27.63/0.370 26.33/0.207

Terrace 28.79/0.475 30.49/0.287 30.66/0.283 27.38/0.183 26.73/0.242 29.00/0.256 30.62/0.283 29.42/0.186
Thermal power station 26.60/0.511 28.51/0.315 28.71/0.312 25.13/0.214 25.52/0.222 27.07/0.234 28.66/0.310 27.46/0.186

Wetland 31.14/0.512 32.25/0.370 32.35/0.368 24.51/0.329 29.62/0.268 30.82/0.284 32.36/0.367 30.92/0.226

Mean 27.61/0.528 29.23/0.346 29.42/0.340 25.26/0.233 26.18/0.263 27.80/0.261 29.39/0.341 28.12/0.204
Standard deviation 3.07/0.076 3.03/0.078 3.02/0.079 2.87/0.062 1.94/0.055 2.50/0.046 3.03/0.078 2.94/0.044

Table 3. The comparison of ablation studies on BB loss and region aware strategies in the NWPU-
RESISC45 dataset. “Ours” means our proposed ESTUGAN, “w/o BBL” and “w/o RA” indicate the
model removing BB loss and the mode removing the region aware strategy.

Dataset Metrics Ours w/o BBL w/o RA

NWPU-RESISC45
PSNR 28.12 27.95 27.98
SSIM 0.725 0.717 0.719
LPIPS 0.204 0.213 0.212

UC-Merced
PSNR 27.81 27.46 27.50
SSIM 0.739 0.726 0.728
LPIPS 0.208 0.217 0.215

Table 4. Comparison of using different generator frameworks on the UCMerced dataset.

Generator Settings PSNR SSIM LPIPS

Baseline1 29.04 0.783 0.311
Baseline2 28.60 0.768 0.330

ESTN (ours) 29.11 0.785 0.312
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Figure 8. The visualization of the U-Net discriminator. (a) The original images in the selected dataset.
(b) The generated images of the proposed generator. (c) The discrimination on the generated images.

4.6. Model Complexity Analysis

Figure 9 visualizes the measurement between the parameters and the PSNR of EDSR [64],
RCAN [5], RRDB [15], SwinIR [11], HSENet [24], SWCG [65], Resnet [2], and our ESTN. It
can be seen that the ESTN is comparable to SwinIR in terms of performance and has an
absolute advantage in the parameters, saving over nine parameters (M) compared to SwinIR.
Our ESTN performs impressively in terms of the PSNR performance and the number of
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parameters. Table 5 comprehensively shows the parameters, FLOPs, and inference time for
different methods.
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Table 5. Parameters, FLOPs, and GPU runtime for various super-resolution models. GPU runtime is
tested on the Tesla V100 GPU and the input size is 125 × 125.

Model Parameters FLOPs GPU Runtime

RCAN 16 M 233.8 G 0.189 s
RRDB 16.7 M 257.5 G 0.101 s

HSENet 5.4 M 73.3 G 0.155 s
SwinIR 11.9 M 202.2 G 0.288 s

ESTN (ours) 2.2 M 53.5 G 0.165 s

5. Conclusions

In this paper, ESTUGAN was proposed for characteristics of remote sensing images.
The generator was the ESTN with the backbone of the Swin Transformer, which com-
bines the advantages of CNN- and transformer-based models, possessing a more powerful
expression ability. Meanwhile, the U-Net discriminator with the region-aware learning
strategy and the loss strategy that can supervise flexibility was proposed; it effectively
suppressed artifacts and guided the generator to recover authentic high-frequency informa-
tion. Extensive experiments proved that ESTUGAN outperforms existing methods with
fewer parameters for remote sensing image SR. Specifically, we tested the performance of
our model on four widely used remote sensing datasets. And for the proposed method,
sufficient ablation tests were conducted to verify the validity of the components. At the
same time, we also explored the network length and the performance of the image SR
task to some extent; we found that just adding more functional blocks and increasing the
number of parameters does not improve the overall performance, and even decreases it in
some specific scenarios.

In the future, we will continue to explore the effectiveness of lightweight models for
SR tasks in remote sensing images.

Author Contributions: Conceptualization, L.H.; methodology, L.H.; software, L.H. and T.P.; validation,
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curation, L.H.; writing-original draft preparation, L.H. and T.P.; writing-review and editing, C.Y., L.H.,
T.P. and Y.L.; visualization, L.H.; supervision, C.Y., Y.L. and T.L.; project administration, L.H.; funding
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