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Abstract: Compressive sensing and arbitrary sampling are techniques of data volume reduction
challenging the Shannon sampling theorem and expected to provide efficient storage while preserving
original information. Irregularity of sampling is either a result of intentional optimization of a
sampling grid or stems from sporadic occurrence or intermittent observability of a phenomenon.
Quantitative comparison of irregular patterns similarity is usually preceded by a projection to a
regular sampling space. In this paper, we study methods for direct comparison of time series in their
original non-uniform grids. We also propose a linear graph to be a representation of the non-uniform
signal and apply the Mutual Graph Approximation (MGA) method as a metric to infer the degree of
similarity of the considered patterns. The MGA was implemented together with four state-of-the-art
methods and tested with example speech signals and electrocardiograms projected to bandwidth-
related and random sampling grids. Our results show that the performance of the proposed MGA
method is comparable to most accurate (correlation of 0.964 vs. Frechet: 0.962 and Kleinberg: 0.934
for speech signals) and to less computationally expensive state-of-the-art distance metrics (both MGA
and Hausdorf: O(L1 + L2)). Moreover, direct comparison of non-uniform signals can be equivalent
to cross-correlation of resampled signals (correlation of 0.964 vs. resampled: 0.960 for speech signals,
and 0.956 vs. 0.966 for electrocardiograms) in applications as signal classification in both accuracy
and computational complexity. Finally, the bandwidth-based resampling model plays a substantial
role; usage of random grid is the primary cause of inaccuracy (correlation of 0.960 vs. for random
sampling grid: 0.900 for speech signals, and 0.966 vs. 0.878, respectively, for electrocardiograms).
These figures indicate that the proposed MGA method can be used as a simple yet effective tool for
scoring similarity of signals directly in non-uniform sampling grids.

Keywords: arbitrary sampling; compressed sensing; pattern classification; distance metric; correlation

1. Introduction

Time series or patterns are usually defined as uniform. This means á priori knowledge
about the pattern is not available except for maximum variability (i.e., frequency in signals).
Consequently, the pattern is defined by samples with regular time distribution, which
is expected to best reproduce the possible sign of event or change. This frequently used
approach uses a common definition of sample value and spacing in all measurements,
which results in a vast amount of redundant information, in particular where the event is
possible but does not occur [1,2]. The most frequent uniform sampling is thus convenient
but neither thrifty nor justified [3].

Indeed, non-uniform sampling occurs often in a general measurement practice. Ap-
pearance of unexpected events produces signal jam or distortions and, when in preprocess-
ing, corrupted data series are found partly useless and extracted; a discontinuity occurs
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known as a missing data problem. Missing data may also result from measurements not
fully controlled in respect of time (i.e., environmental, astronomical, or medical) [4]. Finally,
in the case of expensive or long-lasting measurements, one may decide to sample only the
most important part of the á priori known part of a data series [5] and leave behind the
remaining and reconstruct them (e.g., with interpolation techniques) when necessary [6–8].
The latter approach was a background of fast magnetic resonance imaging sequences (such
as FSE/TSE) [9] and gave birth to much wider signal processing mathematics known as
compressive sensing [10].

Aside from efficient storage, non-uniform time series are rarely subject to direct data
processing [11]. Most applications assume prior projection to a uniform sampling grid
where a plethora of well-known methods are available. Lomb transform [12,13], used to es-
timate the spectrum of non-uniform time series, and Nadaraya–Watson approximation [14],
employed to calculate a linear regression in non-equispaced data points, are examples of
rare methods for direct processing of non-uniform signals.

Assuming similarity assessment of data streams to be particularly welcome by various
classification and decomposition schemes in signal processing, we studied the existing
methods of non-uniform signals similarity scoring and proposed a Mutual Graph Approxi-
mation (MGA) to address the problem of accurate yet efficient direct comparison of signals.
The MGA method does not assume any coincidence of sampling grids and takes uniform
sampling as a particular case of non-uniform data acquisition.

The remaining part of this paper is organized as follows. Section 2 provides a review
of state-of-the-art non-uniform data similarity scoring. Section 3 presents the original
Mutual Graph Approximation method. Section 4 describes experimental validation of all
the methods based on two exemplary signals with variable instantaneous bandwidth: the
speech signal and the electrocardiogram. Finally, Section 5 provides a discussion of the
obtained results and some indications for future research.

2. Related Work

Some distance metrics proposed for implementation in similarity assessment of two
sections of non-uniformly sampled signals are based on a graph representation of the
signal and graph similarity measure. In the graph representation, a limited time series
of non-uniform signal values is characterized as consecutive nodes with value and time
attributes, and edges with length and slope attributes. Edges and nodes of the signal graph
are mutually dependent; thus, edge and node similarity scores are correlated. Kleinberg
is considered the first to invent an iterative algorithm determining the graph similarity
score [15].

Let GA and GB denote two signals to compare. Then, the Kleinberg algorithm iter-
atively determines the normalized similarity between a given node i in graph GA and a
node j in graph GB, and summarizes the score values for each node of GA. Complementary
assessment of similarity is performed for edges of GA and GB.

Let xi,j(k) stand for similarity of node i in GA and node j in GB at stage k; then [16]:

xi,j(k) = ∑
r : (r, i) ∈ EA
s : (s, j) ∈ EB

xr,s(k− 1) + ∑
r : (i, r) ∈ EA
s : (j, s) ∈ EB

xr,s(k− 1) (1)

where k stands for iteration number and EA, EB are edge sets in GA and GB, respectively.
Correspondingly, if yp,q(k) denotes the edge similarity score between edge p in GA

and edge q in GB, then:

yp,q(k) = xs(p)s(q)(k− 1) + xt(p)t(q)(k− 1) (2)

where s(·) and t(·) denote the functions assigning source and target nodes, respectively,
to edges.
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Now, these scores can be represented in a matrix notation as Xk and Yk. Using source–
edge matrix AS and target–edge matrix AT as alternative equivalent representation of GA
adjacency structure (BS and BT for GB, respectively), one sees that Equations (1) and (2)
may be rewritten as

Yk ← BT
S Xk−1 AS + BT

T Xk−1 AT

Xk ← BSYk−1 AT
S + BTYk−1 AT

T
(3)

where← denotes matrix normalization operation required in each step to obtain conver-
gence, and [·]T is a matrix transposition. Next, following Zager’s proposal [16] to transform
the matrices into a vector of ‘stacked’ columns with a vec(·) operator defined as follows:

vec


 | | . . . |

v1 v2
... vJ

| | . . . |


 =


v1
v2
...

vJ

 (4)

so, as yk = vec(YK) and xk = vec(XK), one can express the iterative update process as

yk ← (AT
S ⊗ BT

S + AT
T ⊗ BT

T)xk−1 ≡ Cxk−1

xk ← (AS ⊗ BS + AT ⊗ BT)yk−1 ≡ CTyk−1
(5)

where ⊗ stands for the Kronecker product of matrices, C stands for coupling matrix being
the sum of two matrices, each of which has a single ‘1’ entry in each row. Finally, the
iterative similarity score sk may be expressed in the matrix notation as

sk ≡
[

x
y

]
k
←
[

0 CT

C 0

][
x
y

]
k−1

(6)

Assuming the source and terminal nodes in two graphs are similar, which is true in
the case of arbitrarily sampled signal strips of the same duration, Zager noticed a coupling
between edge and node scores and proposed to simplify the similarity assessment by a
single score [16]. It consists of: (A) rewriting Equations (1) and (6) to compute scores for
consecutive edges and nodes alternately, (B) expressing edges as difference in consecutive
nodes, and (C) reducing node terms accordingly. This approach omits the edges, but,
due to the nodes–edges correlation, the similarity remains monotonic. Consequently, the
equivalent similarity scores may be assessed with an assignment matrix built for any
combination of nodes in both graphs.

Even when referring solely to the graph nodes, we still have to consider the most
general case where different arbitrary sampling models are used in both patterns and no
correspondence between the sampling intervals is expected. In this scenario, the sampling
interval is random and, consequently, each graph node i ∈ I is attributed with a pair
of values of amplitude vi and time ti. In this pair, the amplitude is discrete-valued, but,
unlike in regular digital signals, time is a continuous variable with the only assumption of
monotonicity, i.e., ti < ti+1.

Intuitively, the similarity score would be accurate, provided both time series use the
same synchronized sampling grids, i.e., ∀i, j ti = tj. Otherwise, the accuracy depends on
time difference between corresponding nodes. Introducing a time-related symmetrical
envelope φ(t) to include more influence from the time neighbourhood led to defining a very
general but computationally expensive approach that iteratively calculates time difference
and multiplies the respective weighting factor through virtually all nodes in GA and GB.

s =
I

∑
i=1

J

∑
j=1

di,jφ(|tj − ti|) (7)
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where di,j = limk→∞ xi,j(k), φ(0) = 1 and limτ→∞ φ(τ) = 0.
In a simplified scenario, for each node in GA, either a time threshold or node number

limit may be applied to select the closest (in time coordinate) node in GB to calculate the
distance (in value coordinate). This cumulative approach may also include a weighting
factor to modulate the similarity score according to the time attribute of each node. Reduc-
tion in complexity is achieved at the price of respective reduction in accuracy, and the time
threshold must not be set above the longest sampling interval. Finally, the most simple
case of weighting may omit (i.e., set to zero) all values except for the nodes of best time
correspondence. This method yields a simple assignment matrix with ‘ones’ for closest
nodes and ‘zeroes’ elsewhere. This approach proposed in [16] consists of two processes:

• Search for node correspondence minimizing the time difference (admitting one-to-one,
but also one-to-many and many-to-one assignments) and

• Calculate the amplitude distance.

A general method for building a graph assignment matrix, partly implemented in our
similarity metrics, was proposed in [17]. Accordingly, the example four point assignment
matrix M between nodes i = 1 . . . 4 in GA and nodes j = 1 . . . 4 in GB may then be denoted as

M =


d1,1 0 0 0
0 d2,2 0 0
0 d2,3 0 0
0 0 d3,4 d4,4

 (8)

In this example assignment, A(1)↔ B(1) is of a one-to-one type, nodes B(2) and B(3)
were both found the closest (in the meaning of time) neighbours of A(2) (many-to-one
assignment), and nodes A(3) and A(4) were both found closest to B(4) (one-to-many
assignment). The similarity score s has been proposed as a double sum:

s =
I

∑
i=1

J

∑
j=1

di,j (9)

Another approach to measure the similarity of two shapes given by randomly dis-
tributed points is the Hausdorf distance [18,19]. The basic algorithm iterates for all i = 1 . . . I
nodes of GA to find among j = 1 . . . J nodes of GB the closest point ji to calculate the el-
ementary distance and maintain the maximum of such distances as a similarity score s.
Thus, for each node of GA, the minimal distance to any node of GB is computed, and then
the maximum of these distances is assigned to s

s = max
i∈GA

min
j∈GB

di,j (10)

This general definition was proposed for geometric 2D or 3D shapes where all di-
mensions are unimodal (i.e., given in the same units). In case of signals, however, we
always have time ti as one (independent) dimension and value(s) vi on the other (depen-
dent) axes. Therefore, the Hausdorf distance modified for signals first takes each node
i = 1 . . . I in GA to seek closest node j = 1 . . . J in GB in the time domain minj∈GB(|tj − ti|),
then calculates their distance |vj − vi| in the value(s) domain and maintains the maximum
maxi∈GA(|vj − vi|). Thus, for each node of GA, the node of GB closest in time is found,
and then the maximal difference in values for all such pairs of nodes is assigned to s. The
respective definition is to be rewritten as

s = max
i∈GA

(|vi − varg minj∈GB
(|ti−tj |)|) (11)

The probably weakest point of the original Hausdorf distance definition is its possible
asymmetry; i.e., it may happen that si,j 6= sj,i. To mitigate this drawback, a ‘bidirectional’
Hausdorf distance is calculated as a maximum of two ‘one-sided’ values.
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An interesting alternative metric making use of sample order (i.e., time monotonicity)
is the Frechet distance [20]. Its discrete definition [21] is based on nodes i = 1 . . . I in GA
and nodes j = 1 . . . J in GB bound with a set CGA ,GB of l = 1 . . . L unique ‘coupling leashes’
between nodes a ∈ GA and b ∈ GB in each graph in the following specific way:

• a1 = b1 = 1
• aL = I and bL = J
• (ak+1 = ak ∧ bk+1 = bk + 1) ∨ (ak+1 = ak + 1 ∧ bk+1 = bk) ∨ (ak+1 = ak + 1 ∧ bk+1 =

bk + 1), i.e., to create a new leash, at least one node of either graph must advance.

The length of leach da,b between a pair of nodes a ∈ GA and b ∈ GB is given as
(|va − vb|), and the distance for the particular set of coupling leashes is defined as

‖C‖ ≡ max
l=1...L

(|val − vbl
|) (12)

A particular set CGA ,GB depends on applied node progress, and a space ΓGA ,GB of all
possible coupling sets has to be iterated to find the minimum called Frechet distance:

s = min
C∈ΓGA ,GB

‖C‖ (13)

The other methods like SimRank [22], similarity flooding [23], or vertex similarity [24]
also use recursively computed similarity scores based on the scores of neighbouring nodes.

Alternative approaches not referring to the distance metrics have also been proposed
for non-uniform pattern classification without the need of reconstructing the uniform
signals. A Davenport method [25] calculates similarity of compressive measurements and
is based on direct inference. Wimalajeewa [26] studies the theoretical background and
provides examples of influence from dimensionality reduction in compressed sensing to the
classification performance. The later work from the same author compares Bhattacharya
distance [27] and Chernoff distance [28] and finds the latter measure as the most robust
to data sparsity increase. Wimalajeewa and Varshney [29] also proved the similarity of
sampling grids to have great impact on representation of inter-signal correlation in the
compressed domain. To minimize this impact, Cleju [30] proposed an arbitrary compressed
sensing acquisition matrix based on the nearest correlation between dictionary atoms.

Aside from distance-based clustering models, often yielding quadratic runtime, simi-
larity of patterns can also be expressed without the distance metrics. This group of methods
is based on modelling the statistical distribution of patterns and analyzing their content.
One of the most widely used examples of such methods is finite mixture models, where the
distribution of the variable is represented as a linear mixture of K individually parametrized
basic distributions and their contribution coefficients [31]. Also, Latent Class Analysis [32]
is based on the combined probability of observing an x value and probability of x being
a member of class k [33]. Alternatively grid-based clustering methods partition the data
and aggregate them into grids cells [34]. Although they are somewhat based on distance,
their great advantage is a significant reduction in the computational complexity, especially
for clustering very large datasets. Finally, Gomes et al. presented Regularized Information
Maximization, a purely probabilistic framework for discriminative classifier from an unla-
beled dataset [35]. Their method is based on a logistic-regression-like model, employs an
additional regularization term to control the number of clusters, and does not refer to the
notion of distance.

In numerous applications the metric of signal similarity is well represented by its sta-
tistical counterpart, i.e., similarity of probability distribution of their values. This approach,
known as Kullback–Leibler divergence (KLD, or relative entropy) [36] estimates how much
information gathered from one time series is also present in the other. Unfortunately, the
KLD is asymmetric and does not satisfy the triangle inequality. Alternatively, the met-
ric obtained as the second derivative of the KLD is widely known as Fisher Information
and used to calculate the informational difference between measurements [37]. The other
entropy-based method for signal similarity assessment is the mutual information being
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the relative entropy of the product of two marginal probability distributions from joint
probability distributions [38]. This approach is a measure of the mutual dependence be-
tween the two variables; thus, it is frequently used to compare time series like correlation.
Probabilistic similarity metrics do not assume regular or irregular sampling; however, their
use in non-uniform time series was not found in literature reviews.

3. The Mutual Graph Approximation Method

In this paper, it is assumed that considered signals are expressed by non-uniform
sample series. A limited time series of each non-uniformly sampled signal is represented in
the form of a graph, where nodes representing consecutive samples are connected by edges.
Graph nodes are attributed by sample values and time. Such a representation of signals
allows us to uniformly encode their characteristic features thanks to the use of attributes.
Moreover, this symbolic depiction is useful for signal analysis and classification and allows
for comparing our results with the ones of other methods where signals are also described
in the form of graphs [39].

To asses a similarity between two sections of sampled signals, a new graph similar-
ity measure that uses the structural similarity of a node neighbourhood specified by a
time-based radius is proposed. The pairwise similarity scores for the nodes of two dif-
ferent graphs are determined on the basis of the weighted distance of the node of one
graph to the node of the second graph and the time-dependent number of their neigh-
bours. The similarity metrics are applied to nodes representing the time-nearest samples in
both graphs.

In our approach, to represent a section of a non-uniformly sampled signal, we consider
an attributed graph G = (V, E, α), where V is a finite, nonempty set of nodes, E ⊆ V ×V is
a set of edges, and α : V → Value× Time is an attributing function, which assigns value
and time attributes to each node. For the sake of simplicity, the value assigned to a node v
by α will be denoted as val(v) and the time assigned to it as t(v).

In order to measure the similarity between two series of samples represented as graphs
GA and GB, respectively, the series are aligned with their detection points (Figure 1) and
time coordinates for graph nodes are recalculated in reference to this point. Thus, estimation
of similarities can be started from the detection point that has zero time coordinate in both
graphs and where sample values are directly comparable. At the beginning for each node
of graph GA, corresponding node(s) in GB, i.e., with most similar time attribute, are found
and the respective assignment matrix is built.

Figure 1. An example of two electrocardiogram patterns (orange and blue) with the non-uniform
grids (circles and triangles) aligned on their detection point (red) to t = 0.

In the next step, values of the second sample series are interpolated in time points
determined by the ones assigned to nodes of GA and added as values of new nodes of GB.
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Then, the similarity score between nodes i of GA and j of GB representing time nearest
samples at t is computed as

xij = |val(i)− val(j)|+ ∑
k∈VGA

:0<|t(k)−t(i)|≤r
|val(k)− val(s(t(k)))|φi(t(k)), (14)

where s(t(k)) denotes a node of GB with t(s) = t(k), φi(t(k)) is a weighting factor depend-
ing on the time distance between nodes i and k, and r is the time specifying the radius of
the neighbourhood nodes of i taken into account.

It can be noted that the absolute differences between values of nodes representing
samples taken or computed by interpolation at the same time are weighted against the time
distance from node i. In this paper, we assume that the coefficient φ is proportional to the
time distance in a linear way, and it is computed as φi(t(k)) = 1

|t(i)−t(k)| , where i 6= k.
In Figure 2, the principle of the similarity score calculation for non-uniform patterns is

explained. In the examples presented in Figure 2c,d, eight neighbours of the given nodes in
GA and GB, that fall in the time interval of 20 ms around these nodes are considered.

Figure 2. Calculating the similarity score with the Mutual Graph Approximation; solid circles
are original samples of GA, solid triangles are original samples of GB, (a) approximation of GA

values in time points where samples in GB occur (empty circles) allows to calculate distance GB to
approximated GA, (b) approximation of GB values in time points where samples in GA occur (empty
triangles) allows to calculate distance GA to approximated GB, (c) details of (a) in the time range
30–70 ms, (d) details of (b) in the time range 30–70 ms; ‘∧’ and ‘∨’ marks points where approximated
values of the target graph were calculated according to the sampling grid of source graph.

When all pairwise similarity scores between nodes of GA and GB are summed up, then
the same process is repeated for graph GB; i.e., samples of the signal represented by GA
are interpolated in time points determined by times assigned to nodes of GB, and pairwise
similarity scores between nodes of GB and GA are added up. This operation justifies
referring to the proposed procedure as Mutual Graph Approximation (MGA). The average
value of the sum of the obtained distances between GA and GB, and between GB and GA is
the similarity score and makes the background for decision, e.g., of the class membership.

It is noteworthy that, instead of iterating through all nodes of GB for each node of
GA, we only have to scan once through all points in L1 and L2 (i.e., the computational
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complexity is O(L1 + L2)). In case the source node is the synchronization point, time
coordinates are identical, so no further search is necessary. For any other source point,
the search is based on time precedence of samples. That means for a given pair GA(ti, vi)
and GB(tj, vj), i.e., source and target points closest in time, the algorithm advances by one
sample to next source point GA(ti+1, vi+1) and starts searching for next target point from
GB(tj, vj) for the minimum of |ti+1 − tj+k|. Due to time monotonicity, a single minimum is
expected. In case of similar grids, number of search attempts (i.e., k points necessary to find
the minimum) will be similar for L1 and L2. However, when L1 and L2 differ (e.g., L1 < L2,
i.e., GA is sparser than GB), fewer source points L1 in GA and more target points L2 in GB
have to be checked for being closest in time.

4. Experimental Validation

The experiment aimed to investigate the performance of the proposed distance mea-
sure in a practical task of signals classification. Two signal types most represented in
signal processing literature have been selected as working examples: speech signal and
the electrocardiogram. To maintain the generality, we assume not using any speech- or
cardiac-specific signal processing procedures. Consequently, although not optimal with
regard to these two signals, the procedures may easily be applied to other kinds of signals.
The goal of the experiment was to answer the following questions:

1. What is the performance of the proposed MGA method with regard to other state-of-
the-art distance metrics?

2. Can direct comparison of non-uniform signals be an equivalent for correlation in
applications such as signal classification?

3. What is the role of a bandwidth model in maintaining the performance of non-uniform
distance metrics as classification criteria?

4.1. Selection and Preprocessing of Test Signals

As an example, speech data collection of the Manitoban speech dataset was se-
lected [40]. The database was issued as reference for testing speech segmentation and
distinctions and contains 44 recordings of phonem’s alphabet made at 44.1 kHz. The subset
used in the experiment included 5 most common alphabet examples: {‘28’-‘bad’, ‘7’-‘church’,
‘32’-‘book’, ‘26’-‘bid’, and ‘12’-‘other’}. The length of each signal has been limited to 2 s.

As an example of the ECG data collection, the MIT-BIH Arrhythmia Database was
selected [41]. It consists of 48 half-hour examples of the most frequent arrhythmia recorded
in two channels at 360 Hz. The subset used in the experiment included 20 s of medically
homogeneous single-channel strips extracted out of 5 most common arrhythmia examples:
{‘1’-Normal, ‘11’-Ventricular, ‘8’-Atrial premature beat, ‘3’-Right bundle branch block beat, and
‘13’-Fusion of ventricular and normal beat}.

These two sources provided 5 signals each of the length T of either 88200 samples or
7200 samples, respectively. In both cases, we assumed the average local bandwidth to be
equal a quarter of the Nyquist frequency. The reference, uniform signals are denoted as
SigU#, where ‘#’ is the numerical label (i.e., {‘28’, ‘7’, ‘32’, ‘26’, ‘12’} and {‘1’, ‘11’, ‘8’, ‘3’, ‘13’},
respectively) from the original dataset.

In order to calculate the local bandwidth of each signal Sig with sampling interval
SI, the Short-Time Fourier Transform was first applied to uniform time series to produce
the spectrogram Sgrm(t, f ) in a Gaussian window of 8 samples. Each time slot of the
spectrogram was then analyzed to detect the frequency point F(t) cutting out a given
percentage Tsh of local spectral energy. Finally, the time series of local points bw(t) were
averaged to produce the local bandwidth estimate BW(t).

% local bandwidth estimate
for t = 0 : T − 8 : step = 8 do

Sgrm(t, f) = STFT(Sig(t, t + 8))
bw(t) = F(t) : sum(Sgrm(t, f > F(t))) <= Tsh * sum(Sgrm(t, f))
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end for
for t = 0 : T − 8 : step = 8 do

BW(t) = (bw(t − 8) + bw(t) + bw(t + 8))/3
SIraw(t) = SI/BW(t)

end for

The series of sampling intervals SIraw(t) is now ready to determine the time of
sampling points for non-uniformly sampled version of each signal denoted as SigN#.
However, to investigate the role of the local bandwidth, we also produced a random (i.e.,
not regarding the local bandwidth) version of each signal denoted as SigR#. To maintain the
same average value and value distribution of random non-uniform sampling, we simply
applied random sampling without replacement to the SIraw(t) series and created a new
series SIrnd(t) with the same interval values as in SIraw(t) but in a random order.

Next, the calculation of new sampling grids was performed with the same procedure
to SIraw(t) and SIrnd(t).

% calculating the non-uniform sampling grid
CSigLen = 0 % cumulated signal lenght
k = 0 % running number of the sampling interval
SPoint(k) = 0 % the first sample of uniform and non-uniform grids falls at t = 0
while CSigLen < T do

k = k + 1
SPoint(k) = CubicSpline(SIraw(t), SPoint(k − 1))
CSigLen += SPoint(k)

end while
K = k % total number of irregular sampling intervals

And, finally, we come to non-uniformly sampled signal values:

% calculating signal values on non-uniform grid
for k = 0 : K do

Val(k) = CubicSpline(Sig, SPoint(k))
end for

to represent each signal SigN# or SigR# as a sequence of non uniform samples: {Val(k),
SPoint(k)}.

The same resampling algorithm was used to restore the non-uniform signal values
back to the uniform sampling grid. In this case, however, the sampling grid was defined
by a constant time delay equivalent to sampling interval of respective original file and the
cubic spline interpolation was applied to approximate values given at non-uniform grid in
the equally spaced time points. The restored signals are denoted as SigBN# when restored
from the bandwidth-related non-uniform grid and SigBR# when restored from the random
non-uniform grid.

4.2. Experiment Setup

The experiment was performed with 5 described distance metrics for each of 3 versions
{‘uniform’, ‘bandwidth-related non-uniform’, and ‘random non-uniform’} of 10 signal strips.
The calculation of signal distance was made for several iterations with constant time-shift Mt,
which mimics the definition-based calculation of cross-correlation function. It is noteworthy
that, in case of SigU#, SigBN#, and SigBR# with the uniform sampling grid, time shift means
simply advancing sample indexes, whereas, in case of SigN# and SigR# with non-uniform
sampling grid, the operation lies in adding Mt to time coordinate of every sample.
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Provided the uniform sampling grid may be considered as the particular case of the
non uniform one, signals sampled at different grids may also be compared. The only
operation needed is of purely technical nature and lies in representing regular samples in
the form {Val(k), SPoint(k)}.

Within the experiment, distances between signals were calculated separately in the
group of speech signals and cardiac signals. For reference, we started with original signal
similarity score and restored signal similarity score to see how far resampling affects the
signal correlation. For this purpose, a regular cross-correlation was applied as first-hand
measure of the distance.

Secondly, we measured the signal distance with use of implemented methods pre-
sented in Sections 2 and 3. All the measures have been equivalently applied to uniform
and non-uniform sampling grid signals. In tests with the MGA method, the radius spec-
ifying the time around node i taken into account (i.e., the time span of function φ, see
Equation (14)) was set to 0.5 ms and 100 ms for the speech signals and the electrocardio-
grams, respectively, in order to include at least two samples of the signal. This part of
experiment revealed performance of all measures in the role of signal classification criteria.

Finally, we compared the non-uniform signal distance measured with all tested metrics
between the bandwidth-related and random non-uniform sampling grids (i.e., SigN# and
SigR#). The idea here was to demonstrate that the non-uniform sampling model related to
the local bandwidth plays an important role in preserving distinctive features of the signal.

4.3. Experiment Data Post Processing

Determining the detection points in real signals may not be an easy and repeatable task,
in particular when in non-uniform series the point usually falls between samples. To miti-
gate this potential source of error and make the evaluation independent, we simulate the
misalignment of these points. To this aim all measures have been calculated as correlation-
type functions i.e., representing the signal distance as dependent on time-shift Mt. In
the classification task, however, only the minimum distance, corresponding to maximum
similarity is taken into account. In the presentation of results hereafter, this ‘best matching’
value was also maintained as the only estimate of the distance. The distance calculated by
some of the implemented algorithms return values dependent on signal amplitude, length
and sample count. Therefore, to compare all methods adequately, we normalize the similar-
ity score to the range {0, 1}, where, similarly to the reference cross-correlation, ‘0’ means
the signal distance is infinite and similarity is so little as not measurable and ‘1’ means
the signal distance is equal to zero and signals are perfectly similar or identical. In case of
Hausdorf [18] and Frechet [20] methods, a distance value being maximum or minimum
of the set is therefore independent on the set power and the normalized similarity score
ns may be calculated as ns = (Fs−s)

Fs , where Fs is the full scale amplitude, i.e., maximum
span of two-side boundary of both signals. In case of Kleinberg [15] and Zager [16] scores,
distances are defined as sums and to be independent of the series length need to be divided
by total number of nodes L1 + L2. The proposed MGA also belongs to this category. The

normalized similarity score is then calculated as ns =
Fs− s

L1+L2
Fs , where L1 and L2 are point

numbers in respective non-uniform time series.

4.4. Experiment Results

Table 1 presents the results of the similarity score expressed by the maximum of the
cross-correlation function in pairs SigU# and SigU#. Note that the ‘ones’ on diagonals mean
perfect self-similarity of each signal.
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Table 1. Results of the similarity score expressed by maximum of the cross-correlation function for
reference uniform signals.

Speech Signals

# ‘28’ ‘7’ ‘32’ ‘26’ ‘12’

‘28’ 1 0.87 0.65 0.48 0.41

‘7’ 1 0.43 0.51 0.63

‘32’ 1 0.38 0.57

‘26’ 1 0.72

‘12’ 1

Electrocardiograms

# ‘1’ ‘11’ ‘8’ ‘3’ ‘13’

‘1’ 1 0.33 0.89 0.81 0.67

‘11’ 1 0.41 0.39 0.48

‘8’ 1 0.69 0.61

‘3’ 1 0.58

‘13’ 1

Table 2 presents the results of the similarity score expressed by the maximum of the
cross-correlation function in pairs SigU# and SigBN#.

Table 2. Results of the similarity score expressed by maximum of the cross-correlation function for
reference uniform signals and uniform signals restored from the bandwidth-related non-uniform grid.

Speech Signals

# ‘28’ ‘7’ ‘32’ ‘26’ ‘12’

‘28’ 0.96 0.83 0.63 0.43 0.40

‘7’ 0.97 0.42 0.49 0.61

‘32’ 0.96 0.37 0.55

‘26’ 0.95 0.68

‘12’ 0.96

Electrocardiograms

# ‘1’ ‘11’ ‘8’ ‘3’ ‘13’

‘1’ 0.94 0.32 0.85 0.81 0.64

‘11’ 0.94 0.40 0.39 0.43

‘8’ 0.96 0.67 0.60

‘3’ 0.98 0.55

‘13’ 0.97

While Table 1 is an absolute reference of mutual similarity of test signals, the data
in Table 2 show how discrimination power of the calculated distance decreases with
resampling of signals to the bandwidth-related non-uniform grid.

Table 3 presents the results of the similarity score expressed by the maximum of the
cross-correlation function in pairs SigU# and SigBR#.
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Table 3. Results of the similarity score expressed by maximum of the cross-correlation function for
reference uniform signals and uniform signals restored from the random non-uniform grid.

Speech Signals

# ‘28’ ‘7’ ‘32’ ‘26’ ‘12’

‘28’ 0.91 0.87 0.65 0.48 0.41

‘7’ 0.90 0.40 0.43 0.60

‘32’ 0.88 0.32 0.51

‘26’ 0.92 0.66

‘12’ 0.89

Electrocardiograms

# ‘1’ ‘11’ ‘8’ ‘3’ ‘13’

‘1’ 0.89 0.30 0.82 0.74 0.61

‘11’ 0.83 0.35 0.34 0.42

‘8’ 0.85 0.63 0.55

‘3’ 0.91 0.50

‘13’ 0.91

The data in Table 3 show decreased discrimination power of calculated distance due
to resampling of signals to the random non-uniform grid. This result shows the role of
applying the sampling grid adequate to local signal features.

Below are the results produced by tested distance metrics obtained with non-uniform
signals on the bandwidth-related grid. This choice was justified by plausible practical
application; however, uniform signals and non-uniform signals on the random grid may
also be tested this way. The data in Table 4 show signals similarity scores based on Kleinberg
distance calculated according to its original definition [15].

Table 4. Results of the similarity score expressed by maximum normalized Kleinberg distance with
non-uniform signals on the bandwidth-related grid.

Speech Signals

# ‘28’ ‘7’ ‘32’ ‘26’ ‘12’

‘28’ 0.94 0.82 0.62 0.42 0.40

‘7’ 0.94 0.40 0.48 0.59

‘32’ 0.93 0.35 0.52

‘26’ 0.92 0.65

‘12’ 0.94

Electrocardiograms

# ‘1’ ‘11’ ‘8’ ‘3’ ‘13’

‘1’ 0.93 0.30 0.81 0.80 0.63

‘11’ 0.93 0.39 0.38 0.43

‘8’ 0.94 0.62 0.57

‘3’ 0.94 0.52

‘13’ 0.92

The data in Table 5 show signals similarity scores based on Zager distance according
to [16].
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Table 5. Results of the similarity score expressed by maximum normalized Zager distance with
non-uniform signals on the bandwidth-related grid.

Speech Signals

# ‘28’ ‘7’ ‘32’ ‘26’ ‘12’

‘28’ 0.94 0.81 0.62 0.41 0.38

‘7’ 0.93 0.39 0.43 0.56

‘32’ 0.91 0.32 0.50

‘26’ 0.91 0.63

‘12’ 0.90

Electrocardiograms

# ‘1’ ‘11’ ‘8’ ‘3’ ‘13’

‘1’ 0.91 0.30 0.83 0.78 0.61

‘11’ 0.89 0.36 0.35 0.42

‘8’ 0.90 0.63 0.55

‘3’ 0.91 0.50

‘13’ 0.91

The data in Table 6 show signals similarity scores based on Hausdorf distance [18]. To
mitigate possible asymmetry, ‘bidirectional’ Hausdorf distance is calculated as a maximum
of two ‘one-sided’ values.

Table 6. Results of the similarity score expressed by maximum normalized Hausdorf distance with
non-uniform signals on the bandwidth-related grid.

Speech Signals

# ‘28’ ‘7’ ‘32’ ‘26’ ‘12’

‘28’ 0.92 0.80 0.60 0.41 0.37

‘7’ 0.93 0.37 0.47 0.57

‘32’ 0.92 0.33 0.52

‘26’ 0.92 0.63

‘12’ 0.91

Electrocardiograms

# ‘1’ ‘11’ ‘8’ ‘3’ ‘13’

‘1’ 0.91 0.27 0.81 0.80 0.62

‘11’ 0.92 0.38 0.37 0.42

‘8’ 0.91 0.60 0.53

‘3’ 0.92 0.50

‘13’ 0.92

The data in Table 7 show signals similarity scores based on Frechet distance imple-
mented according to [20].
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Table 7. Results of the similarity score expressed by maximum normalized Frechet distance with
non-uniform signals on the bandwidth-related grid.

Speech Signals

# ‘28’ ‘7’ ‘32’ ‘26’ ‘12’

‘28’ 0.96 0.88 0.61 0.45 0.40

‘7’ 0.97 0.39 0.49 0.61

‘32’ 0.95 0.35 0.55

‘26’ 0.96 0.68

‘12’ 0.97

Electrocardiograms

# ‘1’ ‘11’ ‘8’ ‘3’ ‘13’

‘1’ 0.94 0.30 0.85 0.82 0.63

‘11’ 0.94 0.41 0.40 0.45

‘8’ 0.93 0.63 0.57

‘3’ 0.94 0.53

‘13’ 0.94

The data in Table 8 show signals similarity scores based on the proposed Mutual
Graph Approximation distance.

Table 8. Results of the similarity score expressed by maximum normalized Mutual Graph Approxi-
mation distance with non-uniform signals on the bandwidth-related grid.

Speech Signals

# ‘28’ ‘7’ ‘32’ ‘26’ ‘12’

‘28’ 0.95 0.85 0.61 0.44 0.40

‘7’ 0.97 0.40 0.50 0.62

‘32’ 0.95 0.36 0.55

‘26’ 0.98 0.67

‘12’ 0.97

Electrocardiograms

# ‘1’ ‘11’ ‘8’ ‘3’ ‘13’

‘1’ 0.95 0.32 0.85 0.82 0.64

‘11’ 0.94 0.40 0.39 0.43

‘8’ 0.95 0.64 0.59

‘3’ 0.97 0.54

‘13’ 0.97

Table 9 summarizes the key performance parameters and computational complexity
of all the tested methods. To measure the metric performance, we focused on the repro-
ducibility of the similarity between non-uniform time series, neglecting the discrimination
power. This simplifying assumption is justified by the fact that we have a reference of
perfect similarity, which is signal self-similarity, while we do not actually have a good
reference of dissimilarity. To calculate the metric performance, all diagonals of respective
confusion matrices have been averaged. The average and standard deviation of normalized
similarity scores are accompanied by computational complexity estimates.
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Table 9. Performance parameters and computational complexity of the tested methods; best results
are marked in bold; L1 and L2 are sample numbers of two signals; please note that sample numbers
covering the equivalent time in both signals may be different.

Method Speech Signals Electrocardiograms Complexity

avg. std. avg. std.

Kleinberg [15] 0.934 0.0089 0.932 0.0084 O(L1 × L2)
Zager [16] 0.918 0.0164 0.904 0.0089 O(L1 + L2)

Hausdorf [18] 0.920 0.0071 0.916 0.0055 O(L1 + L2)
Frechet [20] 0.962 0.0084 0.938 0.0045 O((L1 + L2)

2)
MGA (this work) 0.964 0.0134 0.956 0.0134 O(L1 + L2)

5. Discussion

The experiment provided a practical proof of concept for the proposed Mutual Graph
Approximation as an effective tool for comparing the similarity of signals in the non-
uniform sampling grids. In general, there is no assumption about sampling grids corre-
spondence; thus, the regular grid was considered as the particular case of the non-uniform
grid. Three questions motivating the experiment were answered as follows:

1. The performance of the proposed MGA method is comparable to most accurate and
to less computationally expensive state-of-the-art distance metrics.

2. Direct comparison of non-uniform signals can be equivalent to cross-correlation of
resampled signals in applications such as signal classification in both accuracy and
computational complexity.

3. The bandwidth model drives the resampling process, which is potentially the primary
cause of inaccuracy. An inadequate non-uniform representation leads to erroneous
distance estimation.

The graph representation of non-uniformly sampled signals uses only simple struc-
tures and seems oversized to non-uniform signals. It is noteworthy that such an approach
paves the way to studying the similarity of more complicated structures, such as shapes in
images given by a set of non-uniform samples.

5.1. Metrics Performance Accuracy vs. Complexity

Analysis of the data in Table 9 leads to the statement that two more accurate state-
of-the-art methods (Frechet and Kleinberg) at the same time show higher computational
complexity. Two other methods (Hausdorf and Zager) are less complex, but also less
accurate. In this context, the proposed a method based on Mutual Graph Approximation
that shows the accuracy comparable to the best (Frechet) method, while its complexity
remains only slightly higher than that of the Hausdorf method. The last two rows of Table 9
show very close average values of Frechet and MGA in the case of speech signals; however,
lower standard deviation is the advantage of Frechet. In the case of electrocardiograms, the
superiority of MGA is clearer, but, again, lower standard deviation advocates for Frechet.

The importance of computational complexity stems from virtually very frequent
use of similarity score, being a non-uniform equivalent of cross-correlation, in a wide
range of signal processing procedures. These include non-uniform pattern analysis and
classification, direct decomposition on bases and frames (i.e., non-uniform to time-scale
transform), principal component analysis, two-channel analysis, and many others.

To maintain low computational complexity, we used a linear approximation of new
values of GA in timepoints given by GB samples (and vice versa). Alternative weighting
(i.e., functions φi(t(k))) is also possible and should be studied in the future as a possible
trade-off between the computational complexity and the accuracy of the metrics.
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5.2. Comments on Experimental Results

In the experiment, we aimed to face all the problems related to the implementation of
the new MGA method but also to show how to compare signals in their non-uniform and
unrelated grids.

We showed that identical signals (Table 1) can also be considered very similar when
projected to a non-uniform grid and backwards as far as the grid is selected according to the
local bandwidth (Table 2). It should be noticed that forward and backward projection both
use cubic spline interpolation; hence, bit-accurate reconstruction of signals on a regular
grid was not expected as a result. Applying an inadequate sampling grid (such as a random
non-uniform grid in our example) leads to data loss and affects the similarity score (Table 3).
Thanks to usage of the same collection of sampling intervals in sequential and random order,
we had identical data throughput of both SigN# and SigR# time series, and, consequently,
the data in Table 2 (the bandwidth-related non-uniform grid) and Table 3 (the random
non-uniform grid) may be directly compared. It is also noteworthy that the non-uniform
sampling grid is individually determined based on instantaneous bandwidth calculated
for a given pattern. Consequently, different patterns will also differ in time points where
the signal value is picked.

It may be noticed in Tables 4–8 that ‘Speech Signals’ show higher values of most
similarity scores than ‘Electrocardiograms’. This is a result of applying the same rules
(Tsh = 0.99) of the local bandwidth detection for two signals of different natures. The spec-
trum of speech signals reaches 99% of its energy much further from its Nyquist frequency
than the spectrum of electrocardiograms. ECG records taken from other databases (e.g.,
with sampling frequency of 500 Hz) or speech signals first decimated to 22050Hz will alter
this relationship.

5.3. Limitations of the Test Signals

Although our goal was to present the Mutual Graph Approximation as a general
similarity score for virtually all non-uniform signals, in the experiment, we employed
selected speech signals and electrocardiograms with consideration of their limitations.

Each speech sample represents one vowel sounding within a given word. The words
used are of different length and were recorded from a speaker of particular vocal features
(e.g., male or female). In the case of speech signals, we did not find literature references to
non-uniform sampling proposals.

The normal electrocardiogram is usually considered as quasi-periodic. In the patholog-
ical record, a homogenous strip (i.e., continuously representing a given pathology) had to
be selected and extracted. There are several proposals of so called ‘compressive sampling’
of ECGs based on the statistical approach [42] and a single proposal of the perception-based
non-uniform sampling model by Augustyniak [43].

To demonstrate the universal applicability of the MGA metrics, we intentionally
avoided speech- or electrocardiogram-specific signal processing. Consequently, the local
bandwidth calculated in both cases from the local energy of the spectrogram may not
be optimal in each case. Moreover, we assume no important signal components are
present above the local bandwidth limit [44]. Adopting the white noise model for the
ultra-bandwidth content, we found that aliasing of noise produces a sub-bandwidth noise
component, and, for the sake of simplicity, we neglected a tunable anti-aliasing filter that
normally is required when resampling signals to a sparser grid.

Demonstration of features of the proposed MGA metrics and comparison with the
state-of-the-art non-uniform distance metrics may also be completed with other signals,
in particular when the instantaneous bandwidth allows for applying the unambiguous
resampling model.

Determining the robustness of the metrics against various types of noise being an
intrinsic part of each real-world signal falls beyond the scope of this paper but is another
task to complete prior to application. In the experimental part, we already have two
arbitrarily proposed factors: the shape of the sample environment (i.e., function φ in
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Equation (14)) and the bandwidth-based local sampling interval series. Consequently, to
maintain the research as repeatable and the description as general as possible, we postpone
the noise-related analysis to future research.

5.4. Advantages of the Mutual Graph Approximation

The proposed Mutual Graph Approximation may be considered as an interesting trade-
off between data distance accuracy and computational complexity. While the accuracy
is sufficient to produce a reliable similarity criterion in most classification scenarios, the
computational complexity remains acceptable for resource-limited implementations such
as wearable systems.

Comparing the results of MGA (Tables 8 and 9) to the cross-correlation of signals
resampled to the regular grid (Table 2), one may ask what the advantages are of comparing
the signals directly in non-uniform sampling grids. One of the reasons is that the total
complexity of such a process includes the complexity component from the cross-correlation
(which is O(L2

1)) and the other from the resampling process (i.e., O(L2
1 · L2) for cubic splines

of L1-points source data projected to L2 target sampling points).

6. Conclusions

The technique of Mutual Graphs Approximation works as well as the most precise and
less computationally demanding state-of-the-art distance measurement methods. Addi-
tionally, in applications such as signal classification and direct comparison of non-uniform
signals, it may be equivalent to cross-correlation of resampled signals in terms of accuracy
and computational cost. The obtained results show that the proposed MGA approach
can be used as a simple but effective tool for assessing signal similarity straight in their
non-uniform sampling grids.
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