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Abstract: Radio resource allocation schemes are critical to enhance user experience and spectrum
efficiency. In the context of fifth-generation (5G) and future networks, co-construction and sharing
among multiple telecom operators, which effectively mitigate challenges stemming from resource
scarcity, energy consumption, and network construction costs, also attract wide attention. Therefore,
optimal resource allocation techniques in sharing networks should be explored. Current resource
allocation schemes primarily optimize for load balancing, single-user throughput, and fairness of
multi-user whole network throughput, with minimal consideration for network-level user experience.
Moreover, existing approaches predominantly concentrate on specific resource domains, seldom
considering holistic collaboration across all domains, which limits the user experience of the whole
network. This paper introduces an innovative resource allocation method grounded in the Shan-
non theorem, incorporating time-frequency-spatial domain multi-dimensional collaboration. More
importantly, by constructing an optimization model, we strive to attain optimal network-level user
experience. Furthermore, we provide a smart grid technology based on the Artificial Intelligence (AI)
method to predict inter-frequency information, including Received Signal Reference Power (RSRP),
beam ID, and spectral efficiency, which are modeled as air interface utilization, channel bandwidth,
and signal-to-noise ratio, respectively, providing input for the optimization algorithm, which seeks to
achieve the optimal time-frequency-space resource allocation scheme. Extensive experimentation
validates the effectiveness and superiority of our proposed methodology.

Keywords: network-level user experience; co-construction and sharing; resource allocation; multi-
dimensional collaboration; 5G and future network

1. Introduction

The development of mobile communication technology has gradually evolved towards
ultra-high data rates, ultra-low latency, and massive connectivity [1–3]. Enhancing user
experience remains a common objective pursued by both the industry and academia [4–6].
However, the advancement of mobile networks also encounters unprecedented challenges.
The scarcity of spectrum resources and the constraints of network deployment costs pose
significant obstacles to achieving extensive network coverage and site deployment in
the short term [7,8]. Additionally, issues such as network duplication and high energy
consumption impose higher requirements on the evolution of mobile communication
technology [9,10]. Therefore, enhancing spectrum resource utilization, reducing network
construction and operation costs, and minimizing system energy consumption present
crucial challenges for global operators [11,12].

Mobile communication network co-construction and sharing among multiple tele-
com operators effectively alleviate the aforementioned issues [13]. Specifically, different
operators can engage in various degrees of cooperation or sharing regarding telecommu-
nications network infrastructure, network equipment, and spectrum resources [14]. The
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infrastructure mainly includes site-related facilities such as site locations, equipment rooms,
towers, power supply equipment, etc. Network equipment comprises telecommunication
network devices such as base stations, transmission equipment, etc. The aforementioned
approach can significantly reduce the number of sites, prevent redundant infrastructure
construction, lower system energy consumption, enhance resource utilization efficiency,
and expeditiously establish leading network infrastructure capabilities. However, after
co-construction and sharing, spectrum resources increase, and network scenarios and net-
work systems become complex. The questions of how to make full use of the advantages of
increased spectrum resources after sharing and achieve reasonable resource allocation are
paramount to improving user experience. In addition, it is noted that spectrum sharing for
unlicensed frequencies can also increase resource utilization, which is another important
topic that needs to be explored [15–17].

To enhance user experience and spectrum efficiency, researchers explore techniques
such as load balancing [18,19] and carrier aggregation [20,21] to achieve resource allocation
and integration. Extensive literature has delved into allocation methods for time-domain,
frequency-domain, and component carrier resources [22–24], providing optimization mod-
eling and solutions. However, methods comprehensively considered the collaborative
allocation of spatial resources have not been fully explored. With the development of 5G
technology, massive Multiple-Input Multiple-Output (MIMO) has garnered widespread
attention as a key technology for improving spectrum efficiency [25]. By fully exploring
spatial resources through beamforming techniques, scarce spectrum resources are efficiently
utilized, leading to a significant increase in network capacity. Consequently, the rational
allocation of spatial resources has become a critical factor influencing communication
performance. In the context of co-construction and sharing, inefficient coordination and
scheduling among different frequency bands can lead to an imbalance in spatial loads; thus,
users may cluster around certain beams in specific frequency bands, making it challenging
to achieve multi-user pairing in the spatial domain and hindering the maximization of
spectrum utilization.

In terms of the optimization objective of the resource allocation methods, traditional
attempts involve maximizing the throughput of a single user [26,27], ensuring fairness of
multi-user whole network throughput [21,28]. However, these methods cannot ensure the
maximization of multi-user experience at the network level. In addition, the objective of
load balancing methods has traditionally been focused on achieving equilibrium involving
user distribution or physical resource block (PRB) utilization [29]. These approaches also
fall short of guaranteeing an enhancement in network-level user experience.

The current optimization method of resource allocation in the industry predominantly
relies on the best-effort model based on expert experience. For instance, resource allocation
is achieved through algorithmic design and parameter tuning based on manual experience.
This large-scale, long-term, and single-target method severely restricts the full exploitation
of network capabilities involving complex scenarios with multiple entities and parameters
at the cell and system layer. Therefore, it is necessary to explore a network-level optimiza-
tion theory that serves as a top-level framework guiding resource allocation for shared
resources from an overarching perspective.

This study aims to investigate resource allocation methods that jointly consider time-
domain, frequency-domain, and spatial-domain aspects to achieve optimal network-level
user experience of multi-users under multi-carrier and multi-beam in the co-construction
and sharing scenarios of 5G and future mobile communication networks. In situations
where users are covered by multiple frequency bands simultaneously within a scheduling
period, frequency resources and beam resources of a certain frequency band are reasonably
allocated to the user. This allows us to comprehensively consider the communication
performance of all users to obtain a better user experience.

This paper proposes a time-frequency-space resource allocation method with the
optimization goal of network-level user experience maximization. To achieve this, the
Shannon theorem serves as the foundation, considering the multi-user and multi-carrier
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conditions in the scheduling period, the channel bandwidth is modeled by using the
Resource Block Group (RBG) granularity resources and spatial-domain beam resources,
and the signal-to-noise ratio (SNR) is modeled by using the spectral efficiency, and the
channel capacity can be obtained through calculation. By maximizing channel capacity, the
network-level user experience is optimized. Moreover, this paper innovatively proposes an
air interface information prediction scheme based on smart grid technology and constructs
an optimal parameter set for optimal modeling. By incorporating intelligent technologies
to construct a virtual grid fingerprint map, the system can predict users’ Received Signal
Reference Power (RSRP), beam ID, and spectral efficiency on different carriers. This
information serves as input to the optimization algorithm. Through the optimization
algorithm, the optimal time-frequency-space resource allocation scheme can be obtained.

The main contributions can be summarized as follows:

• We propose a resource allocation scheme based on a joint optimization problem of
time-frequency-space resources with the optimization goal of maximizing network-
level user experience to enhance overall network performance and user satisfaction;

• We provide a smart grid technology to predictive air interface information, including
RSRP, beam ID, and spectral efficiency, which are used as input for the optimization
algorithm;

• The feasibility and superiority of the proposed method are verified through simulation
platforms with extensive experiments.

The main structure of this paper is as follows: Section 2 provides the related work;
Section 3 analyzes the challenges faced in resource allocation under the co-construction and
sharing network; Section 4 proposes a time-frequency-spatial resource allocation method
for maximizing user experience in network-level; Section 5 validates the performance of
the proposed method; finally, the paper concludes with a comprehensive summary.

2. Related Work

In this section, we analyze methods related to resource allocation. We primarily
compare the existing methods with our proposed approach from two perspectives: opti-
mization dimensions and optimization objectives of resource allocation schemes. Detailed
comparisons can be found in Table 1.

Table 1. Related Work.

Ref. Optimization Objective
Optimization Dimension

Time-Domain Frequency-Domain Spatial-
Domain

[18] load balancing
√ √

×
[19] load balancing

√ √
×

[22] maximizing throughput of a single user
√ √

×
[23] maximizing throughput of a single user

√ √
×

[26] maximizing throughput of a single user
√ √

×
[20] maximizing throughput of a single user

√ √
×

[27] fairness of multi-user whole network throughput
√ √

×
[28] fairness of multi-user whole network throughput

√ √
×

[21] fairness of multi-user whole network throughput
√ √

×
[24] fairness of multi-user whole network throughput

√ √
×

Ours network-level user experience
√ √ √

Firstly, from the perspective of optimization dimensions of resource allocation schemes,
current methods mainly focus on the allocation of resources in the time and frequency
domains, with little consideration for the joint allocation of spatial domain resources.

Ref. [22] addresses resource allocation in wireless communication systems with mul-
tiple component carriers (CC) aggregation to achieve peak data rates of up to 1 Gbps for
low mobility and 100 Mbps for high mobility targets in IMT-Advanced. It proposes an L2
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carrier scheduling algorithm, aiming to allocate CCs to each user and reuse multiple users
in each CC. It improved scheduling fairness and coverage performance by independently
scheduling each carrier. However, it only adjusts scheduling priorities in the time domain
and does not consider spatial resources. In the context of carrier aggregation (CA), CCs
can be the activation and deactivation according to various factors such as user energy con-
sumption and Quality of Service (QoS) requirements. Ref. [23] models resource allocation
as a centralized multi-objective optimal CC management problem and formulates it as a
stochastic game optimization problem. The paper proposes a multi-agent Double Deep
Q-Network method to solve it, demonstrating a substantial reduction in User Equipment
(UE) power consumption (approximately 20%) compared to full CC activation schemes.
However, it also does not consider spatial domain beamforming resources. Ref. [21] focuses
on optimizing resource allocation in scenarios involving CA. It models CC selection and
resource block (RB) allocation as an Integer Linear Programming (ILP) problem and pro-
vides an optimization solution. It allocates the optimal rate to each user within the effective
range of resource allocation algorithms under high and low traffic conditions. However,
the algorithm models only time-frequency domain resource allocation and does not con-
sider spatial beamforming resources extensively used in 5G. The above three methods
primarily consider the allocation of resources in the time and frequency domains, lacking
joint consideration of spatial domain resource allocation, limiting user experience, and
resource utilization.

From the perspective of optimization objectives of resource allocation schemes, cur-
rent resource allocation schemes primarily optimize for load balancing [18,19], single-user
throughput, and fairness of multi-user whole network throughput, with minimal consider-
ation for network-level user experience.

In terms of the subchannel and power allocation in multi-carrier Non-Orthogonal Mul-
tiple Access (NOMA) communication systems, Ref. [26] designs a fast dynamic resource
allocation (FDRA) algorithm to maximize system sum rate efficiently by quickly identifying
interfering nodes with poor channel conditions, thus reducing search complexity. By jointly
optimizing subcarrier and power resource allocation, it maximizes system performance
while guaranteeing user QoS. Ref. [20] jointly optimized subcarrier allocation, subcarrier
pairing, relay selection, and power allocation in multi-carrier cooperative relay NOMA
systems. To solve the non-convex optimization problem, it proposes an asymptotically
optimal solution using the Lagrange dual method and Hungarian algorithm. Simulation re-
sults demonstrate the asymptotic optimality of the algorithm and its superior performance
compared to traditional Orthogonal Multiple Access (OMA) schemes and other existing
resource allocation methods. The above methods mainly aim to maximize the throughput
of a single user without considering network-level user experience in multi-frequency
multi-cell scenarios.

Ref. [27] addresses the problem of optimal CC selection and resource allocation in
5G networks. It considers delays associated with CC activation and deactivation, control
channel overhead for switching CCs, and various service types with different 5G QoS Iden-
tifiers (5QIs). It proposes QAP and QAP-ACDC methods to jointly allocate RBs and CCs in
downlink transmission based on Channel Quality Index (CQI) and QoS requirements. QAP
proportionally maximizes the average throughput of different service level users while sat-
isfying user rate and delay requirements. QAP-ACDC minimizes activation/deactivation
frequency, reducing control channel information for configuring CC transmission to a
minimum. The proposed solutions outperform state-of-the-art approaches in meeting QoS
requirements while reducing CC activation/deactivation by approximately 95.5%. Ref. [28]
proposes a proportional fair (PF) scheduling-based Radio Resource Management (RRM)
optimization solution for carrier aggregation. This method models RRM functionality as
an ILP problem related to CA, modulation and coding scheme (MCS) allocation, secondary
component carrier (SCC) selection, and RB allocation. By solving the joint optimization
problem that maximizes the PF objective function, simulation results demonstrate the
superiority of the algorithm in terms of fair throughput and average cell throughput. How-
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ever, this method is primarily applicable to Long Term Evolution (LTE) systems and does
not consider the impact of Multi-User (MU) pairing on RRM resource allocation in 5G
multibeam scenarios. Ref. [21] addresses the resource allocation problem of joint carrier ag-
gregation in cellular networks. It proposes a robust distributed optimal resource allocation
method using a utility proportionally fair allocation strategy to achieve fairness in resource
allocation among users. Simulation results demonstrate the convergence of the algorithm
to optimal resource allocation. Ref. [24] proposes a novel scheduling algorithm based on
user grouping, investigating throughput fairness among different users and load balancing
among different CCs. The algorithm achieves better coverage and fairness, appropriately
allocating resources to users at the cell edge. The above three approaches only consider
the fairness of multi-user in resource allocation, without considering network-level user
experience.

In summary, it is essential to explore resource allocation schemes that aim to opti-
mize network-level user experience while considering the coordinated allocation of time,
frequency, and spatial domain resources to enhance network resource utilization and
user experience.

3. Challenges in Resource Allocation of Sharing Network

After achieving deep co-construction and sharing between operators, in addition to
sharing infrastructure at the base station hardware level, the spectrum resources available
to operators become more abundant. For instance, before co-construction and sharing,
Operator A possesses a 100 MHz bandwidth spectrum around the 3.5 GHz band, and
Operator B also has another 100 MHz bandwidth spectrum around the 3.5 GHz band. After
the co-construction and sharing, users of both Operator A and Operator B can access a
combined 3.5 GHz spectrum with a total bandwidth of 2 × 100 MHz. With the increase
in spectrum resources following co-construction and sharing, the network scenarios and
systems become more intricate, effectively leveraging the advantages of increased spectrum
resources, achieving globally optimal resource allocation across multiple frequency bands,
maximizing spectrum efficiency, and enhancing user experience. However, despite these
improvements, they still face numerous challenges. In this section, we will elaborate on
the challenges faced in resource allocation after co-construction and sharing across three
dimensions: time domain, frequency domain, and spatial domain.

Time Domain Challenges: One of the challenges in the time domain is the uneven
distribution of scheduled users per Transport Time Interval (TTI) across different operator
frequency bands, leading to higher communication delays for different users. How to
organize the users and allocate the time-domain resources can significantly impact the
user experience.

As shown in Figure 1, in the cell of Operator B, multiple User Equipment (UE) have
different scheduling priorities. Due to limited scheduling resources, the network prioritizes
high-priority users, resulting in delayed scheduling for some low-priority users and conse-
quently affecting their user experience. However, Operator A’s resources remain idle. In
this scenario, it becomes necessary to leverage the idle resources of Operator A to alleviate
congestion in the time-domain resources of Operator B’s users.

Therefore, it is essential to coherently allocate time-domain resources among different
operators. This involves scheduling users with varying priorities on different carriers
simultaneously, reducing scheduling delays for low-priority users.
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Figure 1. Multi-user scheduling for different operators.

Frequency Domain Challenges: The challenges in the frequency domain arise due to
the differences in frequency ranges and duplexing modes between Frequency Division
Duplexing (FDD) and Time Division Duplexing (TDD) frequency bands among different
operators. This leads to varying user experiences when users are located in different
coverage areas of the cell or reside in FDD/TDD frequency bands.

As shown in Figure 2, the green lines represent TDD, while the blue lines represent
FDD. In Area 1 of the TDD cell, the close-coverage point, TDD provides advantages such as
larger bandwidth and precise channel estimation based on Sounding Reference Signal (SRS),
resulting in better user experiences for both uplink and downlink compared to FDD. In
Area 2 of the TDD cell, the mid-coverage point, TDD enhances coverage by multi-antenna
beamforming and benefits from the large bandwidth, leading to superior downlink user
experiences compared to FDD. However, TDD uplink coverage is constrained by the lower
transmit power of the terminal, resulting in weaker uplink user experiences compared to
FDD. In Area 3 of the TDD cell, the far-coverage point, TDD uses the Precoding Matrix
Indicator (PMI) for data channel precoding. As TDD frequencies are generally higher than
FDD, signal attenuation increases with the increase of distance, leading to worse uplink
and downlink user experiences compared to FDD.

Figure 2. Uplink and downlink experiences in different frequency bands and coverage areas.

Hence, when a sharing network is made up of both TDD frequency bands and FDD
frequency bands in the frequency domain, it is crucial to select appropriate resident fre-
quency bands for users in different areas based on coverage and bandwidth considerations.
This ensures an enhanced user experience for users allocated to those frequency bands.

Spatial Domain Challenges: The spatial domain challenges arise due to differences in
product forms (e.g., the number of antennas) for FDD and TDD frequency bands among dif-
ferent operators. For instance, TDD usually utilizes massive MIMO antenna arrays, leading
to a larger spatial dimension, while FDD mainly employs 4T4R or 8T8R configurations with
a smaller spatial dimension. After co-construction and sharing, the coexistence of wide and
narrow beams increases the complexity of spatial beam combinations. Differences in rank
streams and Multi-User Multiple Input Multiple Output (MU-MIMO) pairing layers in the
spatial channel space result in variations in user experiences. Moreover, users of different
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operators are not evenly distributed on different beams, suppressing the further release of
spatial MU pairing capability.

As depicted in Figure 3, Operator A has more users, and due to user clustering, the
TDD beam loads of Operator A are imbalanced. At the same time, Operator B has fewer
users, leading to lower FDD beam loads. Without coordinated spatial resource scheduling
between Operator A and Operator B, the idle resources of Operator B cannot be shared,
resulting in wasted spectrum resources for Operator B.

Figure 3. Unbalanced load distribution on distinct beams of different operators.

Therefore, in the spatial domain, it is crucial to holistically allocate beam resources to
users. This involves balancing the user loads across different beams for operators, activating
more users to achieve MU-MIMO, and efficiently utilizing the available spatial resources.

Furthermore, the allocation of time, frequency, and spatial resources needs to cooperate
with each other. As shown in Figure 4, the network allocates appropriate time, frequency,
and spatial resources based on the volume and type of service for different users. For
instance, For low-latency services like UE0, a shorter time-domain symbol resource can be
allocated, and according to the volume of the user’s service, dynamically allocating suitable
frequency-domain Resource Blocks (RB) resources. For high-data-rate services, such as
enhanced Mobile Broadband (eMBB) for UE1, a larger allocation of time-domain symbols,
frequency-domain RBs, and spatial resources can be provided. This approach ensures the
specific requirements of each user, leading to an optimized allocation of resources in the
time, frequency, and spatial domains.

Figure 4. Cooperative resources allocation of time, frequency and spatial domains.

In summary, after implementing a co-construction and sharing network, there may be
challenges, such as user imbalances in the time domain, significant variations in user expe-
rience across different frequency bands in the frequency domain, and uneven distribution
of users in the case of spatial multi-dimensional combinations. Therefore, it is necessary
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to achieve a coordinated allocation of time, frequency, and spatial resources. Existing
methods predominantly focus on the resource allocation of certain domains and rarely
consider the resource allocation of all domains globally. Therefore, we need to explore the
collaborative resource allocation method that maximizes the user experience and guides the
optimal allocation of time, frequency, and spatial resources in the case of co-construction
and sharing so as to enhance network performance.

4. Time-Frequency-Space Resource Allocation Method in Sharing Network

In information theory, Shannon’s theorem defines the air interface performance for a
single link. Over the past decades, spanning from 2G to 5G and from convolutional codes
to Polar codes, physical layer channel coding techniques have continuously advanced.
They have progressively approached the Shannon limit in terms of single-user, link-level
performance. Indeed, practical communication networks are complex systems comprised
of multiple users and links. As illustrated in Figure 5, within the entire network, multiple
users coexist. The overarching goal is to optimize the collective experience of all users to
achieve network-level experience maximization.

Figure 5. Multi-user network-level experience maximization.

4.1. General Framework

In the context of a multi-user, multi-carrier, and multi-beam network, achieving
network-level optimal performance and maximizing system-level capacity to reach the
system limit are prerequisites for achieving the best overall user experience. As shown
in Figure 6, when a user is in Frequency Band 1 of Operator A (service cell) and detects
Frequency Band 2 of Operator B (adjacent cell), a decision is made on whether to perform
inter-frequency handover to enhance the overall user experience. Therefore, we propose a
resource allocation approach with the goal of maximizing network-level user experience.
To achieve this optimization objective, time, frequency, and spatial resources need to be
collaboratively taken into account.

Figure 6. Schematic diagram of air interface information prediction between different frequency bands.

The framework of the time-frequency-space resource allocation method is shown in
Figure 7. The input information of the framework uses features from service cells and
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co-frequency neighbor cells. The output information is the optimal resource allocation
scheme. By combining network-level optimization algorithm modules with smart grid
technology modules, this framework aims to maximize the network-level user experience
in a multi-user, multi-carrier, and multi-beam context. Specifically, we set up an opti-
mization model aiming at the optimal network-level user experience. To determine the
time, frequency, and spatial parameters that maximize network performance, we introduce
an air interface information prediction method based on smart grid technology, which
constructs fingerprint maps using intelligent techniques with features from service cells
and co-frequency neighbor cells as training data. The smart grid comprises coverage grids,
spectrum efficiency grids, and beam grids. The coverage grids yield information about
the inter-frequency RSRP, the spectrum efficiency grids offer insights into inter-frequency
spectral efficiency, and the beam grids provide information about inter-frequency SRS
beam ID. These grids collectively provide input data for the network-level optimization
algorithm. Additionally, cell load information from neighboring cells operating at different
frequencies is taken into account to achieve optimal results in resource allocation. By
solving the optimization algorithm, an optimal time-frequency-space resource allocation
scheme is obtained. This scheme facilitates adjustments to the distribution of users and
services at the beam level, ultimately enhancing the downlink experience for users across
the entire sharing network. The details of the method will be given in Sections 4.2 and 4.3.

Figure 7. The framework of the time-frequency-spatial resource allocation method.

4.2. Mathematical Modeling

The Shannon theorem, represented by the formula C = Blog2(1 + S/N), describes the
relationship between the maximum achievable transmission rate in a channel with finite
bandwidth, subject to random noise, and the channel bandwidth and signal-to-noise power
ratio. Here, C represents the maximum rate that the channel can support, often referred
to as channel capacity; B is the channel bandwidth; S stands for average signal power; N
represents average noise power; S/N represents SNR. By adjusting the bandwidth and
SNR, the maximum throughput for a single carrier can be achieved.

To achieve optimal network-level performance in a multi-user, multi-carrier scenario
inspired by the principles of the Shannon theorem, we model the allocation of time-
frequency-space resources for multiple users as a mathematical optimization problem.
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Specifically, we divide the bandwidth resource B into segments for each scheduling time
slot, introducing the time-domain parameter t and the frequency-domain parameter b.
Since we aim to allocate bandwidth resources to multiple users, we introduce the user
parameter k. Detailed explanations of the parameters are listed in Table 2.

Table 2. Nomenclature.

Parameters Detailed Explanation

C Channel capacity.
B Channel bandwidth.
S Average signal power.
N Average noise power.

b Index for frequency-domain resource.
t Index for time-domain resource.
k Index for user.
i Index for carrier.
n Index for beam.

AllocFreq The number of copies of the allocated bandwidth resource.
SchTime Total scheduling duration.

UserNum The total number of scheduled users.
CarrierNum The number of carriers configured on the network side.

BeamID The ID of the beams.

BWb (t) b-th spectrum resource allocated at time t.
BWk,b (t) b-th spectrum resource allocated for user k at time t .

BWk,i,n,b (t) b-th spectrum resource allocated for user k on carrier i in beam n at time t.
αk,b(t) ∈ {0, 1} Whether the b-th spectrum resources are scheduled at time t by user k.

αk,i,n,b(t) ∈ {0, 1} Whether the b-th spectrum resources in beam n on carrier i are scheduled at time t by user k.
Sk,t,b Signal strength of user k on the b-th spectrum resource at time t.
Ik,t,b Interference strength of user k on the b-th spectrum resource at time t.
Nk,t,b Noise strength of user k on the b-th spectrum resource at time t.

Sk,i,t,b,n Signal strength of user k on carrier i and b-th spectrum resource in beam n at time t.
Ik,i,t,b,n Interference strength of user k on carrier i and b-th spectrum resource in beam n at time t.
Nk,i,t,b,n Noise strength of user k on carrier i and b-th spectrum resource in beam n at time t.
SEk,i,t,b,n Spectral efficiency of user k on b-th spectrum resource and n-th beam of carrier i at time t.

Firstly, in the scenario of a single-cell and single-user, the Shannon formula can be
transformed as follows:

C = argmax
BWb(t)

SchTime

∑
t=0.5

AllocFreq

∑
b=1

(
BWb(t) • log

(
1 +

S
N

))
(1)

The meanings of each variable in the formula are as follows:

• BWb (t): the b-th spectrum resource allocated at time t.
• SchTime: the total scheduling duration. In this paper, SchTime = 1 ms, and the step

length is 0.5 ms.
• AllocFreq: the number of copies of the allocated bandwidth resource. The granularity

is RBG (integer).

Secondly, in the scenario of a single-cell and multi-user, the above formula can be
further evolved into:

C = CUE1 + CUE2 + CUE3 + . . . + CUEN =
UserNum

∑
k=1

CUEk (2)

C = argmax
αk,b(t),BWk,b(t)

UserNum

∑
k=1

SchTime

∑
t=0.5

AllocFreq

∑
b=1

(
αk,b(t) • BWk,b(t) • log

(
1 +

S
N

))
(3)
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where S/N is equivalent to Sk,t,b
Ik,t,b+Nk,t,b

, we can obtain

C = argmax
αk,b(t),BWk,b(t)

SchTime

∑
t=0.5

UserNum

∑
k=1

AllocFreq

∑
b=1

(
αk,b(t) • BWk,b(t) • log

(
1 +

Sk,t,b

Ik,t,b + Nk,t,b

))
(4)

The implications of each variable in the formula are as follows:

• αk,b(t) ∈ {0, 1}: whether the b-th spectrum resources are scheduled at time t by user k.
• BWk,b (t): the b-th spectrum resource allocated to user k at time t.
• Sk,t,b , Ik,t,b , Nk,t,b : the signal strength, interference strength, and noise strength of

user k on the b-th spectrum resource at time t, respectively.
• UserNum: the total number of scheduled users (integer).

The following constraints exist in the formula:

• αk,b(t) ∈ {0, 1}, map user k whether schedule the b-th spectrum resource at time t or
not to two states: 0 and 1.

•
UserNum

∑
k=1

AllocFreq
∑

b=1
(BWk,b (t)) ≤ Total spectrum resource, the sum of spectrum resources

allocated at a time cannot exceed the total spectrum resources.

The above formula aims to optimize the allocation of time, frequency, and spatial
resources to achieve the highest collective network experience rate for all users (UserNum)
within a given scheduling duration (SchTime) and on a specific allocated frequency domain
resource (AllocFreq). This process results in determining values for αk(t) ∈ {0, 1} and
BWk,b (t). Specifically, for each user, whether the spectrum resource can be scheduled at a
particular time t, and if so, how many frequency bandwidth resources can be allocated.

In addition, spatial resources are also an important factor that we need to consider. For
BWk,b (t), considering that users on different beams can reuse the same spectrum resources
by means of MU pairing, it can be modeled as:

TotalRes =
UserNum

∑
k=1

SchTime

∑
t=0.5

AllocFreq

∑
b=1

BeamID

∑
n=1

(αk,n,b(t) • BWk,n,b(t)) (5)

where BeamID indicates the ID of the beams. Users who reuse the same spectrum resources
have different BeamID. TotalRes represents the total available frequency domain resources
after taking into account the MU function. Then, the modeling formula of single-cell and
multi-user is obtained:

C = argmax
αk,n,b(t),BWk,n,b(t)

UserNum

∑
k=1

SchTime

∑
t=0.5

AllocFreq

∑
b=1

BeamID

∑
n=1

(
αk,n,b(t) • BWk,n,b(t) • log

(
1 +

Sk,t,b,n

Ik,t,b,n + Nk,t,b,n

))
(6)

Finally, the formula of multi-cell (or multi-carrier) and multi-user can be modeled as:

C = argmax
αk,i,n,b(t),BWk,i,n,b(t)

UserNum

∑
k=1

CarrierNum

∑
i=1

SchTime

∑
t=0.5

AllocFreq

∑
b=1

BeamID

∑
n=1

(αk,i,n,b(t) • BWk,i,n,b(t) • SEk,i,t,b,n) (7)

SEk,i,t,b,n = log
(

1 +
Sk,i,t,b,n

Ik,i,t,b,n + Nk,i,t,b,n

)
(8)

where SEk,i,t,b,n represents spectral efficiency, that is, the spectral efficiency of user k on b-th
spectrum resource and n-th beam of carrier i at time t.

The meanings of each variable in the formula are as follows:

• αk,i,n,b(t) ∈ {0, 1}: whether the b-th spectrum resources in beam n on carrier i are
scheduled at time t by user k.

• BWk,i,n,b (t): the b-th spectrum resource allocated for user k on carrier i in beam n at
time t, which is the allocation of time-frequency-space resources for each user.
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• Sk,i,t,b,n, Ik,i,t,b.n, Nk,i,t,b,n: the signal strength, interference strength, and noise strength
of user k on carrier i and b-th spectrum resource in beam n at time t, respectively.

• CarrierNum: the number of carriers configured on the network side.

The following constraints exist in the formula:

• αk,i,n,b(t) ∈ {0, 1}, map user k whether schedule the b-th spectrum resource on carrier
i in beam n at time t or not to two states: 0 and 1.

•
UserNum

∑
k=1

AllocFreq
∑

b=1
(BWk,i,n,b(t)) ≤ Total spectrum resource, the frequency spectrum re-

sources allocated by all users at the same BeamID time will not exceed the total
frequency spectrum resources. (e.g., 100 Mbit/s bandwidth corresponds to 18 RBGs).

• For single user, CarrierNum = min {maximum number of CA carriers supported by
UE capability, number of carriers configured on the base station side}

The above formula aims to optimize the allocation of time, frequency, and spatial
resources within the scheduling duration SchTime while assigning frequency resources
AllocFreq, spatial resources BeamID, and carrier resources CarrierNum. The objective is to
achieve the optimal network-wide experience rate for all users UserNum. This process aims
to determine for each user, carrier, beam, and frequency resource for each user. Utilizing
the smart grid technology described in the following section, this optimization algorithm is
provided with input. Then, by employing typical optimization-solving algorithms such as
the branch and bound method and block coordinate descent method, the optimal resource
allocation scheme for each user is obtained. The smart grid technology assists in offering
inputs to the optimization algorithm. In the given formula, SEk,i,t,b,n can be predicted
using smart spectrum efficiency grids. BWk,i,n,b(t) can be obtained from smart beam grids.
αk,i,n,b(t) is determined through smart coverage grids.

4.3. Smart Grid Technology

In wireless networks, terminals often incur time costs or performance losses to obtain
target information. For instance, terminals need to perform inter-frequency GAP measure-
ments to acquire inter-frequency RSRP information. During these inter-frequency GAP
measurement periods, the terminal suspends both uplink and downlink transmissions,
leading to reduced throughput. Smart grid technology takes the grid as the fundamental
unit, and a virtual wireless air interface environment characteristic library is established by
incorporating air interface measurement information. Leveraging the correlation between
co-frequency and inter-frequency measurement reports of historical users, an Artificial
Intelligence (AI) model is trained to predict inter-frequency information based on co-
frequency information. This approach effectively mitigates the impact of inter-frequency
GAP measurements on services.

To achieve optimal network-level performance for time-frequency-space resource
allocation, the optimization formula mentioned above needs to be solved, yielding the
optimal parameter combinations. For each user’s utilization of air interface resources on
each frequency band αk,i,n,b(t), we propose an RSRP prediction method based on smart
coverage grids. When the predicted RSRP corresponding to UE in beam n on carrier i
at time t falls below a predefined minimum threshold, αk,i,n,b(t) is set to 0; otherwise, it
is set to 1. Note that RSRP, as defined in the 3rd Generation Partnership Project (3GPP)
protocol, generally refers to Synchronization Signaling Block (SSB) RSRP or Channel State
Information Reference Signal (CSI-RS) RSRP. Here, we refer to SSB RSRP. The frequency
domain position of the SSB is independent of the specific allocation of frequency resources
b; hence the predicted value of αk,i,n,b(t) can be obtained from αk,i,n(t), which, in turn, can
be predicted using coverage grids. Moreover, we introduce a prediction method for spec-
trum efficiency SEk,i,t,n,b based on smart spectrum efficiency grids, as well as a prediction
method for BWk,i,n,b(t) based on smart beam grids. By intelligently predicting the beam
ID information of each user, users with the same beam ID are collectively considered, and
the total resources are divided by the number of users. We can achieve frequency resource
allocation at the granularity of RBGs. As depicted in Figure 8, we achieve predictions for
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RSRP, spectrum efficiency, and beam ID across different frequency bands by constructing
high-resolution smart grids. These predictions provide essential inputs for solving the
network-level optimization algorithm.

Figure 8. Schematic diagram of Smart grids.

Through multi-dimensional measurements of wireless signals, UE with similar wire-
less characteristics can be classified together. The base station gNodeB in 5G networks
groups users with identical measurement results into the same grid, referred to as a smart
grid. Utilizing machine learning techniques, gNodeB takes these smart grids as crucial
features to extract the mapping relationship between all smart grids within a cell and the
signal characteristics of a specific frequency point. This mapping relationship is constructed
by a smart grid model. For instance, if a 5G cell is configured with M neighboring frequency
points, there would be M smart grid models.

As illustrated in Figure 9, within a same-frequency network at frequency point F1,
there are two cells labeled Cell1 and Cell2. If UE2 measures a frequency point and its results
are [(Cell 1, RSRP 1), (Cell 2, RSRP 2),. . . ], and UE3 measures the same frequency point
with identical results as UE2, UE2, and UE3 are considered to belong to the same smart
grid. Utilizing the Cell ID and RSRP for each cell under the neighboring frequency point F3
as labels, the RSRP coverage grid is used to train the relationship model between frequency
point F1 [(Cell 1, RSRP 1), (Cell 2, RSRP 2),. . . ] and frequency point F3[(Cell 1, RSRP 1),
(Cell 2, RSRP 2),. . . ].

Figure 9. Definition of Smart grids.

Smart grid technology leverages AI algorithms to achieve the prediction of inter-
frequency performance metrics. As illustrated in Figure 10, a neural network model is
trained using the collected historical data. The mapping relationship between input and
output is obtained, which is used to predict the inter-frequency information.

Figure 10. Diagram of inter-frequency information prediction.
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Based on the distinct input features and output results, smart grid models include
RSRP prediction models, spectrum efficiency prediction models, and beam ID prediction
models. Taking the RSRP coverage grid as an example, a multi-layer perceptron (MLP)
algorithm is employed. There are 2M inputs, 3 hidden layers, and the activation function
utilizes a ReLU function. M consists of 1 service sell and M-1 Co-frequency Neighbor
Cells. The loss function is Focal Loss. The output size is P, which signifies the number of
predicted inter-frequency neighboring cells, and the predicted RSRP for the corresponding
P inter-frequency neighboring cells can be obtained. The network structure for the spectrum
efficiency grid model and beam grid model is identical to the RSRP coverage grid model.
The input-output feature quantities for each type of grid are presented in Tables 3–5.

Table 3. RSRP coverage grid-neural network input feature and output feature.

Input Feature Implication
SSB Beam ID SSB Beam Index

Service Cell
SSB RSRP SSB Reference Signal Received Power

SSB Beam ID SSB Beam Index
Co-frequency Neighbor Cells

SSB RSRP SSB Reference Signal Received Power
Output Feature Implication

Inter-Frequency Target Neighbor Cell RSRP Reference Signal Received Power

Table 4. Spectrum efficiency grid-neural network input feature and output feature.

Input Feature Implication
SSB Beam ID SSB Beam Index

Service Cell
SSB RSRP SSB Reference Signal Received Power

SSB Beam ID SSB Beam Index
Co-frequency Neighbor Cells

SSB RSRP SSB Reference Signal Received Power

RRC Connected User Count

Pending Scheduling User CountCell User Count and Distribution

Cell Average MCS

Sub-second Level Statistics,
Reflecting Cell User Count

Downlink Cell PRB Utilization Rate
Cell Resources

PDCCH CCE Utilization Rate

Reflecting Distribution of Channel
Quality for Users Within the Cell

Background Service Cell Last TTI Ratio Representation of Background User
Service Proportion

Output Feature Implication
Inter-Frequency Target Neighbor Cell Inter-Frequency Spectral Efficiency Spectral Efficiency

Table 5. Beam grid-neural network input feature and output feature.

Input Feature Implication
SSB Beam ID SSB Beam Index

Service Cell
SSB RSRP SSB Reference Signal Received Power

SSB Beam ID SSB Beam Index
Co-frequency Neighbor Cells

SSB RSRP SSB Reference Signal Received Power
Output Feature Implication

Inter-Frequency Target Neighbor Cell SRS Beam ID Strongest Corresponding Beam ID for SRS
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During the model prediction stage, the same feature vectors used during model
training are inputted to realize the prediction of RSRP, spectrum efficiency, and beam ID
information. Specifically, gNodeB utilizes A3 event measurement reports reported by users
on the same frequency. The RSRP information within these reports is taken as the input for
the smart grid model. This input is combined with other necessary feature information.
By querying the RSRP model, spectrum efficiency model, and beam model for a particular
inter-frequency point, it becomes possible to swiftly predict the RSRP, spectrum efficiency,
and beam ID for a UE at that specific inter-frequency point’s coverage location.

5. Evaluation
5.1. Experience Setup

In order to evaluate the performance of the proposed time-frequency-space resource
allocation method based on network-level user experience maximization, we conduct
a simulation and compare it with the classical load balancing method based on PRB
utilization. Through the analysis of performance indicators such as user experience rate
and throughput rate, we verify the effectiveness and superiority of the method. We use
C++ object-oriented programming language to build the whole communication process,
including instantiating various types of network elements, base stations, users, network
configurations, and servers in communication scenarios. We also simulate the process of
scheduling and receiving service requests, channel measurement, and resource allocation.
In addition, we use Python to realize the deep learning method for information prediction.

The end-to-end system-level simulation process in this paper simulates the whole
communication process. It does not involve modifications in the PHY layer, which is
fully implemented in accordance with 3GPP NR standards. The simulation focuses on
the design of the resource allocation in the multi-user scenario on a high level. In the
simulation process, we begin by configuring simulation-specific model parameters for scene
construction and channel initialization. This primarily includes initial user deployment,
business model, and channel model. Specifically, for user deployment, we distribute a
specified number of users evenly across the geographical locations of each cell. Users select
the optimal RSRP beam for access, with a minimum access RSRP of −113 dB. If a user
does not meet the access conditions for any beam, the user is repositioned. Regarding
the business model, we employ the Burst model defined in 3GPP TR, where each user’s
packet size and packet duration vary, and the inter-packet intervals differ. For the channel
model, we utilize the large-scale channel model defined in 3GPP TR 37.910. In addition,
in the simulation environment, different cells are overlapped by common stations. Noise
power spectral density is 7 dB. The transmitting power of the base station side is 46 dB
in 20 M bandwidth. The detailed simulation configuration parameters are shown in the
Table 6. Next, we proceed with business scheduling and channel-related computations.
Subsequently, we employ the proposed time-frequency-space resource allocation algorithm
to further conduct user behavior scheduling. Throughout the simulation, relevant statistics
are recorded, including user traffic volume, user session durations, available RBs in each
cell, and the number of users in each cell. The simulation outputs encompass network-level
user experience rate, SINR, and cell-level PRB utilization.

The specific flow for one scheduling cycle is as follows. Specifically, first, we randomly
scatter points. When t = 0.5 ms, collect the initial data involving the service cell and the
co-frequency neighbor cell, input them to the trained smart grid model, and predict the
inter-frequency RSRP, spectral efficiency, and beam information; then, input them into the
optimization formula for accumulation. The time step length is 0.5 ms. When t = 1 ms,
continue to record the data of the service cell and the co-frequency neighbor cell at this
time, these data change due to changes in information such as user location and service.
Input these data into the smart grid model again, predict the RSRP, spectral efficiency, and
beam information at this time, and provide this output to the optimization formula to
continue to accumulate again. At this time, a scheduling cycle finished. Finally, we solve
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the optimization algorithm to calculate the resource allocation combination that maximizes
the objective function.

Table 6. The simulation configuration parameters.

Type Detailed Configuration Parameters

Networking mode
(1) TDD 3.5 G @20 M+TDD 3.5 G@20 M
(2) TDD 3.5 G @40 M+TDD 3.5 G@40 M

(3) TDD 3.5 G @40 M+TDD 3.5 G@40 M+FDD2.1G@20 M

Number of antenna 64 TRX/32 TRX

Load
(1) Mid-Low

(2) Mid-Heavy

User distribution Distribution ratio of users in the near, mid, and far: 1:2:1

Channel model Urban Macro-cellular (UMa) model

Sub-channel frequency 30 KHz

Waveform modulation scheme
Filtered-Orthogonal Frequency

Division Multiplexing (F-OFDM)

5.2. Experience Results
5.2.1. Overall Performance

Firstly, we discuss the performance gains compared with the load balancing method
based on PRB utilization in the experiment scene, which is composed of two TDD cells, each
of which owns 20 M bandwidth. Specifically, the load situation, the number of antennae,
the number of users, and overall performance gains are shown in Table 7. As we can see,
in all four different scenes, we obtain performance gain in network-level downlink user
experience rate ranging from 17% to 30%.

Table 7. Performance Gain for Networking TDD@20 M+TDD@20 M.

Scene Cell1 Cell2 Load Antenna User Gain

Scene 1.1 TDD @20 M TDD @20 M Mid-Low 64 TRX 50 21%
Scene 1.2 TDD @20 M TDD @20 M Mid-Low 32 TRX 40 17%
Scene 1.3 TDD @20 M TDD @20 M Mid-Heavy 64 TRX 80 30%
Scene 1.4 TDD @20 M TDD @20 M Mid-Heavy 32 TRX 70 26%

In Figures 11–14, we demonstrate the user experience rate of each user. Blue indicates
the method based on the PRB utilization rate, and orange represents our proposed method
based on time-frequency-space optimal resource allocation. As we can see, almost all
of the users show a higher user experience rate than the traditional method. Although
the performance of a small number of users is degraded, the overall user experience
of the entire network has greatly improved. As shown in Figure 15, it is the average
experience rate of the overall users. We can see the performance improvement for all the
four experience scenes.

In the mid-low load scenario, leveraging the load balancing method based on PRB
utilization, the perceived downlink rate of the whole network user is 99.41 Mbps and
86.34 Mbps with 64 TRX and 32 TRX, respectively. For the time-frequency-space resource
allocation method, the perceived downlink rate of the whole network user is 119.08 Mbps
and 101.57 Mbps, respectively. The perceived downlink rate of the whole network user is
increased by 21% and 17%, respectively. In the mid-heavy load scenario, leveraging the
load balancing method based on PRB utilization, the perceived downlink rate of the whole
network user is 86.34 Mbps and 64.71 Mbps with 64 TRX and 32 TRX, respectively. For
the time-frequency-space resource allocation method, the perceived downlink rate of the
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whole network user is 111.57 Mbps and 81.53 Mbps, respectively. The perceived downlink
rate of the whole network user is increased by 30% and 26%, respectively.

Figure 11. Performance comparison for each user in scene 1.1.

Figure 12. Performance comparison for each user in scene 1.2.

Figure 13. Performance comparison for each user in scene 1.3.
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Figure 14. Performance comparison for each user in scene 1.4.

Figure 15. Average experience rate for different methods in scene 1.

In addition, by conducting separate statistics for each cell, as shown in Figure 16, it can
be found that the proposed method can also effectively improve the average throughput
for different cells.

In conclusion, under the same number of antennae and bandwidth, with the increase of
load (from mid-low load to mid-heavy load), the time-frequency space resource allocation
algorithm can achieve user balance on the heavy-load beam and the low-load beam, release
the potential capability of MU pairing, make more rational utilization of space resources,
and increase the average throughput gain of network-level users. In addition, under the
same bandwidth, load, and user distribution, with the increase in the number of antennae,
the larger the number of beams, the finer the beam granularity, the larger the MU gain, and
the larger the average throughput of network-level users.

5.2.2. Performance for Different Bandwidth

In this part, we increase the system bandwidth from 20 M to 40 M to validate the
performance of the method with different bandwidths. As shown in Table 8, we also design
scenes 2.1–2.4. The performance gains are ranging from 18–31%.
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Table 8. Performance Gain for Networking TDD@40 M+TDD@40 M.

Scene Cell1 Cell2 Load Antenna User Gain

Scene 2.1 TDD @40 M TDD @40 M Mid-Low 64 TRX 80 23%
Scene 2.2 TDD @40 M TDD @40 M Mid-Low 32 TRX 60 18%
Scene 2.3 TDD @40 M TDD @40 M Mid-Heavy 64 TRX 180 31%
Scene 2.4 TDD @40 M TDD @40 M Mid-Heavy 32 TRX 150 25%

(a) Average throughput for scene 1.1 (b) Average throughput for scene 1.2

(c) Average throughput for scene 1.3 (d) Average throughput for scene 1.4

Figure 16. Average throughput for different cells.

Compared with Table 7, we can find that under the same load and user distribution,
the network-level user experience improves with the increase in bandwidth, and in the
case of large bandwidths, the advantages of our approach are further amplified. Because
more frequency-domain RB can be used in this situation, more RB combinations can
be selected by different users under multi-user arrangement, which is equivalent to an
increase in freedom in resource allocation. Figure 17 shows the average experience rate for
different methods and scenes. Although the available RB of PRB utilization-based methods
also increases, our method can better coordinate time-frequency-space three-dimensional
resources, leading to higher gain. Additionally, the average experience rates for different
methods and scenes are shown in Figure 17.

5.2.3. Performance for Different Networking Modes

The aforementioned evaluation focuses on the networking modes involving two
inter-frequency carriers. In this part, we verify the performance of the proposed method
with three inter-frequency carriers, including TDD 3.5 G, TDD 3.5 G, and FDD 2.1 G.
The performance gains involving different loads and different numbers of antennae are
demonstrated in Table 9. Our method owns 20–35% gain compared with the traditional
method. Additionally, the average experience rates for different methods and scenes are
shown in Figure 18. Our approach has obvious advantages.
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Table 9. Performance Gain for Networking TDD@40 M+TDD@40 M+FDD@20 M.

Scene Cell1 Cell2 Cell3 Load Antenna User Gain

Scene 3.1 TDD @40 M TDD @40 M FDD @20 M Mid-Low TDD:64 TRX; FDD:4 TRX 90 25%
Scene 3.2 TDD @40 M TDD @40 M FDD @20 M Mid-Low TDD:32 TRX; FDD:4 TRX 68 20%
Scene 3.3 TDD @40 M TDD @40 M FDD @20 M Mid-Heavy TDD:64 TRX; FDD:4 TRX 203 35%
Scene 3.4 TDD @40 M TDD @40 M FDD @20 M Mid-Heavy TDD:32 TRX; FDD:4 TRX 160 27%

Figure 17. Average experience rate for different methods in scene 2.

Figure 18. Average experience rate for network with three carriers.

In conclusion, our method improves system-level performance in a multi-user, multi-
carrier scenario. The time-frequency-space resources can be allocated cooperatively. Compared
with the classical method, the proposed method achieves better network-level user experience.

6. Conclusions

In this paper, we explore resource allocation methods that comprehensively consider
time-domain, frequency-domain, and spatial-domain multi-dimensional collaboration to
achieve optimal network-level user experience in multi-carrier and multi-beam scenarios
within the context of 5G and future mobile communication sharing networks. We build
an optimization model based on the Shannon theorem. Additionally, an AI-based smart
grid technology is introduced to achieve inter-frequency information prediction, enabling
the construction of an alternative parameter set for optimization. This scheme predicts
inter-frequency RSRP, beam, and spectral efficiency, which are integrated into the optimiza-
tion algorithm to determine the optimal time-frequency-space resource allocation scheme.
Through efficient coordination of multiple frequency bands and inter-beam resources, the
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potential capability of MU pairing can be released; space resources will be used more
rationally. Extensive experiments validate the effectiveness and superiority of the proposed
methods. This work contributes to the ongoing efforts to enhance spectrum efficiency
and elevate user satisfaction, thereby paving the way for more efficient and user-centric
next-generation communication networks.
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