
Citation: Turkmanović, H.; Karličić,

M.; Rajović, V.; Popović, I. High

Performance Software Architectures

for Remote High-Speed Data

Acquisition. Electronics 2023, 12, 4206.

https://doi.org/10.3390/

electronics12204206

Academic Editor: Paulo Ferreira

Received: 4 September 2023

Revised: 8 October 2023

Accepted: 9 October 2023

Published: 11 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

High Performance Software Architectures for Remote
High-Speed Data Acquisition
Haris Turkmanović * , Mihajlo Karličić, Vladimir Rajović and Ivan Popović

Department of Electronics and Digital Systems, School of Electrical Engineering, University of Belgrade,
Bulevar Kralja Aleksandra 73, 11120 Belgrade, Serbia
* Correspondence: haris@etf.bg.ac.rs

Abstract: There are various tools for real-time data acquisition and analysis of high-frequency signals.
Usually, the tools for data acquisition and analysis are incompatible with each other, expensive, or
require the utilization of various technologies. Designing a unique toolset for real-time data acqui-
sition and analysis of high-frequency signals presents a large challenge, both in terms of hardware
and software design. Some of the main challenges include fulfilling strict real-time performance
requirements, using cost-effective hardware components, and designing a software architecture with
minimal software latency for data sampling on an embedded platform and data analysis on a PC
machine. This paper presents a software architecture design methodology for embedded platforms,
including an RTOS and an Ethernet interface, along with the application architecture on the host
side. To demonstrate the advantages of the proposed methodology, a prototype consisting of the
STM32H747 microcontroller, FreeRTOS operating system, and a GUI application based on the Qt
framework has been created. It has been shown that using the proposed architecture design methodol-
ogy makes it possible to preserve the maximal hardware sampling rate utilizing a 100 Mbps Ethernet
link. In the experiments, sampling rates up to 4.57 MSps for 10-bit resolution and real-time transfer
of data over Ethernet link and visualization on host PC have been achieved with this specific MCU.

Keywords: FreeRTOS; STM32; Qt; data acquisition system; network; embedded software

1. Introduction

In simple electronics experiments, it may be the most cost-effective to obtain data
using common measurement devices, such as multimeters, oscilloscopes, oscillographs,
strip-chart recorders, compact data loggers, or interconnected standalone instruments. As
the experiments or measurement functions get more complex or demand extensive data
manipulation, a data acquisition system (DAQ) is often a better choice [1].

Data acquisition is the process by which physical phenomena from the real world are
transformed into electrical signals that are measured and converted into a digital format
for processing, analysis, and storage by a computer. In a large majority of applications, the
data acquisition (DAQ) system is designed not only to acquire data but to act on it as well.
In defining DAQ systems, it is, therefore, useful to extend this definition to include the
control aspects of the total system [2]. A DAQ system is comprised of a computer running
specialized software and several data acquisition cards and/or instruments (from now on
jointly referred to as DAQ devices). Data acquisition (DAQ) systems are intensively used in
laboratory research, industrial facilities, aviation, automotive, etc. The applications include
test and measurement, automation, etc. [3].

One important consideration when designing a DAQ system is the total system
throughput in bits per second. When considering a single channel, the parameter translates
to maximum throughput per channel (in bits per second), which, if all the channels are of
the same type, equals the total system throughput divided by the number of channels. Since
the useful information is stored in binary samples and not in single bits, the equivalent

Electronics 2023, 12, 4206. https://doi.org/10.3390/electronics12204206 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12204206
https://doi.org/10.3390/electronics12204206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0651-8209
https://orcid.org/0000-0001-6881-7728
https://doi.org/10.3390/electronics12204206
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12204206?type=check_update&version=1

Electronics 2023, 12, 4206 2 of 30

acquisition rate of a channel (in samples of a given width per second) could be obtained by
dividing the maximum throughput per channel, diminished by possible protocol overhead,
by sample bit-width. Please note that, in this paper, we reserve the term sampling rate to
times when referring to analog-to-digital (ADC) and digital-to-analog (DAC) converters.

In general, a DAQ device operates in up to three signal domains (analog, digital, and
temporal) and up to two signal directions (input and output).

There are four limiting factors for the acquisition rate of a DAQ system: conversion
time, DAQ device processing time, communication time, and host processing time.

Conversion time is the time needed for the data to propagate from the outside world
to the inside of the DAQ device. The time may be relatively long, as in the case of analog
inputs and outputs, where it is defined by sampling rates of ADCs and DACs, respectively.
The other extreme is the case of digital inputs and outputs, where the time is very short,
defined by delays of digital logic only.

DAQ device processing time refers to the time needed for the interpretation of data
received from and formatting of data to be transmitted to a host, notably if data aggregation
is utilized. This time also includes device-local processing of digital data samples if
available.

Communication time depends on the employed communication technology. Apart
from the communication interface speed, the maximum message size and message data
overhead also contribute to the parameter.

Host processing time in the case of input signal direction relates to the time needed
at the host computer for reception and interpretation of data, which can be followed
by analysis, visualization, storage, or further transmission. In the case of output signal
direction, the parameter relates to the time needed for the acquisition of samples from a
graphic user interface, control algorithm within the application, local storage, or over a
network, their formatting, and transmission. This parameter is longer for the former case
due to the higher amount of processing involved.

From the above exposition, it is obvious that the acquisition rate is critical in the case of
analog input signals, and that is the focus of this paper. Analog input signals originate from
various devices, such as sensors, that is, non-electric to electric transducers. DAQ systems
with analog inputs find their application in scientific experiments, industrial applications,
medical diagnostics, agriculture, civil engineering, energy plants, wireless sensor networks,
space exploration, etc.

The parameters used to describe the analog input portion of a DAQ system are the
number of sampling channels and resolution and maximum sampling rate of the ADC
used within a DAQ device [1]. Depending on the application and desired capabilities
of the DAQ system, characteristics of input signal conditioning, i.e., signal filtering and
amplification, should be reviewed as well. Other characteristics common to the entire
DAQ system include the type of permanent data storage on the host device and the type of
interface used to communicate with the host. Visualization and advanced processing of the
captured data on the host device can be important as they enhance their utilization.

As pointed above, the acquisition rate of the analog input DAQ (sub)system depends
on the ADC sampling rate, the processing speed of the DAQ device, the transfer rate
between the DAQ device and the host device, and the processing speed of the host device,
dependent on the actual data manipulation at the host.

Commercially available solutions and some of the solutions presented in the scientific
literature for data acquisition applications come in the form of oscilloscopes, advanced
data loggers, logic analyzers, and other specialized tools, usually based on plug-in DAQ
boards [3]. These general-purpose DAQ instruments are well suited for measuring voltage,
current signals, or resistance, and they can include some form of signal conditioning. The
main drawback of such systems is that they are expensive, or cumbersome, or both [4,5].

Another issue arises when there is a need for remote data acquisition. Various long-
range communication technologies may be used, wired or wireless, or a combination of
the two. The features of concern when selecting appropriate technology are range, transfer

Electronics 2023, 12, 4206 3 of 30

speed, and cost. Power consumption may also be addressed, but if a high acquisition rate
is desired, there is little room for power savings.

There is a growing demand for real-time acquisition of analog signals with high-
frequency content (wireless communications, space applications, particle physics experi-
ments, etc.). The signal’s source is frequently far away from the location where data are
collected for processing. Another requirement is to keep the total system cost as low as
possible. Therefore, there is a need for affordable and reliable remote analog DAQ systems
capable of accurate representations of fast signals.

In this work, we developed a method for designing such a system based on a micro-
controller platform. We focus on a single channel case, but our results should easily scale to
any number of channels with an inevitable decrease in maximum throughput per channel.
A high ADC converter sampling rate is inherently necessary due to the Nyquist theorem [2],
and there is consequently the need for high-speed communication technology so that a
significant amount of data can be reliably transferred. Since the data path within the system
consists of sequentially connected functional blocks, the acquisition rate cannot exceed
the processing rate of the slowest block. To optimally utilize the various functional blocks
and maximize the acquisition rate, it is necessary to implement efficient synchronization
of data transfer between them. Our design method maximizes the performance of a data
acquisition system using state-of-the-art, high-end, yet affordable hardware and getting
maximum performance through the utilization of an efficient software architecture.

Although it is possible to write microcontroller firmware that is very efficient, the ever-
increasing complexity of modern microcontrollers makes writing efficient firmware difficult
and time-consuming. For that reason, the utilization of a real-time operating system (RTOS)
becomes beneficial, if not a must. Therefore, our method uses a microcontroller, with
an integrated or connected to an external ADC, running an RTOS. This way, application
firmware can efficiently manage the process of converting analog measurement data and
sending these data to a remote PC, which is used there for real-time visualization, analysis,
advanced processing, and storing of collected data.

The aim of our design method is to exceed the accuracy, speed, and ease of use of
existing solutions but also to allow a user the freedom to adjust the system to specific
needs. In order to demonstrate the proposed methodology, we provide an example of
such a system using a Cortex-M7-based 32-bit microcontroller [6] with integrated ADC
and Ethernet MAC interface [7], FreeRTOS real-time operating system [8], and an efficient,
user-friendly PC application written in Qt [9] for visualization of the collected data and
its FFT.

Methods related to the utilization of hardware capacity and operating system sup-
porting real-time concepts are well-known independently. However, the selected model of
interaction between hardware and software, in the form of hardware-software codesign, is
provided by the software architecture. That way, the entire platform hardware capacity is
utilized in an optimal way with a minimum latency. Consequently, there are concurrency
and parallelism at sampling, processing, and data transfer levels.

The main paper contributions are:

• MCU-adapted two-stage pipelined dataflow approach, which, in combination with
hardware and software optimization techniques, achieves maximum hardware utiliza-
tion. The abovementioned techniques incorporate the utilization of high-speed on-chip
memories, DMA controller in combination with Fast ADC, and Ethernet controller
with dedicated DMA.

• DAQ device firmware architecture that adopts RTOS-driven concurrent programming
model in order to achieve a dual channel data stream and control flow. A low pro-
cessing latency is achieved by utilization of the approach based on synchronous event
processing.

• Architecture for host machine application based on a concurrent programming model
that achieves real-time visualization and processing of data samples, as well as moni-
toring of the quality of data transfer service.

Electronics 2023, 12, 4206 4 of 30

• The general-purpose acquisition system software architectures applicable to any high-
speed sensing or metering systems based on an MCU and a host computer.

• A low-cost remote DAQ system solution consisting of a DAQ device (based on off-the-
shelf MCU development platform with Ethernet capability [10]), and a software tool
for real-time visualization, analysis, and logging of data samples. The solution outper-
forms the existing works in terms of completeness of functionalities and achievement
of maximum, platform-limited sampling rate.

The remainder of this paper is organized as follows. Section 2 presents the related
works in the field of high-speed DAQ systems. Theoretical considerations of designing
a data acquisition system are conducted in Section 3. Section 4 proposes the software
architectures of a high-performance remote DAQ system. The practical implementation
of a high-performance remote DAQ system is outlined in Section 5. Section 6 presents
the experimental results of a laboratory prototype. Concluding remarks, architecture
limitations, and the directions for future work are given in Section 7.

2. Related Work on Fast DAQ Systems

In this section, we provide a survey on fast DAQ systems. However, any survey of
existing DAQ systems cannot be exhaustive since DAQ systems are usually custom-made
and they rely on too different requirements.

We focus on relatively recent works only. Moreover, we do not consider commercially
available DAQ systems and, because the focus of this paper is the research of design
methods of entire DAQ systems, we do not include papers that employ commercial plug-in
DAQ devices within the system.

A DAQ system can have either a relatively slow or a relatively fast data transmission
speed; it can store and display collected data locally on the main DAQ board, or it can send
data to be stored and observed remotely; it can have its own ADC or just collect sampled
data from an external ADC; etc. The flexible definition of a DAQ system allows many
different types of systems to be classified as DAQ systems. This can make researching and
comparing different systems a challenging task, and it can make research results hard to
interpret. Since the aim of the paper is the development of a fast DAQ system, we present
some fast DAQ systems from the literature, and because fast and slow are relative terms, in
this paper, we consider all DAQ systems with sampling rates over 1 kSps to be fast systems.

Although the DAQ system design method presented in this paper utilizes micro-
controllers for achieving high acquisition rates, we review FPGA-based systems as well
because the same main functional system components can be observed in both cases. There-
fore, for the sake of a better overview, we sort the related works into two system groups:
FPGA-based and microcontroller-based DAQ systems.

2.1. FPGA-Based Fast DAQ Systems

The main reasons FPGAs are used for designing DAQ solutions is their ability to
operate at very high clock frequencies with the possibility of parallel processing, in turn,
enabling fast processing of acquired data. Power can be conserved on FPGAs by instantiat-
ing only hardware components that are necessary for a specific application. The potential
for an increase in performance comes at the cost of a higher price, lower portability, and
more complicated reprogramming when compared to microcontroller-based solutions. It
is for these reasons that some FPGA-based DAQ systems are used for very specialized
applications.

A DAQ system with fast processing and transfer speeds in mind has been designed
in [11]. The design of a high-speed FPGA-based DAQ system consists of an ADC with a
16-bit resolution for data conversion, two smaller-sized buffers used to store the temporary
data samples, and a DMA that was programmed to achieve data transfers without loss of a
single data sample when transferring sampled data from the temporary buffers assigned
to the ADC to the DD3 SDRAM which is used as permanent storage. On the FPGA, a
soft processor core was instantiated and tasked with initiating new DMA transfers. By

Electronics 2023, 12, 4206 5 of 30

overcoming the problems caused by the mismatch of operating frequencies between DMA,
ADC, and SDRAM, the authors achieved a maximum acquisition rate of 10 MSps. The
downside of such a design is the use of on-board memory as permanent storage, which
makes it harder to utilize a PC to visualize and further analyze the acquired data, thus
without the possibility to analyze the data in real-time.

Designing a highly specialized FPGA-based DAQ system was the approach taken
in [12]. This design presents a multichannel, high-speed DAQ system that supports acquisi-
tion for long periods of time, all of which are requirements of the Experimental Advanced
Superconducting Tokamak (EAST) device [13]. In the design, four ADCs are connected
to an FPGA, which is then connected to a data server through a Peripheral Component
Interconnect (PCI) Express interface. This allows acquisition from multiple channels syn-
chronously with the acquisition rate of 80 MSps (20 MSps per channel) and the precision of
12 bits, with the acquisition lasting more than 1250 s of continuous sampling. Synchronous
sampling of the four ADCs was achieved by instantiating a clock configuration circuit
on the FPGA, which provides four phase-shifted clock signals. To extend the maximum
continuous acquisition time, the authors have implemented the Lempel-Ziv-Oberhumer
(LZO) algorithm [14] on the FPGA, which allows for fast compression and decompression.
By employing FPGA parallel processing mechanisms, data acquisition efficiency was not
affected by compression. Even though this DAQ system was developed for a specific
use case, data visualization could be improved because the paper features only a digital
waveform view of the captured data in an unmentioned software tool.

A similar approach was taken in [15], a design of a DAQ system developed for
Superheated Emulsion Detectors (SEDs) [16]. The paper presents a 10-channel, 12-bit
resolution high-speed DAQ system with acquisition rates of 500 kSps per channel. The
design features triggered acquisition and a user-programmable threshold with pre- and
post-trigger adjustments. This allows the user to choose how many samples before and how
many samples after the automatic or manual trigger are desired to be captured. Because
of the specific application of this DAQ system, all 10 channels need to be sampled at once.
Each of the 10 analog signals is connected to a signal conditioning board, followed by
an ADC board, which is then connected to the main FPGA board, which features the
main processor. All the 10 ADCs use the same sampling clock, and all the conversion
results are read at the same time, stored in a circular buffer, and the converted values are
compared with a threshold value. If the threshold value is exceeded, a configured number
of samples before and after the threshold sample are collected and sent to a PC using a
Universal Asynchronous Receiver/Transmitter (UART) interface [17]. The DAQ system
uses a graphical user interface (GUI) designed in LabVIEW [18] to provide visualization of
the collected data. Although the maximum possible acquisition rate simultaneously over
all the channels is 5 MSps, UART communication technology does not allow for a higher
baud rate than 921,600 bps, limiting the total system throughput when acquiring signals
over longer periods of time. As soon as the internal FPGA buffers get filled, acquisition
stops until all the samples are transmitted.

2.2. Microcontroller-Based Fast DAQ Systems

When a DAQ system is developed for a general-purpose application, microcontroller-
based DAQ systems are generally a better choice. If needed, microcontroller-based DAQ
systems are more easily adapted to a specific application thanks to easier reprogramming
and changes in existing software. If a system is designed with portability in mind, it
can be relatively easy to adapt the design from one microcontroller platform to another.
The availability of different microcontrollers and the fact that more developers are better
acquainted with microcontroller programming than FPGA programming also greatly
increases the popularity of microcontroller-based DAQ systems over FPGA-based systems.
Microcontrollers have grown into powerful yet complicated systems, but the utilization
of an RTOS facilitates programming without wasting too much theoretical efficiency. This
way, microcontrollers can even emulate the parallelism of FPGA.

Electronics 2023, 12, 4206 6 of 30

A DAQ system used for high-speed current sensing is described in [19]. The main
purpose of this system is to detect faults during welding and mark damaged joints by
comparing the recorded data to a learned pattern. The system consists of a sensor board that
measures welding voltage and current waveforms with additional sensors and evaluation
software running on a remote PC. The sensor board consists of a measurement part and a
processing part that includes ADCs, a microcontroller, external memory and an Ethernet
PHY module. A whole welding sequence can be buffered locally on the board. The board
uses two 16-bit ADCs connected via SPI bus to the microcontroller. The sampling rate is
82 kSps, with averaging done in firmware, so the effective acquisition rate is 1 kSps. In order
to run an open-source TCP server on the board, a Cortex-M7-based 32-bit microcontroller [6]
uses the Keil RTX RTOS [20]. On the PC side, a MATLAB [21] environment (version 9.5
R2018a) is set up to evaluate faults during welding. From the paper it is not clear, but
it seems that the firmware is not divided into smaller tasks but uses just a main loop
with interrupts.

To detect early failures in machinery equipment, a DAQ system for acquiring vibration
signals in the X, Y, and Z axes in rotating machinery has been developed [22]. The goal
of the paper was to create a real-time, multi-parameter, high-precision, miniaturized, and
portable DAQ system. The central part of the system’s hardware is a Cortex-M3-based
32-bit microcontroller [23] with the µC/OS-II RTOS [24] used to meet the multitasking
requirements. To increase the portability of the system, an on-chip SRAM module is used
for data storage, and an LCD touchscreen is used to display the acquisition results in real-
time. A 12-bit ADC is used for sampling. The system can sample vibration signals from
a selected axis at a time by sampling one of the three vibration acceleration transducers
with a sampling frequency of 5 kSps. The firmware is divided into six tasks used for data
acquisition, data transmission, data display, touch screen driver, key-press management,
and µC/GUI interface [25] for the touchscreen LCD. Data acquisition starts when an
acquisition request is received and sent by the user. Acquired data are moved using a DMA
and stored in the SRAM until it is full, at which point an interrupt signal is sent to the CPU,
which stops acquisition, reads the SRAM, and displays the result on the LCD display. It
is debatable whether this system, which collects data only on the user’s request and only
until the storage is full, is really a real-time system. A software architecture diagram in the
paper mentions a data transmission block that can communicate through USB, USART, and
Ethernet, but it does not mention if, how, and when this block is used. Although increasing
portability, storing data only locally and observation only using the LCD display greatly
limits visualization and disables automated data analysis.

Xnode, a wireless high-fidelity DAQ system for structural health monitoring, has
been presented in [5,26], developed with technical standards in China and lessons learned
from previously developed similar systems in mind. The hardware of Xnode consists
of three printed circuit boards—a processor board, a radio/power board, and a sensor
board. The hardware is designed around a Cortex-M4-based 32-bit microcontroller [27].
The system uses an external NAND flash memory for temporary and an SD card for
permanent local storage but also features a wireless transceiver on the radio/power board
for communication with a remote station, compatible with the ZigBee protocol [28]. The
sensor board features accelerometers and temperature sensors and an 8-channel 24-bit
ADC with a sampling rate of up to 16 kSps and programmable antialiasing filters. The
software is developed using FreeRTOS and a middleware service-oriented framework
that supports network and application scalability. The application, which utilizes the
middleware services, is organized into three tasks—application task, sensing task, and a
radio task. The papers do not specify any visualization software that is used with Xnode,
the lack of which can complicate the usage for users that are not experienced in that field.

OpenDAQ, a data acquisition and control system, was designed to be a cost-effective,
multifunction computer-based DAQ system open to users [29]. OpenDAQ has up to
8 analog input channels, a 16-bit resolution with a maximum sampling rate of 20 kSps
for a single channel at a time, as well as one analog output. The system also has the

Electronics 2023, 12, 4206 7 of 30

option for digital sampling and control using the provided digital ports. The OpenDAQ
hardware principally consists of an analog input signal conditioning block, analog output
conditioning block, ADC, and an 8-bit AVR ATmega microcontroller [30]. Microcontroller
software does not utilize an operating system, and it is written using libraries, such as
Arduino libraries [31]. The system uses a USB connector for communication with a PC,
which runs visualization and control software. The authors of OpenDAQ have created
two options for the final user to choose from. The user can use either Python [32] or
LabVIEW [18] for visualization and control. The wide range of capabilities and options
the system offers makes it suitable for both industrial and educational applications. While
OpenDAQ features an open design, it is possible that performances can be increased by the
use of an RTOS. That way, the maximum acquisition rate could be increased to utilize the
maximum 100 kSps sampling rate of the microcontroller’s ADC.

An example of a DAQ system used in the automotive industry can be found in [33].
Like OpenDAQ, this system has been developed with cost-effectiveness in mind and
utilizes low-cost components. The system is Arduino-based [31], and the hardware has
been developed as an Arduino shield. One of the reasons for this design choice is that the
system is designed to be easily programmable and customizable for different uses in-vehicle
data acquisition and control. Arduino Due [34] is used as the development board because
of the higher processing capabilities, the larger number of available inputs and outputs, and
a higher resolution (12-bit) ADC when compared to other Arduino development boards.
The result is a system that can acquire data from up to 12 analog inputs, an I2C sensor,
an SPI sensor, and a GPS module along with multiple digital I/O pins. For applications
where analog control is needed, there are two analog outputs. The maximum sampling
frequency is 2 kSps if only one channel is used. Data can be stored locally using an SD card,
or they can be stored remotely using Arduino’s serial communication. The shield uses a
Bluetooth module to enable acquisition from a mobile device and an LCD for displaying
the DAQ status. No visualization software has been developed for the DAQ system.
Although the system offers a user the possibility to connect and sample multiple analog
and digital sensors at once, the sampling rate drops significantly with every additional
sensor connected, and it might be too low for some applications.

Papers [35,36] offer insight into another field where microcontroller-based DAQ sys-
tems find their use. In these papers, DAQ systems are used to acquire electrophysiological
signals from live laboratory test animal subjects and send those results remotely. By us-
ing the UDP internet protocol, these systems achieve high data transfer speeds. In [35],
16 analog channels with a 16-bit resolution are sampled using an external ADC connected
to an ESP32-based development board [37], which has a dual-core LX6 microcontroller [38]
and WiFi communication capabilities. Utilizing FreeRTOS [8], the system divides tasks
between the two processor cores to boost the performance of the system. This way, a total
system throughput of 6.4 Mbps is achieved when acquiring 16 analog input channels simul-
taneously, with 25 kSps acquisition rate. The samples are wirelessly sent to the host using
WiFi and, as mentioned previously, UDP transfer protocol. In [36], the authors explore the
advantages of using UDP protocol over TCP protocol to reach high data transfer speeds
when using Ethernet communication technology. In the experiment performed in this paper,
the maximum system throughput achieved using TCP protocol was 17.8 Mbps. When the
protocol was changed to UDP, the maximum system throughput reached 47 Mbps when
acquiring data simultaneously from 64 channels, with an acquisition rate of 24 kSps. Even
though both systems are tailored for a specific, in-house application, visualization of the
data acquired could be improved, which would increase the applicability of both solutions.

From the examples above, it becomes clear that to meet the requirements of high-
speed, high-resolution acquisition using a microcontroller-based system, an RTOS is almost
always needed. Although OpenDAQ manages to reach the maximum acquisition rate of
20 kSps for 16-bit resolution without an RTOS, any major increase in acquisition rate would
require it. As seen in many of the papers mentioned in this section, an RTOS enables the
system to divide microcontroller firmware into multiple tasks that can control sensing and

Electronics 2023, 12, 4206 8 of 30

communication with the outside world separately and concurrently. In order to increase the
system’s applicability, it is beneficial to observe the collected data on a host system. For that
purpose, it is necessary that the DAQ device has remote communication capabilities, and if
high throughput is required, communication technology that supports high data transfer
speeds is needed. With that in mind, it is advantageous to use high-speed protocols, for
example, UDP, as shown in [35,36].

2.3. Comparison of the Reviewed DAQ Systems

Table 1 gives an overview and comparison of the DAQ systems reviewed in this
section. The systems are compared in multiple categories that are essential when describing
and choosing a DAQ system. The categories are as follows:

• Number of channels—the maximum number of analog channels that can be sampled
using the maximum acquisition rate,

• Resolution—resolution of the system’s ADC,
• System throughput—as defined in Section 1, without overhead,
• Acquisition rate—as defined in Section 1,
• Visualization—whether the authors of the system have provided their own method of

data visualization and/or processing,
• Type of storage—The type or types of permanent sampled data storage used by the

system,
• Remote—whether the system can be used for remote data acquisition,
• Communication technology (for systems where acquisition and final storage are not

situated within the same device).

Table 1. Overview and comparison of the reviewed DAQ systems.

Paper Num. of
Channels

Resolution
[bit]

System
Throughput [bps]

Acquisition
Rate [Sps] Visualization Type of

Storage Remote Comm.
Technology

[11] 1 16 152.6 M 10 M No Local SDRAM No /
[12] 4 12 915.6 M 1 20 M No Server No PCIe
[15] 10 12 921.6 k 500 k Yes Server Yes UART

[19] 2 16 31.25 k 2 1 k Yes Server Yes Ethernet

[22] 1 12 58.6 k 2 5 k Yes, on
small LCD Local SRAM No /

[5,26] 8 24 1 M 16 k No Local and server Yes IEEE
802.15.4

[29] 8 16 312.5 k 2 20 k Yes Server Yes USB
[33] 1 12 23.5 k 2 2 k No Local and server Yes UART
[35] 16 16 6.4 M 25 k Yes Server Yes WiFi
[36] 64 32 47 M 24 k No Server Yes Ethernet
This
work 1 16 51.2 M 3.2 M Yes Server Yes Ethernet

1—when not factoring in compression; 2—estimation.

For a better comparison between the reviewed papers and the results achieved with
the prototype presented as part of this paper, the characteristics of the prototype are added
at the end of the table.

It can be observed in Table 1 that the reviewed DAQ systems have very different
characteristics across the compared categories. To sum up, work [12] has the greatest system
throughput of 915.6 Mbps due to the utilization of an FPGA and fast PCIe communication
interface. On the other hand, it is not a remote DAQ system since the DAQ device is
connected to the host communication bus directly. Moreover, the work does not include
real-time visualization or analysis but offers logging only. The work [36] represents the
remote DAQ system with the greatest system throughput of 47 Mbps, but it offers only
data logging on the host. Among the works that include visualization, the one with the
greatest system throughput of 6.4 Mbps is [35]. The system is a remote one, based on WiFi

Electronics 2023, 12, 4206 9 of 30

technology, but the system throughput is not very high compared to [12,36]. Obviously,
none of the “best” solutions accomplish the requirements for as high as possible system
throughput, remote operation, and at least host visualization at the same time.

Generally, FPGA-based DAQ systems have a higher system throughput and acquisition
rate than microcontroller-based DAQ systems. As previously mentioned, microcontroller-
based DAQ systems are more easily assembled due to a number of factors. Thus, they show
greater flexibility in terms of visualization, storage, and connectivity. By using the methods
described later in this paper, we managed to achieve a respectable system throughput
within a remote DAQ system with visualization and logging at the host computer, as can
be observed in the last row of Table 1.

3. Theoretical Considerations of High-Speed DAQ Systems

This section presents a theoretical overview of the main design considerations of high-
speed DAQ systems. There are several bottlenecks for data transfer within a DAQ system
and, in this section, the maximum possible total system throughput will be analyzed. For
simplicity, this section will focus on DAQ systems with a single analog input channel,
although the same analysis can easily be modified for multichannel DAQ systems with
different signal domains and directions of channels. Once the total system throughput is
known, the maximum acquisition rate of the channel can also be obtained.

Figure 1 shows the main components of a high-speed DAQ system. The data acquired
at the Source, accompanied by possible protocol overhead, are transferred to the Host
through the Channel. In this simple representation, data transfer bottlenecks can occur in
any of the three components, so the maximum system throughput depends on the speed
of data generation by the source (source data rate—SDR), the channel bandwidth (BW),
and data processing rate of the host (host data rate—HDR). That way the final system
throughput (ST) is equal to the minimum of three maximum data rates, as shown in
Equation (1).

ST = min(SDR, BW, HDR) (1)

Electronics 2023, 12, x FOR PEER REVIEW 9 of 31

This
work

1 16 51.2 M 3.2 M Yes Server Yes Ethernet

1—when not factoring in compression; 2—estimation.

It can be observed in Table 1 that the reviewed DAQ systems have very different
characteristics across the compared categories. To sum up, work [12] has the greatest sys-
tem throughput of 915.6 Mbps due to the utilization of an FPGA and fast PCIe communi-
cation interface. On the other hand, it is not a remote DAQ system since the DAQ device
is connected to the host communication bus directly. Moreover, the work does not include
real-time visualization or analysis but offers logging only. The work [36] represents the
remote DAQ system with the greatest system throughput of 47 Mbps, but it offers only
data logging on the host. Among the works that include visualization, the one with the
greatest system throughput of 6.4 Mbps is [35]. The system is a remote one, based on WiFi
technology, but the system throughput is not very high compared to [12,36]. Obviously,
none of the “best” solutions accomplish the requirements for as high as possible system
throughput, remote operation, and at least host visualization at the same time.

Generally, FPGA-based DAQ systems have a higher system throughput and acquisi-
tion rate than microcontroller-based DAQ systems. As previously mentioned, microcon-
troller-based DAQ systems are more easily assembled due to a number of factors. Thus,
they show greater flexibility in terms of visualization, storage, and connectivity. By using
the methods described later in this paper, we managed to achieve a respectable system
throughput within a remote DAQ system with visualization and logging at the host com-
puter, as can be observed in the last row of Table 1.

3. Theoretical Considerations of High-Speed DAQ Systems
This section presents a theoretical overview of the main design considerations of

high-speed DAQ systems. There are several bottlenecks for data transfer within a DAQ
system and, in this section, the maximum possible total system throughput will be ana-
lyzed. For simplicity, this section will focus on DAQ systems with a single analog input
channel, although the same analysis can easily be modified for multichannel DAQ sys-
tems with different signal domains and directions of channels. Once the total system
throughput is known, the maximum acquisition rate of the channel can also be obtained.

Figure 1 shows the main components of a high-speed DAQ system. The data ac-
quired at the Source, accompanied by possible protocol overhead, are transferred to the
Host through the Channel. In this simple representation, data transfer bottlenecks can oc-
cur in any of the three components, so the maximum system throughput depends on the
speed of data generation by the source (source data rate—SDR), the channel bandwidth
(BW), and data processing rate of the host (host data rate—HDR). That way the final sys-
tem throughput (ST) is equal to the minimum of three maximum data rates, as shown in
Equation (1).

ST = min(SDR, BW, HDR) (1)

Ideally, the system throughput should equal the source data rate in order to maxi-
mally utilize the DAQ device capabilities. This means that a designer should choose com-
munication technology and host with processing capabilities, which guarantee that BW
and HDR are higher or equal to source data rate SDR.

Figure 1. Main components of a DAQ system. Figure 1. Main components of a DAQ system.

Ideally, the system throughput should equal the source data rate in order to maximally
utilize the DAQ device capabilities. This means that a designer should choose communica-
tion technology and host with processing capabilities, which guarantee that BW and HDR
are higher or equal to source data rate SDR.

Each of the main components from Figure 1 needs to be further analyzed to identify
critical points regarding system throughput. All of these components are further analyzed
in the following subsections.

3.1. The Source

The general data path within the Source is shown in Figure 2. In the Source component,
conditioned (amplified, offset compensated, and filtered) analog data are sampled and
digitized within the ADC. There should be a match between the frequency content of
the analog signal and the sampling rate of the ADC, i.e., the Nyquist criterion should
be fulfilled [2]. For fast-changing signals (with a wide frequency spectrum), one should
select a rather fast ADC, that is, one with a correspondingly high sampling rate (SR). For
high-precision digital samples, the ADC’s bit resolution (BR) should also be as high as
possible. Unfortunately, the two are practically contradicting demands since the sampling
rate of many ADC architectures is inversely proportional to bit resolution [39].

Electronics 2023, 12, 4206 10 of 30

Electronics 2023, 12, x FOR PEER REVIEW 10 of 31

Each of the main components from Figure 1 needs to be further analyzed to identify
critical points regarding system throughput. All of these components are further analyzed
in the following subsections.

3.1. The Source
The general data path within the Source is shown in Figure 2. In the Source compo-

nent, conditioned (amplified, offset compensated, and filtered) analog data are sampled
and digitized within the ADC. There should be a match between the frequency content of
the analog signal and the sampling rate of the ADC, i.e., the Nyquist criterion should be
fulfilled [2]. For fast-changing signals (with a wide frequency spectrum), one should select
a rather fast ADC, that is, one with a correspondingly high sampling rate (SR). For high-
precision digital samples, the ADC’s bit resolution (BR) should also be as high as possible.
Unfortunately, the two are practically contradicting demands since the sampling rate of
many ADC architectures is inversely proportional to bit resolution [39].

Figure 2. Data path within the Source component.

The choice of the ADC is one of the main design considerations because the sampling
rate of the ADC for a desired bit resolution is most commonly the main system bottleneck.
The ADC data rate in bits per second (ADCDR) could be expressed as shown in Equation
(2).

ADCDR = SR × BR (2)

ADCs are usually designed so that they temporarily store digitized samples in one
or multiple ADC buffers, which are periodically read. To transfer the sampled data to a
working data memory of a large capacity, these buffers are designed and connected with
fast data transfers in mind. Obviously, it is favorable if the data memory and ADC buffers
are connected via a high-speed bus and if a DMA controller is utilized so the buffer-to-
memory transfer rate (BMR) is as high as possible.

Once in the data memory, the sampled data can optionally be subject to additional
local processing before the transmission; the examples are compression [40] and formation
of messages in accordance with a selected communication protocol [2]. The capability of
the local processing block to process sampled data is expressed as the local processing rate
(LPR), which describes at which rate the block could consume continuous data samples at
its input.

If a compression algorithm is used, then the quantity of data to be transmitted over
channel is lowered, so the channel bandwidth and host processing rate could also be
lower. However, compression level depends on actual data and is, therefore, hard to pre-
dict. Moreover, the introduction of compression in the Source data path will most likely
reduce the local processing rate. Anyway, in this paper, for the sake of simplicity, the as-
sumption is that no compression is used.

A protocol is essential for the correct operation of communication between the Source
and Host. Protocols enable features, such as communication initialization, framing and
frame synchronization, flow control, error control, and timeout control [2]. The main
downside of utilizing a protocol is that to utilize its features, the Source needs to introduce
data overhead in each message (protocol overhead). Namely, each message containing a

Figure 2. Data path within the Source component.

The choice of the ADC is one of the main design considerations because the sampling
rate of the ADC for a desired bit resolution is most commonly the main system bottleneck.
The ADC data rate in bits per second (ADCDR) could be expressed as shown in Equation (2).

ADCDR = SR × BR (2)

ADCs are usually designed so that they temporarily store digitized samples in one
or multiple ADC buffers, which are periodically read. To transfer the sampled data to
a working data memory of a large capacity, these buffers are designed and connected
with fast data transfers in mind. Obviously, it is favorable if the data memory and ADC
buffers are connected via a high-speed bus and if a DMA controller is utilized so the
buffer-to-memory transfer rate (BMR) is as high as possible.

Once in the data memory, the sampled data can optionally be subject to additional
local processing before the transmission; the examples are compression [40] and formation
of messages in accordance with a selected communication protocol [2]. The capability of
the local processing block to process sampled data is expressed as the local processing rate
(LPR), which describes at which rate the block could consume continuous data samples at
its input.

If a compression algorithm is used, then the quantity of data to be transmitted over
channel is lowered, so the channel bandwidth and host processing rate could also be lower.
However, compression level depends on actual data and is, therefore, hard to predict.
Moreover, the introduction of compression in the Source data path will most likely reduce
the local processing rate. Anyway, in this paper, for the sake of simplicity, the assumption
is that no compression is used.

A protocol is essential for the correct operation of communication between the Source
and Host. Protocols enable features, such as communication initialization, framing and
frame synchronization, flow control, error control, and timeout control [2]. The main
downside of utilizing a protocol is that to utilize its features, the Source needs to introduce
data overhead in each message (protocol overhead). Namely, each message containing a
portion of acquisition data should be preceded by a message header and succeeded by a
message tail.

Depending on the message size, the amount of overhead can significantly contribute
to the Source data rate. For example, if UART communication is used, then at least two
overhead bits (start and stop bit) are added for each 8 bits of data, increasing the Source
data rate by 25% and consequently increasing the requirements for Channel bandwidth
BW and Host data rate HDR [17]. Another example is Ethernet with IPv4 network protocol,
where payload (IP datagram) in an Ethernet frame can be up to 1500 bytes long. Ethernet
frame overhead consists of 7 bytes of preamble, one byte of Start of Packet delimiter (SOF),
14 bytes of Ethernet header, and 4 bytes of Frame Control Sequence (FCS). However, the
entire IP datagram is not available for the transfer of payload data since it consists of IP
header (20 bytes) and data from the transport layer. If UDP transport protocol is used
with IPv4, then 8 bytes of transport layer data is consumed by UDP header, and the rest of
the transport layer data can be used for application/acquisition data. In total, acquisition
data within an Ethernet frame can be up to (1500 − 20 − 8) = 1472 bytes long, whereas the
overhead data in this case is (7 + 1 + 14 + 4 + 20 + 8) = 54 bytes long. The source data rate is
effectively increased by 3.67%.

Electronics 2023, 12, 4206 11 of 30

It should also be noted that if acquisition data aggregation is used for forming a long
message, there is an inevitable latency [41]. However, if the sampling rate at the DAQ
device is constant during an acquisition session and if the integrity of data flow over the
communication channel is somehow guaranteed by the communication technology and/or
application protocol utilized, this might not be an issue.

Due to sequential dataflow in Source, as presented in Figure 2, the maximum achiev-
able Raw source data rate (RSDR), not taking into consideration protocol overhead, is
the minimum of the above-introduced data rates ADCDR, BMR, and LPR, as shown in
Equation (3).

RSDR = min(ADCDR, BMR, LPR) (3)

Equivalent source acquisition rate (ARS) in samples per second, achievable for the
given RSDR, is then given by Equation (4).

ARS = RSDR/BR (4)

For a given message payload size (MPS, number of bits used for transfer of acquisition
data within a message), the Source message rate (SMR) in messages per second is expressed
by Equation (5).

SMR = RSDR/MPS (5)

Final Source data rate (entering Channel) is obtained by multiplication of Source
message rate and total message size (including overhead OD, expressed in bits per message,
and payload data MPS), as given in Equation (6):

SDR = SMR × (MPS + OD) = RSDR × (1 + OD/MPS). (6)

For example, if the maximum ADC sample rate is SR = 2 MSps for bit resolution
BR = 16 bits, maximum data transfer rate between ADC buffers and local memory is
BMR = 5 MB/s, the local processing block can process data at rate LPR = 2 MB/s, and the
ratio of overhead and acquisition data in the used protocol message is OD/MPS = 0.1, the
Raw source data rate, which gives a notion of acquisition data effectively transferred, is

RSDR = min(4 MB/s, 5 MB/s, 2 MB/s) = 2 MB/s.

In turn, this implies an effective acquisition rate

ARS = 2 MB/s/(16 bits/sample) = 1 MSps,

and the Source data rate is

SDR = 2 MB/s × (1 + 0.1) = 2.2 MB/s.

3.2. The Communication Channel

The Channel component from Figure 2 can have many different forms, wired or
wireless, or a combination of the two; it could connect a Host and a Source on the same
board [11,22], within a chassis [12], within a facility [15,35,36], or even at different continents.

Wireless communication channels offer flexibility of placement of the Source com-
ponent and a high nominal data rate, but the reliability of the connection between the
Source and the Host, as well as possible variation of actual data rate, may compromise
constant data flow. Wired communication channels provide higher and more stable data
rates. When selecting the communication channel with high-speed data rates in mind, the
latter are, therefore, a better choice.

However, when considering the data bandwidth of a channel, attention should be paid
to cross-examination of physical channel bandwidth (PBW) and effective channel band-
width BW since channel may not be available all the time due to a specific communication
protocol. Thus, for a message consisting of MPS bits of payload and OD bits of protocol

Electronics 2023, 12, 4206 12 of 30

overhead, with message size TMS = MPS + OD, any inter-message channel unavailability
of duration in bits IMU effectively increases message size and lowers available channel
bandwidth as in the Equation (7):

BW = PBW × (1 − IMU/(IMU + TMS)) (7)

Taking Ethernet as an example once more and its 100BASE-TX specification [7], the
nominal physical data bandwidth is 100 Mbps. However, there must exist a pause (Inter
Frame Gap—IFG) of 12-byte intervals between two consequent Ethernet frames. If the
frames (messages) are of the maximum possible size (1472 + 54 = 1526), the required pause
lowers the effective channel bandwidth to

BW = 100 Mbps × (1 − 12/(12 + 1526)) = 99.21 Mbps.

Sometimes, notably in the case of remote data acquisition over Wide Area Network
(WAN), the Channel consists of a series of connections of various communication links and
interconnecting devices, with corresponding bandwidths BWi, i = 1. . .n. In such a case, the
effective bandwidth of the slowest link/device within the Channel represents the channel
bandwidth BW of the entire Channel

BW = min(BW1, BW2. . .BWn).

It should be noted, for the sake of completeness, that additional transactions, besides
acquisition data, might exist. The transactions are initiated by the Host and could be
used for configuration/control of the Source (resolution, sampling rate, start/stop of the
acquisition. . .), as well as for exchange of the Source status information. Usually, a different
protocol is used for these, for example, UDP is used for the acquisition of data, whereas
TCP is used for the additional transactions over Ethernet interface. These messages are
exchanged from time to time and are small in terms of size, therefore, their impact on total
system throughput may be neglected.

3.3. The Host

The Host component from Figure 1 receives data from the Channel. If a communication
protocol is used, it extracts useful data from the received messages. If a compression is
used at the Source, the Host also decompresses data. These functions are performed in the
logical block Data Reception in Figure 3, and it is the place where actual acquisition data
sent from the Source have been regenerated.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 31

Figure 3. Block representation of and dataflow within the Host.

The Host should at least perform storage or visualization of raw acquisition data.
Depending on the system specifications, additional analysis may be implemented, as well
as storage and/or visualization of the analysis results. Moreover, the acquisition data and
the analysis results may be communicated in a wider system hierarchy to another device,
as shown in Figure 3.

As requirements for the performance of a DAQ system grow, so does the need for
more processing and memory-powerful Host devices. Depending on the DAQ system de-
sired performances, the Host may be a relatively simple device, such as a microcontroller,
but for high-speed DAQ systems with real-time capabilities, the choice for the Host is a
relatively powerful machine running an operating system, be it a personal or an embed-
ded computer, such as Raspberry PI [42] or BeagleBone Black [43]. In such a case, on the
computer being the Host, the Host functionalities are implemented as a software applica-
tion.

The application is tasked with the communication between the Channel and the Host
in the hardware and with visualization and other functionalities in the software, including
an intuitive and productive graphical user interface (GUI). In high-speed systems, the
Host must be able to accept high-speed data from the Channel, store the data in perma-
nent storage, offer visualization to the user, and perform analysis and visualize its results,
if applicable, in real-time. To achieve all these tasks, the software must be designed so that
it supports multitasking. To avoid forming bottlenecks on the Host side, the Host hard-
ware must be able to process data quickly enough (so as fast as possible components, such
as processor, motherboard chipset, memory, and storage, are required) and the software
must be designed with concurrency in mind.

As an example, if there is a system with SDR of 2.2 MB/s, BW of 10 MB/s, and HDR
of 1 MB/s, the maximum system throughput is:

ST = min(2.2 MB/s, 10 MB/s, 1 MB/s) = 1 MB/s,

that is, the system throughput is defined as limited by the Host data rate. Then, the acqui-
sition rate could be determined for a given bit resolution BR.

4. Proposed Architecture of a High-Performance Remote DAQ System
This section presents software architectures that should be utilized to establish a sys-

tematic approach for designing software for high-speed DAQ systems in general case,
both on DAQ device firmware and host GUI application side. The first part of this section
identifies general software design requirements that are not strictly related to the DAQ
system software design, but they should be utilized to increase the general quality of DAQ
system software architecture. Next, the specific set of functional requirements related to
the high-speed DAQ systems is identified. Based on the previously identified general and
specific requirements, at the end of this section, the general software architectures for a
high-speed data acquisition system are given.

Figure 3. Block representation of and dataflow within the Host.

The Host should at least perform storage or visualization of raw acquisition data.
Depending on the system specifications, additional analysis may be implemented, as well
as storage and/or visualization of the analysis results. Moreover, the acquisition data and

Electronics 2023, 12, 4206 13 of 30

the analysis results may be communicated in a wider system hierarchy to another device,
as shown in Figure 3.

As requirements for the performance of a DAQ system grow, so does the need for more
processing and memory-powerful Host devices. Depending on the DAQ system desired
performances, the Host may be a relatively simple device, such as a microcontroller, but for
high-speed DAQ systems with real-time capabilities, the choice for the Host is a relatively
powerful machine running an operating system, be it a personal or an embedded computer,
such as Raspberry PI [42] or BeagleBone Black [43]. In such a case, on the computer being
the Host, the Host functionalities are implemented as a software application.

The application is tasked with the communication between the Channel and the Host
in the hardware and with visualization and other functionalities in the software, including
an intuitive and productive graphical user interface (GUI). In high-speed systems, the Host
must be able to accept high-speed data from the Channel, store the data in permanent
storage, offer visualization to the user, and perform analysis and visualize its results, if
applicable, in real-time. To achieve all these tasks, the software must be designed so that it
supports multitasking. To avoid forming bottlenecks on the Host side, the Host hardware
must be able to process data quickly enough (so as fast as possible components, such as
processor, motherboard chipset, memory, and storage, are required) and the software must
be designed with concurrency in mind.

As an example, if there is a system with SDR of 2.2 MB/s, BW of 10 MB/s, and HDR
of 1 MB/s, the maximum system throughput is:

ST = min(2.2 MB/s, 10 MB/s, 1 MB/s) = 1 MB/s,

that is, the system throughput is defined as limited by the Host data rate. Then, the
acquisition rate could be determined for a given bit resolution BR.

4. Proposed Architecture of a High-Performance Remote DAQ System

This section presents software architectures that should be utilized to establish a
systematic approach for designing software for high-speed DAQ systems in general case,
both on DAQ device firmware and host GUI application side. The first part of this section
identifies general software design requirements that are not strictly related to the DAQ
system software design, but they should be utilized to increase the general quality of DAQ
system software architecture. Next, the specific set of functional requirements related to
the high-speed DAQ systems is identified. Based on the previously identified general and
specific requirements, at the end of this section, the general software architectures for a
high-speed data acquisition system are given.

4.1. General Software Requirements

The list of general requirements for designing DAQ system software architecture
presents only a narrower list of well-known general software requirements that a high-
speed system should satisfy to create a flexible software framework. This requirement list is
common for DAQ device firmware and for Host side applications. The main requirements
that software should satisfy in general case are:

1. Modularity
2. Portability
3. Low processing latency

Modern software development includes frequent upgrades in terms of supported
functionalities and adaptation to a minor or complete change of the application platform.
If software architecture is not divided into different independent logical software blocks, it
makes software upgrade and maintenance procedures more difficult. Software runtime
execution tracing and debugging are very challenging in cases where firmware implements
several different functionalities based on RTOS. In the case of software development for host
applications, implementation of functionalities is more complex. If software architecture

Electronics 2023, 12, 4206 14 of 30

is designed as a modular solution compounded of different independent software blocks,
the process of software execution tracking and debugging, maintenance, and upgrades
becomes much easier.

Because different hardware platforms or operating systems may be used, it is very
important to design a software solution that is easy to port on different platforms with
minimal effort. Therefore, when splitting software into logical blocks, it is very important
to group and distinguish platform-dependent software blocks from platform-independent
software blocks.

Low processing latency is an important requirement in the case of high-speed DAQ
systems. On the DAQ device side, the main goal is to design a firmware architecture capable
of preserving the sampling rate at a value closest to the hardware ADC sampling rate (which
is most commonly the main Source side bottleneck, as mentioned in Section 3). On the
host side it is important to have a software architecture capable of collecting, analyzing,
and plotting significant amounts of data with minimal CPU and memory utilization on the
host machine.

4.2. Specific DAQ Related Software Requirements

Unlike general software requirements that may be used to create architecture for any
kind of embedded software, the set of functional requirements is related to the specific
functionalities that are implemented within the high-speed DAQ system. To create this
list, it is very important to understand the overall working principle of the proposed DAQ
system from a software perspective and identify core functionalities. Figure 4 illustrates
the working principle of the DAQ system from a software perspective in a general case.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 31

4.1. General Software Requirements
The list of general requirements for designing DAQ system software architecture pre-

sents only a narrower list of well-known general software requirements that a high-speed
system should satisfy to create a flexible software framework. This requirement list is com-
mon for DAQ device firmware and for Host side applications. The main requirements that
software should satisfy in general case are:
1. Modularity
2. Portability
3. Low processing latency

Modern software development includes frequent upgrades in terms of supported
functionalities and adaptation to a minor or complete change of the application platform.
If software architecture is not divided into different independent logical software blocks,
it makes software upgrade and maintenance procedures more difficult. Software runtime
execution tracing and debugging are very challenging in cases where firmware imple-
ments several different functionalities based on RTOS. In the case of software develop-
ment for host applications, implementation of functionalities is more complex. If software
architecture is designed as a modular solution compounded of different independent soft-
ware blocks, the process of software execution tracking and debugging, maintenance, and
upgrades becomes much easier.

Because different hardware platforms or operating systems may be used, it is very
important to design a software solution that is easy to port on different platforms with
minimal effort. Therefore, when splitting software into logical blocks, it is very important
to group and distinguish platform-dependent software blocks from platform-independ-
ent software blocks.

Low processing latency is an important requirement in the case of high-speed DAQ
systems. On the DAQ device side, the main goal is to design a firmware architecture ca-
pable of preserving the sampling rate at a value closest to the hardware ADC sampling
rate (which is most commonly the main Source side bottleneck, as mentioned in Section
3). On the host side it is important to have a software architecture capable of collecting,
analyzing, and plotting significant amounts of data with minimal CPU and memory uti-
lization on the host machine.

4.2. Specific DAQ Related Software Requirements
Unlike general software requirements that may be used to create architecture for any

kind of embedded software, the set of functional requirements is related to the specific
functionalities that are implemented within the high-speed DAQ system. To create this
list, it is very important to understand the overall working principle of the proposed DAQ
system from a software perspective and identify core functionalities. Figure 4 illustrates
the working principle of the DAQ system from a software perspective in a general case.

Figure 4. DAQ system view. Figure 4. DAQ system view.

The DAQ system software includes two software units: microcontroller firmware and
host machine software. These two units are connected by an Ethernet communication
interface, which is reliable, supports high channel bandwidth, and is widely used in modern
hardware devices. Within the system, two message types are exchanged between software
units: stream and control. Data sampled from ADC on DAQ device are sent to DAQ
host machine using stream messages. Control messages contain different control and
status commands.

To exchange these two message types, different communication channels over a single
communication interface should exist and work in parallel. These communication channels
are called: stream and control. Stream data channels are used to transfer stream data from
DAQ device to DAQ host machine. Because it is very important to reduce overhead to
achieve better real-time performance, this channel should be built over the UDP socket [36].
The control channel is used to exchange control data between software units. For this
channel, it is important to be reliable, and that is a reason why it should be built over the
TCP socket.

Electronics 2023, 12, 4206 15 of 30

As previously mentioned, firmware for the DAQ device should be designed to pre-
serve ADC hardware sampling rate as much as possible. It must be able to receive data
samples from ADC, pack them in a streaming message and send it to the DAQ host side
through UDP socket over the communication interface. Because UDP provides better speed
performance, but it is also not as reliable as TCP, it is desirable for processing logic to add
simple header content above ADC samples to enable packet loss detection on DAQ host
side. In parallel with data streaming, DAQ device firmware should be able to receive and
execute control messages. To obtain insights into the firmware execution, it is desirable to
implement tracing functionality within DAQ device firmware. An RTOS should be used so
parallel processing requirements can be more easily satisfied.

The main requirements of the host application are to provide storage or visualization
of received streaming messages, enable insights into DAQ device execution status, and
enable control of the DAQ device. In order to best achieve these requirements, the host
application should come in the form of a GUI application. After the application is started
and connection with DAQ source side is established, the host application should perform
handshaking to initialize DAQ device and set corresponding GUI fields. When a streaming
message is received over UDP, GUI application should be able to process it and plot received
ADC sample values.

Table 2 summarizes all functionalities mentioned until now and provides a clear
overview of functional requirements that both software units should satisfy.

Table 2. Software functional requirements overview.

Requirement Name DAQ System Source Side
Requirement Description

DAQ System Host Side
Requirement Description

Streaming channel UDP socket to send streaming messages. UDP socket to receive streaming messages.

Control channel TCP socket to send/receive control messages. TCP socket to receive/send control messages.

Stream protocol

Used to send stream messages from DAQ system source side to DAQ System host side. Stream
messages include voltage samples from ADC, which are grouped into a single frame expanded

with a header to track packet loss. In the simplest realization, the header should be implemented
as a packet counter. Stream message size should be smaller than the interface maximal

transmission unit size to prevent packet splitting and additional processing on the host side.

Control protocol

Used to exchange control and status messages between DAQ system source side and DAQ
system host side. These messages should be formatted as a string data type where a predefined

format is utilized. This protocol should support two control message types: Request and
Response. Request-type messages can be sent from each side, and it initiates corresponding action

on the receiver side. Each request is followed by a corresponding response.

Samples processing logic
Initialize ADC, process data received from

ADC, and store it in the corresponding ADC
buffer from where it will be sent.

Collect extracted data, analyze, and visualize it.

Streaming logic

Add a custom header around UDP data to gain
insights into packet losses over UDP. This

could be implemented as a simple counter at
the beginning of each header.

Extract data from streaming messages and
detect packet loss. Print corresponding

information within GUI interface to inform the
user in case packet loss occurs.

Control logic
Parse and execute received control messages.
Pack required status information into control

message format.

Pack control messages when a preferable
action is selected within GUI application and

parse status messages received from DAQ
source side.

Tracing logic Provide insights into firmware run-time
execution. /

Electronics 2023, 12, 4206 16 of 30

Table 2. Cont.

Requirement Name DAQ System Source Side
Requirement Description

DAQ System Host Side
Requirement Description

Real-time operating system

Because firmware should support different
complex functionalities that work in parallel

and introduce low processing overhead, RTOS
is an important requirement.

/

Network support Provides software or hardware TCP/IP stack. Linux- or Windows-based functionalities that
enable socket operations.

Main application Control firmware execution logic. Control GUI interface.

4.3. Architecture Overview

Firmware architecture is presented in Figure 5. The proposed solution is designed
to satisfy all requirements mentioned in the previous section. The architecture consists of
several layers:

• Application
• Middleware
• HAL
• Platform drivers

Electronics 2023, 12, x FOR PEER REVIEW 16 of 31

corresponding action on the receiver side. Each request is followed by a corresponding
response.

Samples processing logic
Initialize ADC, process data received from

ADC, and store it in the corresponding
ADC buffer from where it will be sent.

Collect extracted data, analyze, and visualize
it.

Streaming logic

Add a custom header around UDP data to
gain insights into packet losses over UDP.

This could be implemented as a simple
counter at the beginning of each header.

Extract data from streaming messages and de-
tect packet loss. Print corresponding infor-
mation within GUI interface to inform the

user in case packet loss occurs.

Control logic
Parse and execute received control mes-
sages. Pack required status information

into control message format.

Pack control messages when a preferable ac-
tion is selected within GUI application and
parse status messages received from DAQ

source side.

Tracing logic Provide insights into firmware run-time
execution.

/

Real-time operating system

Because firmware should support different
complex functionalities that work in paral-
lel and introduce low processing overhead,

RTOS is an important requirement.

/

Network support Provides software or hardware TCP/IP
stack.

Linux- or Windows-based functionalities that
enable socket operations.

Main application Control firmware execution logic. Control GUI interface.

4.3. Architecture Overview
Firmware architecture is presented in Figure 5. The proposed solution is designed to

satisfy all requirements mentioned in the previous section. The architecture consists of
several layers:
• Application
• Middleware
• HAL
• Platform drivers

Figure 5. Firmware architecture overview.

The Application layer implements the main firmware logic, which initializes all lower
layers and starts the RTOS scheduler. A set of unique functionalities divided into separate
RTOS tasks that utilize specific lower software layers are implemented within the

Figure 5. Firmware architecture overview.

The Application layer implements the main firmware logic, which initializes all lower
layers and starts the RTOS scheduler. A set of unique functionalities divided into sep-
arate RTOS tasks that utilize specific lower software layers are implemented within the
Middleware layer. HAL layer is introduced to provide platform-independent low-level
functionalities for higher software layers. Platform driver layer enables communication
with different hardware peripherals.

Each layer is divided into different independent software blocks that perform a single
functionality. This division enables easy software upgrades and identification of blocks
engaged in real-time data processing and streaming over the Ethernet. Within the presented
architecture, this set of blocks is named the Fast Code Group (FCG).

It is possible to utilize various optimization techniques within firmware to satisfy the
low processing latency general architecture requirement. Some of the software execution
optimization techniques are:

Electronics 2023, 12, 4206 17 of 30

• Move FCG blocks code and data sections to the fastest memory on the platform—During
firmware startup, all FCG blocks should be moved from Flash to the fastest memory
on the microcontroller platform. This memory may be some tightly coupled memory
or memory connected directly to the same bus as the microprocessor.

• Use DMA with fast ADC—Use DMA to speed up data transfer from ADC to memory
buffer where voltage samples will be stored and further processed.

• Utilize platform with hardware TCP/IP stack—to reduce software processing over-
head related to TCP/IP data packing, a platform with hardware TCP/IP stack should
be selected.

• Utilize RTOS with minimal set of synchronization objects—it is recommended to use
RTOS with microkernel implementation, which provides all necessary synchronization
mechanisms but reduces minimal processing overhead.

A detailed overview of proposed firmware architecture blocks is presented in Table 3.

Table 3. Firmware architecture blocks overview.

Block Name Block Layer Connected Blocks Block Description

DMA Platform Drivers - Platform driver for DMA

ADC Platform Drivers - Platform driver for ADC

ETH Platform Drivers - Platform driver for Ethernet

UART Platform Drivers - Platform driver for UART

TIMER Platform Drivers - Platform driver for Timer

GPIO Platform Drivers - Platform driver for GPIO

AIN HAL DMA, ADC, RTOS, System

Analog Interface functionalities in charge of
properly initializing ADC and connected DMA,
processing data received from ADC over DMA,

and forwarding processed data to higher software
layers.

Ethernet HAL ETH, TCP/IP stack, System Establish Ethernet connection with host side and
monitor the link status.

LogChannel HAL UART, System, Logging

Provide unified (platform-independent) interface
to Logging service. It presents connection between

Logging service and corresponding storage
medium or communication interface. There may

be various number of logging channels on the
platform.

GPIO HAL GPIO (from platform drivers’
layer), System

Standard interface to GPIO pins where LED
indicators may be connected to signalize different
firmware execution status such as: system ready,
system error, streaming active, streaming paused,

and others.

Timer HAL TIMER (from platform drivers’
layer), System, Logging

Provide unified interface for Timer functionalities,
which can be used for time measurements,
generation of periodical events, and within

logging service to track log message occurrence.

SL Middleware AIN, RTOS, System, Network,
Logging

Stream Logic is implemented within a separate
RTOS task with the highest priority in the system.
Within this task, data from AIN layer is received,

processed, and forwarded to corresponding
streaming channel over UDP.

Electronics 2023, 12, 4206 18 of 30

Table 3. Cont.

Block Name Block Layer Connected Blocks Block Description

Network Middleware TCP/IP stack, System, Logging

Provide interface for data packing and streaming
over UDP socket. From implementation

perspective, it is a wrapper around standard
libraries, which expand data buffer with

custom-made header to enable packet loss
tracking.

RTOS Middleware, HAL 1 -
Real-Time Operating System library, which

provides minimal set of synchronization
mechanisms.

TCP/IP Stack Middleware, HAL -

TCP/IP stack library with UDP and TCP stack
functionalities. This library should be selected to
introduce minimal processing overhead and to be

compatible with selected RTOS version.

Control Middleware TCP/IP Stack, RTOS, Logging,
System

Parse control messages received from Host side
over TCP and execute them. This logic should be
implemented within a separate RTOS task with

medium priority. The minimum set of commands
should include Start Acquisition, End Acquisition,

Set Parameters, Get Parameters.

Logging Middleware Log Channel

Prepare user messages before sending them over
corresponding logging channel. Messages have

predefined format, which supports different
logging message types to distinguish error

messages from informational messages. This block
should facilitate the process of run time execution

tracing and debugging. Logic for this software
block may be implemented within a separate

RTOS task with minimal priority.

System HAL, Middleware,
Application All blocks

Provide unified interface to connect blocks from
any layers. It enables unified interface for blocks to
generate events to which any other block may be

subscribed to receive. One of the roles of this block
may be to implement error reparation mechanism,

initialize platform drivers, and create other
software blocks.

Main
Application Application All blocks from middleware layer,

System
Control and monitor execution of each software

block. It implements initialization logic.
1—Logically, RTOS and TCP/IP Stack are parts of Middleware layer, but to optimize logic implemented within a
few HAL blocks, such as AIN and Ethernet, RTOS synchronization objects and TCP/IP Stack library functions are
also used within HAL layer.

Similar to firmware architecture, the architecture of the host application should satisfy
all general and functional requirements listed in the previous section. Host application
architecture is shown in Figure 6, and it consists of the following layers:

• Application
• Devices

Application layer implements top logic in charge to initialize and run all software
blocks located within the devices layer. It also provides communication between certain
devices layer software blocks and user graphical components.

Devices layer includes different software blocks in charge to receive, process, and visu-
alize/store ADC voltage samples. Software blocks in charge of monitoring link and device
status should also be located within this software layer. Because DAQ system analyzed in
this research utilizes a network interface, GUI application should support multiple devices
connected to the same network and provide them with the same functionalities. Therefore,

Electronics 2023, 12, 4206 19 of 30

all software blocks, located in the devices layer, should be encapsulated within a single
container, which will be created for each new device.

Electronics 2023, 12, x FOR PEER REVIEW 19 of 31

Figure 6. GUI application system architecture overview.

Application layer implements top logic in charge to initialize and run all software
blocks located within the devices layer. It also provides communication between certain
devices layer software blocks and user graphical components.

Devices layer includes different software blocks in charge to receive, process, and
visualize/store ADC voltage samples. Software blocks in charge of monitoring link and
device status should also be located within this software layer. Because DAQ system ana-
lyzed in this research utilizes a network interface, GUI application should support multi-
ple devices connected to the same network and provide them with the same functionali-
ties. Therefore, all software blocks, located in the devices layer, should be encapsulated
within a single container, which will be created for each new device.

A detailed overview of host application software blocks is presented in Table 4.

Table 4. Host application device layer overview.

Block Name Block Layer Connected Blocks Block Description

Stream Link Devices Stream Message Pro-
cessing

Receive data from operating system network
UDP socket in separate thread, convert it to cor-
responding format, and forward data to Stream

Message processing software block.

Control Link Devices Control Message Pro-
cessing

Send Control Message Request, received from
Control message processing block, over network
TCP socket. Forward Control Message response,

received over network TCP socket, to Control
message processing software block.

File Parser Devices
Stream Message Pro-

cessing, Main Application

Receive data from Stream Message processing
software block and prepare it to be written in

specific file format. This software block should
be implemented within separate software thread.

Device status data Devices

Control Message Pro-
cessing, Stream Message

Processing, Main Applica-
tion

Store device execution status messages continu-
ously obtained over control interface.

Configuration data Devices

Control Message Pro-
cessing, Stream Message

Processing, Main Applica-
tion

Store device configuration data.

Real-Time plot Devices Stream Message Pro-
cessing, Main Application

Visualized data received from Stream message
processing software block.

Figure 6. GUI application system architecture overview.

A detailed overview of host application software blocks is presented in Table 4.

Table 4. Host application device layer overview.

Block Name Block Layer Connected Blocks Block Description

Stream Link Devices Stream Message Processing

Receive data from operating system network
UDP socket in separate thread, convert it to
corresponding format, and forward data to
Stream Message processing software block.

Control Link Devices Control Message Processing

Send Control Message Request, received from
Control message processing block, over
network TCP socket. Forward Control

Message response, received over network TCP
socket, to Control message processing software

block.

File Parser Devices Stream Message Processing, Main
Application

Receive data from Stream Message processing
software block and prepare it to be written in

specific file format. This software block should
be implemented within separate software

thread.

Device status data Devices Control Message Processing, Stream
Message Processing, Main Application

Store device execution status messages
continuously obtained over control interface.

Configuration data Devices Control Message Processing, Stream
Message Processing, Main Application Store device configuration data.

Real-Time plot Devices Stream Message Processing, Main
Application

Visualized data received from Stream message
processing software block.

Control message
processing Devices Main Application, Control Link, Device

status data
Prepare control message, send it, and wait for

response.

Stream message
processing Devices Real-Time plot, File Parser, Stream Link,

Main Application

Receive stream message from Stream Link,
extract data, process it, and send result to File

Parser or Real-Time plot software blocks.

Device Devices All blocks
Create all software block instances related to a

single device and establish connections
between them.

Electronics 2023, 12, 4206 20 of 30

5. Practical Implementation of a High-Performance Remote DAQ System

For a DAQ system, the most important functional requirement is to obtain samples,
stream them with minimal processing overhead, and display the samples in real-time.
Therefore, within this section, implementation details of the software blocks included in
the data streaming process will be outlined. Figure 7 illustrates functional components
included in the streaming and control path built to evaluate performances that can be
achieved by utilizing the proposed architecture. The DAQ device is built on a Cortex-M7-
based microcontroller platform [6] with high-speed ADC peripherals. A host application
running on a PC is used to interface with the microcontroller platform through a 100 Mbps
Ethernet link.

Electronics 2023, 12, x FOR PEER REVIEW 20 of 31

Control message
processing Devices

Main Application, Control
Link, Device status data

Prepare control message, send it, and wait for re-
sponse.

Stream message
processing

Devices
Real-Time plot, File Parser,
Stream Link, Main Appli-

cation

Receive stream message from Stream Link, ex-
tract data, process it, and send result to File Par-

ser or Real-Time plot software blocks.

Device Devices All blocks
Create all software block instances related to a

single device and establish connections between
them.

5. Practical Implementation of a High-Performance Remote DAQ System
For a DAQ system, the most important functional requirement is to obtain samples,

stream them with minimal processing overhead, and display the samples in real-time.
Therefore, within this section, implementation details of the software blocks included in
the data streaming process will be outlined. Figure 7 illustrates functional components
included in the streaming and control path built to evaluate performances that can be
achieved by utilizing the proposed architecture. The DAQ device is built on a Cortex-M7-
based microcontroller platform [6] with high-speed ADC peripherals. A host application
running on a PC is used to interface with the microcontroller platform through a 100 Mbps
Ethernet link.

Figure 7. Sample data stream path.

5.1. Description of the DAQ Device Firmware Implementation
Firmware architecture is implemented within STM32H747XIH6 [10] microcontroller

platform assembled on STM32H747I-DISCO development board [44]. This platform is
based on Cortex M7 microprocessor configured to operate at a maximum speed of 480
MHz. It also integrates ADC peripherals with fast channels, DMA for fast data transfers
between hardware components and Ethernet peripherals that can establish a 100 Mbps
link. The ADC sample rate is up to 8.33 MSps for 8-bit resolution [45].

FreeRTOS operating system [8] is used as the RTOS for the DAQ device firmware. It
is implemented as a microkernel solution with a minimal set of synchronization objects
required to implement all software blocks from the proposed firmware architecture. LwIP
software v2.2.0 TCP/IP stack [46] is exploited within this firmware architecture because
the selected platform does not have a TCP/IP stack implemented in hardware. LwIP soft-
ware stack enables flexible integration with the FreeRTOS operating system, and it pre-
sents one of the leading TCP/IP software stacks used for embedded platforms. Firmware
is mostly written in C programming language. Only some low-level software parts of the
FreeRTOS kernel code are implemented in ARM assembly language to reduce context
switching time. For firmware development and profiling STM32Cube IDE PC application
[47] is used.

In Figure 8, the path of samples and blocks involved in data streaming are presented.
All presented blocks are from Fast Code Group, and their code and data sections are com-
piled to execute from the fastest memory in the system, such as Data Tightly coupled
memory connected directly to the Cortex-M7 processor. Apart from this processor, two

Figure 7. Sample data stream path.

5.1. Description of the DAQ Device Firmware Implementation

Firmware architecture is implemented within STM32H747XIH6 [10] microcontroller
platform assembled on STM32H747I-DISCO development board [44]. This platform is
based on Cortex M7 microprocessor configured to operate at a maximum speed of 480 MHz.
It also integrates ADC peripherals with fast channels, DMA for fast data transfers between
hardware components and Ethernet peripherals that can establish a 100 Mbps link. The
ADC sample rate is up to 8.33 MSps for 8-bit resolution [45].

FreeRTOS operating system [8] is used as the RTOS for the DAQ device firmware. It
is implemented as a microkernel solution with a minimal set of synchronization objects
required to implement all software blocks from the proposed firmware architecture. LwIP
software v2.2.0 TCP/IP stack [46] is exploited within this firmware architecture because the
selected platform does not have a TCP/IP stack implemented in hardware. LwIP software
stack enables flexible integration with the FreeRTOS operating system, and it presents one
of the leading TCP/IP software stacks used for embedded platforms. Firmware is mostly
written in C programming language. Only some low-level software parts of the FreeRTOS
kernel code are implemented in ARM assembly language to reduce context switching time.
For firmware development and profiling STM32Cube IDE PC application [47] is used.

In Figure 8, the path of samples and blocks involved in data streaming are presented.
All presented blocks are from Fast Code Group, and their code and data sections are
compiled to execute from the fastest memory in the system, such as Data Tightly coupled
memory connected directly to the Cortex-M7 processor. Apart from this processor, two
different DMA controllers are utilized to create a two-stage pipeline mechanism that enables
parallel data frame processing: data sampling stage, frame processing, and sending stage.

ADC peripheral samples analog data. To achieve better performance, AIN software
block configures fast channel ADC peripheral to work with DMA1 instance to speed up
samples transferring from ADC data register to corresponding buffers. DMA supports
multibuffering mode to enable parallelization in terms of sample gathering and processing.
In other words, this feature enables processing one buffer while another buffer is still under
DMA control. Within the AIN software block two Stream buffers are statically allocated,
whose structure is presented in Figure 9. DMA is configured to store samples starting
from the green part of the buffer marked as Frame. This buffer is n samples wide, where
each sample is 2 bytes aligned. To achieve better DMA speeds, these stream buffers are
allocated in the fastest memory that is connected to the same bus as DMA. In the case of
multiple input channels, the ADC peripheral should be configured to work in the multi-

Electronics 2023, 12, 4206 21 of 30

channel mode. That way, the ADC alternates between sampling the selected channels and
multiplexing the sampled data in its output buffers. The rest of the logic on DAQ device
side remains unchanged.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 31

different DMA controllers are utilized to create a two-stage pipeline mechanism that ena-
bles parallel data frame processing: data sampling stage, frame processing, and sending
stage.

Figure 8. Samples stream path in firmware.

ADC peripheral samples analog data. To achieve better performance, AIN software
block configures fast channel ADC peripheral to work with DMA1 instance to speed up
samples transferring from ADC data register to corresponding buffers. DMA supports
multibuffering mode to enable parallelization in terms of sample gathering and pro-
cessing. In other words, this feature enables processing one buffer while another buffer is
still under DMA control. Within the AIN software block two Stream buffers are statically
allocated, whose structure is presented in Figure 9. DMA is configured to store samples
starting from the green part of the buffer marked as Frame. This buffer is n samples wide,
where each sample is 2 bytes aligned. To achieve better DMA speeds, these stream buffers
are allocated in the fastest memory that is connected to the same bus as DMA. In the case
of multiple input channels, the ADC peripheral should be configured to work in the multi-
channel mode. That way, the ADC alternates between sampling the selected channels and
multiplexing the sampled data in its output buffers. The rest of the logic on DAQ device
side remains unchanged.

Figure 9. Stream buffer structure.

The system is designed to prevent scenarios where the two buffers are overloaded.
This is achieved by software design where processing time does not reduce channel band-
width. The system should always have enough time to send previously stored data. If, for
any reason, this scenario happens, a mechanism that tracks buffer transmission status is
implemented. Therefore, in case new data are ready to be written in a buffer but old data

Figure 8. Samples stream path in firmware.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 31

different DMA controllers are utilized to create a two-stage pipeline mechanism that ena-
bles parallel data frame processing: data sampling stage, frame processing, and sending
stage.

Figure 8. Samples stream path in firmware.

ADC peripheral samples analog data. To achieve better performance, AIN software
block configures fast channel ADC peripheral to work with DMA1 instance to speed up
samples transferring from ADC data register to corresponding buffers. DMA supports
multibuffering mode to enable parallelization in terms of sample gathering and pro-
cessing. In other words, this feature enables processing one buffer while another buffer is
still under DMA control. Within the AIN software block two Stream buffers are statically
allocated, whose structure is presented in Figure 9. DMA is configured to store samples
starting from the green part of the buffer marked as Frame. This buffer is n samples wide,
where each sample is 2 bytes aligned. To achieve better DMA speeds, these stream buffers
are allocated in the fastest memory that is connected to the same bus as DMA. In the case
of multiple input channels, the ADC peripheral should be configured to work in the multi-
channel mode. That way, the ADC alternates between sampling the selected channels and
multiplexing the sampled data in its output buffers. The rest of the logic on DAQ device
side remains unchanged.

Figure 9. Stream buffer structure.

The system is designed to prevent scenarios where the two buffers are overloaded.
This is achieved by software design where processing time does not reduce channel band-
width. The system should always have enough time to send previously stored data. If, for
any reason, this scenario happens, a mechanism that tracks buffer transmission status is
implemented. Therefore, in case new data are ready to be written in a buffer but old data

Figure 9. Stream buffer structure.

The system is designed to prevent scenarios where the two buffers are overloaded. This
is achieved by software design where processing time does not reduce channel bandwidth.
The system should always have enough time to send previously stored data. If, for
any reason, this scenario happens, a mechanism that tracks buffer transmission status is
implemented. Therefore, in case new data are ready to be written in a buffer but old data
are not sent to the host machine, acquisition is stopped. Acquisition and error status is
always displayed on two LED diodes on the development board, and that way, the error
is reported.

Initially, the SL FreeRTOS task was blocked on the Buffer Address queue, waiting for
the address to be written by DMA1 ISR. When one full frame is filled with n samples, a
corresponding DMA1 interrupt request is generated, and DMA1 ISR, defined within AIN
software block, is called to continue the processing of sampled data. Because there are two
buffers that store frames, the corresponding buffer address is sent from DMA1 ISR to SL
FreeRTOS task through the Buffer Address queue. SL software block counts the number of
processed frames and creates a Stream message by filling the Header part of the Stream
buffer with the current counter value. This information should be used on the receiver side
to identify packet loss.

When a Stream message is created, the corresponding frame buffer address is for-
warded to LwIP library functions in charge of UDP operations. These functions are en-
capsulated by NETWORK_UdpSend() function that executes from the context of the SL

Electronics 2023, 12, 4206 22 of 30

task. The frame address received as an argument of NETWORK_UdpSend() function is
forwarded to LwIP internal buffer, after which additional preprocessing operations are
performed, required to adapt frame content to TCP/IP stack. These operations create ETH
messages by adding standard 54-bytes long Ethernet and UDP data overhead to the Stream
message data. At the end of the processing procedure, the resulting message is forwarded
to DMA2 instance connected with ETH peripheral. When DMA2 instance successfully
transfers data to ETH peripheral, it is sent to DAQ host side predefined UDP port over the
Ethernet link.

The number of samples n should be configured so that ETH message does not exceed
the size of the Ethernet link Maximal Transmission Unit—MTU. This is required to avoid
UDP packets splitting over the network and to avoid the implementation of complex packet
handling algorithms on the DAQ system host side. In the case of Ethernet link, MTU size is
1500 bytes where 32 bytes are the header bytes (28 bytes for UDP header and 4 bytes for
custom header) and 1468 bytes are left for data where 734 samples could be stored (each
sample is 2 bytes wide). However, the value of 734 samples is not aligned to the value
of 4 bytes, which is desirable on 32-bit architectures CPU, such as Cortex-M7, to avoid
additional clock cycles when reading data. Therefore, the final frame size is 732 samples or
1464 bytes.

Synchronization of already described tasks and ISRs involved in data streaming path
within FreeRTOS framework is illustrated in Figure 10. However, apart from the streaming
path, this figure also illustrates the synchronization of ISR and Tasks included within the
Control path. It consists of two FreeRTOS tasks named Network and Control, with priorities
6 and 5, respectively. After device initialization, these two tasks are blocked until a new TCP
message is received on the corresponding TCP port. After the complete message is received,
the DMA2 interrupt request is generated, and the corresponding DMA2 ISR is called. From
this ISR, TCP message buffer address is written to the ETH message queue, after which the
Network task is ready to execute. When the Network task gets an execution slot on CPU,
it processes the received TCP message by analyzing TCP header data, and TCP payload
is forwarded to the TCP message queue. When the Network task finishes processing,
the Control task gets execution time and performs further TCP payload analysis to map
received control messages to corresponding function callbacks. Within the current software
version, a narrow set of controls is supported, such as Start Acquisition, Stop Acquisition,
Set ADC parameters (bit resolution, sample time, clock speed). Therein, Start Acquisition,
and Stop Acquisition, represent two important commands that trigger communication
with SL tasks by the FreeRTOS notification mechanism. Current software implementation
supports acquisition starting with the Start Acquisition command only.

Electronics 2023, 12, x FOR PEER REVIEW 23 of 31

Figure 10. Synchronization of main software tasks.

The implemented software utilizes other services besides services included within
the stream and control path. One of the most representative and used services is Logging
service, whose logic is implemented within FreeRTOS task called Logging. Each service
within the software utilizes LOG_Write() function to record the corresponding log mes-
sage for the end user. This message is preprocessed and then written to a queue named
Message Buffer. Logging is the task with the lowest priority among all the other software
tasks, processing messages written to the Message buffer when it gets processor time for
execution. Log messages processing logic is in charge of sending data over a serial inter-
face, such as UART, and/or writing to some nonvolatile medium, such as external flash
memory.

A 100 Mbps link is established between the DAQ device and the host machine. It is
used to control the source side from the host side and to stream ADC sampled data from
the source to the host side. To get insights into network data packets and to profile
achieved network performance Wireshark tool is used [48].

5.2. Implementation of the DAQ System Host Application
GUI application for the DAQ system host side allows data reception, FFT calculation,

plotting, and optional logging of data and its FFT on a host machine. It is developed using
Qt software framework [9]. This framework provides support for developing PC applica-
tions based on different programming languages, such as Python, C, and C++. Because
GUI application architecture is built to best support the proposed firmware architecture,
it is important to use a programming language that provides minimal processing over-
head but also provides good software block encapsulation. Therefore, C++ programming
language is used to develop DAQ system GUI applications. The application is tested on
Windows operating.

The computer on the host side is a desktop PC with an Ethernet network card, an
SSD, and a CPU with computational capabilities for processing received data over Ether-
net. Almost all modern PCs should be capable of running the developed GUI software
and processing received data.

Figure 11 illustrates the sample streaming path on the host side and blocks involved
in the data streaming process.

Figure 10. Synchronization of main software tasks.

The implemented software utilizes other services besides services included within
the stream and control path. One of the most representative and used services is Logging
service, whose logic is implemented within FreeRTOS task called Logging. Each service
within the software utilizes LOG_Write() function to record the corresponding log message

Electronics 2023, 12, 4206 23 of 30

for the end user. This message is preprocessed and then written to a queue named Message
Buffer. Logging is the task with the lowest priority among all the other software tasks,
processing messages written to the Message buffer when it gets processor time for execution.
Log messages processing logic is in charge of sending data over a serial interface, such as
UART, and/or writing to some nonvolatile medium, such as external flash memory.

A 100 Mbps link is established between the DAQ device and the host machine. It is
used to control the source side from the host side and to stream ADC sampled data from
the source to the host side. To get insights into network data packets and to profile achieved
network performance Wireshark tool is used [48].

5.2. Implementation of the DAQ System Host Application

GUI application for the DAQ system host side allows data reception, FFT calculation,
plotting, and optional logging of data and its FFT on a host machine. It is developed using
Qt software framework [9]. This framework provides support for developing PC applica-
tions based on different programming languages, such as Python, C, and C++. Because
GUI application architecture is built to best support the proposed firmware architecture,
it is important to use a programming language that provides minimal processing over-
head but also provides good software block encapsulation. Therefore, C++ programming
language is used to develop DAQ system GUI applications. The application is tested on
Windows operating.

The computer on the host side is a desktop PC with an Ethernet network card, an
SSD, and a CPU with computational capabilities for processing received data over Ethernet.
Almost all modern PCs should be capable of running the developed GUI software and
processing received data.

Figure 11 illustrates the sample streaming path on the host side and blocks involved
in the data streaming process.

Electronics 2023, 12, x FOR PEER REVIEW 24 of 31

Figure 11. Host application sample streaming path.

When ETH package is received on the DAQ system host side, the TCP/IP software
stack of the operating system extracts the stream message from the ETH package. The
message and its contents (frame and header) are forwarded to the Stream Link software
block. Within this block, received binary data are converted to the corresponding Qt
framework data format, and they are forwarded to the Data acquisition software block.
This functionality is implemented within a separate operating system thread with the
highest priority.

The Stream message processing block monitors the arriving messages by analyzing
the message headers. This is done to detect packet drops since the packet counter value is
located inside the header. This analysis results in a value expressed as a percentage [%],
named Quality of Service (QoS). The other functionality of the Stream message processing
block is to collect multiple stream message frames into one large frame buffer message.
Instead of instant forwarding received stream messages directly, this preliminary buffer-
ing in the Stream message processing block is conducted to reduce the main application
interruption by received data. This is done for cases when, due to a high sampling rate,
the rate of data arriving is enormous and can degrade overall application behavior. Large
buffer message size is expressed in the number of Stream messages (N) that can be stored
within it. The value of N is configurable through GUI controls so that the host application
can be executed on host platforms with varying CPU performances.

The large frame buffer message, together with QoS information, is forwarded to De-
vice software block where N values of stream messages are stored. Logic implemented
within Device software block checks corresponding flags to determine whether data will
be displayed in GUI real-time plot or stored in a file. Additionally, FFT calculation is per-
formed over data stored in the frame buffer in order to plot or log the frequency spectrum
of the data. Real-time plot and File Parsing software blocks are implemented within sep-
arate operating system threads to achieve better parallelization of GUI application func-
tionalities. Regardless of which path is selected, displayed or stored in a file, QoS infor-
mation is always printed within GUI application’s corresponding graphic element.

In the case of multi-channel data acquisition, stream processing and real-time plot-
ting software block functionalities should be modified to support extracting and plotting
data from multiple channels. If the data from several channels are received interleaved,
the extracting implies simple decimation by the number-of-channels factor with different
offsets for different channels. For plotting, multiple instances of real-time plot software
block should be created, as well as for logging.

Current software implementation supports the three following error detection mech-
anisms that increase system robustness:
(1) ADC buffers overrun (implemented on firmware side)
(2) Ethernet link status (implemented on firmware and GUI side)

Figure 11. Host application sample streaming path.

When ETH package is received on the DAQ system host side, the TCP/IP software
stack of the operating system extracts the stream message from the ETH package. The
message and its contents (frame and header) are forwarded to the Stream Link software
block. Within this block, received binary data are converted to the corresponding Qt
framework data format, and they are forwarded to the Data acquisition software block.
This functionality is implemented within a separate operating system thread with the
highest priority.

The Stream message processing block monitors the arriving messages by analyzing
the message headers. This is done to detect packet drops since the packet counter value is
located inside the header. This analysis results in a value expressed as a percentage [%],
named Quality of Service (QoS). The other functionality of the Stream message processing
block is to collect multiple stream message frames into one large frame buffer message.

Electronics 2023, 12, 4206 24 of 30

Instead of instant forwarding received stream messages directly, this preliminary buffering
in the Stream message processing block is conducted to reduce the main application
interruption by received data. This is done for cases when, due to a high sampling rate,
the rate of data arriving is enormous and can degrade overall application behavior. Large
buffer message size is expressed in the number of Stream messages (N) that can be stored
within it. The value of N is configurable through GUI controls so that the host application
can be executed on host platforms with varying CPU performances.

The large frame buffer message, together with QoS information, is forwarded to
Device software block where N values of stream messages are stored. Logic implemented
within Device software block checks corresponding flags to determine whether data will be
displayed in GUI real-time plot or stored in a file. Additionally, FFT calculation is performed
over data stored in the frame buffer in order to plot or log the frequency spectrum of the
data. Real-time plot and File Parsing software blocks are implemented within separate
operating system threads to achieve better parallelization of GUI application functionalities.
Regardless of which path is selected, displayed or stored in a file, QoS information is always
printed within GUI application’s corresponding graphic element.

In the case of multi-channel data acquisition, stream processing and real-time plotting
software block functionalities should be modified to support extracting and plotting data
from multiple channels. If the data from several channels are received interleaved, the
extracting implies simple decimation by the number-of-channels factor with different
offsets for different channels. For plotting, multiple instances of real-time plot software
block should be created, as well as for logging.

Current software implementation supports the three following error detection mecha-
nisms that increase system robustness:

(1) ADC buffers overrun (implemented on firmware side)
(2) Ethernet link status (implemented on firmware and GUI side)
(3) UDP packets drop rate calculation (implemented on GUI side).

On the device side, firmware execution status can be monitored by the end user by
tracking the colors of four different diodes:

(1) System status (RGB)
(2) Link status diode (Orange)
(3) Error status diode (Red)
(4) Acquisition status diode (Blue)

In case when everything works as expected, the RGB diode is green, and the Link
status diode is active. If, for any reason, communication is broken, the Link diode is
turned off and the Error status diode is turned on. When acquisition is active, the blue
diode is active. If, for any reason, acquisition stops without previously receiving the Stop
Acquisition command, the Acquisition status diode will turn off, and the Error status
diode will be activated (for example, when the ADC buffers are overrun). Errors from any
services, drivers, or HAL are reported through the System software block, which is spread
over different software layers.

On the Host side, “Keep alive” packets are enabled with a retransmission period of 1 s.
If there is no response from the DAQ device to these packets for a period longer than 1 s,
the connection status is changed to Disconnected, and the end user is informed through
connection status indication within the GUI application. The UDP packet drop rate (QoS)
is displayed within the GUI application as well.

6. Performance Analysis

Implemented solution performances are evaluated by measuring the maximal sam-
pling rate at selected ADC bit resolution. In this section, the metrics used to quantify the
achieved performance will be defined. The achieved performances will be presented at the
end of this section.

Electronics 2023, 12, 4206 25 of 30

In the case of STM32H7 series, the ADC sampling rate is a bit resolution-dependent
value defined with the following relation:

FSAMPLING (resolution) = 1/TCT (resolution), (8)

where TCT is the conversion time for one sample. On the STM32H747XIH6 microcontroller,
the conversion time is defined in [49] as:

TCT (resolution) = (TCT-OFFSET + TRCT (resolution)) × TADC-CLK, (9)

where:

- TCT-OFFSET—conversion time offset, which is configured by the user and takes on the
values from the following discrete range {1.5, 2.5, 8.5, 16.5, 32.5 64.5, 387.5, 810.5},

- TRCT—resolution conversion time is bit dependent value: 16-bit—8.5; 14-bit—7.5;
12-bit—6.5; 10-bit—5.5,

- TADC-CLK—is configured to maximal value for the development board of 32 MHz [10].

To achieve the maximal sampling rate, ADC is clocked with 32 MHz clock frequency,
which presents the maximal ADC peripheral clock value. Based on relation (9), it is possible
to calculate minimal conversion time (for TCT-OFFSET = 1.5) and maximal sampling rate for
each bit resolution. These values are listed in Table 5.

Table 5. Resolution’s minimal conversion time and maximal sampling rate overview.

Resolution [bit] TCT [ns] FSAMPLING [MSps]

16 312.5 3.2
14 281.25 3.56
12 250.00 4
10 218.75 4.57

Based on the values listed in Table 5 it is possible to identify the ADC maximal
sampling rate that is possible to be achieved by using this platform. The maximal sampling
rate can be achieved with 10-bit resolution, and its value is 4.57 MSps.

To quantify the performance that can be achieved on this platform by utilizing the
proposed firmware architecture, the following set of metric parameters is used:

- Frame sampling time (TSAMPLING)—average time interval required to generate one
frame of n samples (n = 732).

- Processing time (TPROCESS)—average time interval between frame reception from
DMA1 instance until it is processed and sent to DMA2 instance.

- Time to send stream message (TSEND)—average time interval required to send one
complete stream message over 100 Mbps ethernet links.

- Processing overhead (PO)—Percentage of time spent on processing. It is calculated by
using the following relation: PO = TPROCESS/(TPROCESS + TSEND + TSAMLING).

- Sampling rate (FSAMPLING)—Defined with the following relation: FSAMPLING = n/TSAMPLING.

Parameter value measurement is performed by using STM32Cube IDE SVW trace
feature, which presents results obtained from Cortex-M7 Serial Wire Debug interface
(SWD). This interface enables firmware profiling by sampling the content of Cortex-M7
cycle counter register with minimal CPU interventions.

To obtain results for each metric parameter, measurements are performed for each
bit resolution. Table 6 presents the average results for each metric parameter. For better
presentation, the results are given in graphical form as well.

Electronics 2023, 12, 4206 26 of 30

Table 6. Firmware performance overview.

Resolution [bit] TSAMPLING [µs] TPROCESS [µs] TSEND [µs] PO [%] FSAMPLING [MSps]

16 222.61 28.91 122.70 7.72 3.2

14 200.08 28.72 122.71 8.17 3.56

12 178.11 28.74 122.76 8.72 4

10 155.54 30.69 122.84 9.93 4.57

Figure 12a presents the execution times for the first and the second pipeline stages
for various bit resolutions at corresponding maximum sampling rates. As mentioned
before, the first pipeline stage represents data sampling (TSAMPLING), while the second
pipeline stage represents processing (TPROCESS) and sending of an Ethernet frame (TSEND).
One could deduce from the figure that the design approaches its limits as the sampling
rate increases, i.e., the bit resolution is decreasing. Sending and processing times are
almost constant because the frame size does not change over time. On the other hand, the
sampling time increases with bit resolution. For a proper operation, in order to avoid a
buffer overrunning, sending and processing time added together should be longer than the
sampling time. In the figure, the condition is fulfilled for all the bit resolutions.

Electronics 2023, 12, x FOR PEER REVIEW 27 of 31

(a) (b)

Figure 12. (a) Pipeline 1st and 2nd stage execution time per Ethernet frame vs. bit resolution; (b)
Processing overhead (PO) and Achieved Sampling frequency (FSAMPLING) vs. bit resolution.

Figure 12b presents the processing overhead percentage and achieved maximum
sampling rates for various bit resolutions. Since processing time is almost constant (as
expected and seen in Table 6), and frame sampling time increases with an increase in bit
resolution (also as expected and seen in Table 6), processing overhead decreases with an
increase in bit resolution. It is evident from Table 6 that the maximum theoretical ADC
sampling rate has been achieved for all the bit resolutions. Therefore, the designed system
did not include delays or overhead that degraded the final performance.

Additional parameters of interest include acquisition data rate and total system
throughput over the Ethernet link. Acquisition data rate equals sampling rate [MSps] ×
sample width [bits/S]. Since 16 bits are reserved for a single sample regardless of the sam-
ple width, a single frame contains 732 16-bit samples, that is 1464 bytes. All overheads
combined add up 58 bytes to each frame, that is, (58/1464) = 3.96% to the data bytes. The
total system throughput is then sampling rate [MSps] × 16 bits/S × 1.0396. Figure 13 pre-
sents the values of the two parameters for each resolution and its corresponding maxi-
mum available sampling rate.

Figure 13. Acquisition data rate and total system throughput vs. bit resolution.

For software development and its testing, a PC machine with a dual-core processor
that operates at 3.5 GHz, 16 GB of RAM memory, and a 1 TB SSD is used. For the highest

Figure 12. (a) Pipeline 1st and 2nd stage execution time per Ethernet frame vs. bit resolution;
(b) Processing overhead (PO) and Achieved Sampling frequency (FSAMPLING) vs. bit resolution.

Figure 12b presents the processing overhead percentage and achieved maximum
sampling rates for various bit resolutions. Since processing time is almost constant (as
expected and seen in Table 6), and frame sampling time increases with an increase in bit
resolution (also as expected and seen in Table 6), processing overhead decreases with an
increase in bit resolution. It is evident from Table 6 that the maximum theoretical ADC
sampling rate has been achieved for all the bit resolutions. Therefore, the designed system
did not include delays or overhead that degraded the final performance.

Additional parameters of interest include acquisition data rate and total system throughput
over the Ethernet link. Acquisition data rate equals sampling rate [MSps] × sample width
[bits/S]. Since 16 bits are reserved for a single sample regardless of the sample width, a
single frame contains 732 16-bit samples, that is 1464 bytes. All overheads combined add
up 58 bytes to each frame, that is, (58/1464) = 3.96% to the data bytes. The total system
throughput is then sampling rate [MSps] × 16 bits/S × 1.0396. Figure 13 presents the
values of the two parameters for each resolution and its corresponding maximum available
sampling rate.

Electronics 2023, 12, 4206 27 of 30

Electronics 2023, 12, x FOR PEER REVIEW 27 of 31

(a) (b)

Figure 12. (a) Pipeline 1st and 2nd stage execution time per Ethernet frame vs. bit resolution; (b)
Processing overhead (PO) and Achieved Sampling frequency (FSAMPLING) vs. bit resolution.

Figure 12b presents the processing overhead percentage and achieved maximum
sampling rates for various bit resolutions. Since processing time is almost constant (as
expected and seen in Table 6), and frame sampling time increases with an increase in bit
resolution (also as expected and seen in Table 6), processing overhead decreases with an
increase in bit resolution. It is evident from Table 6 that the maximum theoretical ADC
sampling rate has been achieved for all the bit resolutions. Therefore, the designed system
did not include delays or overhead that degraded the final performance.

Additional parameters of interest include acquisition data rate and total system
throughput over the Ethernet link. Acquisition data rate equals sampling rate [MSps] ×
sample width [bits/S]. Since 16 bits are reserved for a single sample regardless of the sam-
ple width, a single frame contains 732 16-bit samples, that is 1464 bytes. All overheads
combined add up 58 bytes to each frame, that is, (58/1464) = 3.96% to the data bytes. The
total system throughput is then sampling rate [MSps] × 16 bits/S × 1.0396. Figure 13 pre-
sents the values of the two parameters for each resolution and its corresponding maxi-
mum available sampling rate.

Figure 13. Acquisition data rate and total system throughput vs. bit resolution.

For software development and its testing, a PC machine with a dual-core processor
that operates at 3.5 GHz, 16 GB of RAM memory, and a 1 TB SSD is used. For the highest

Figure 13. Acquisition data rate and total system throughput vs. bit resolution.

For software development and its testing, a PC machine with a dual-core processor
that operates at 3.5 GHz, 16 GB of RAM memory, and a 1 TB SSD is used. For the highest
acquisition data rates, corresponding to various bit-resolutions, enabled logging, and the
size of the frame buffer in the range from 100 to 1000 Stream messages, the processor load
insignificantly changes and is about 35% on the host machine.

7. Conclusions

In this paper, a method for designing a remote data acquisition system for high-
frequency analog signals is presented. The method follows theoretical considerations on
the impact of various system components on the final system throughput, and it enables
synchronization of the system components in order to achieve data transfer rates as high
as possible.

Using state-of-the-art hardware combined with a low processing overhead firmware
architecture based on RTOS, the final system performance is maximized. The firmware
architecture is divided into functional blocks, which allows the identification of the blocks
that have the greatest impact on data transfer rate within the system. These blocks are
placed in the high-speed memory to reduce their impact on system performance. To achieve
concurrency between sensing and communication software blocks, a real-time operating
system is used. The usage of the operating system also shortens development time and
allows for easy extension and upgrade of system functionalities.

The host application architecture lets the user easily analyze, store, and visualize the
sampled data in real-time. The host architecture also provides low processing overhead
due to careful architecture planning and division into functional blocks.

By employing the proposed method, possible transfer bottlenecks created by system
components are avoided. The laboratory prototype, based on STM32H747XIH6 microcon-
troller and its internal ADC, preserves the maximum possible sampling rates of the ADC
within the microcontroller for all the available resolutions. Using a minimalistic application
protocol for monitoring of dataflow and the proposed software architecture, total process-
ing overhead is kept below 10%. The maximum equivalent acquisition data rate over the
Ethernet link is, for 16-bit resolution and 3.2 MSps sampling rate, 51.2 Mbps, whereas the
total data rate is 53.23 Mbps when considering protocol and application overhead. The
maximum total system throughput occurs for 10-bit resolution and 4.57 MSps sampling
rate, and equals 76.02 MSps.

Comparing the results obtained with the prototype to the results presented in the liter-
ature, the prototype outperforms all of them either by acquisition rate (the microcontroller-

Electronics 2023, 12, 4206 28 of 30

based solutions) or cost (the FPGA-based solutions). The FPGA-based solutions that
perform better in the sense of speed still lack extended functionalities: [10] is a standalone
device, whereas [11] is placed within a PC chassis and cannot be used for remote acquisition.

In this paper, it is shown that the proposed firmware architecture, with a combination
of various software and hardware optimization approaches and host application architec-
ture, can be used to design DAQ systems with very low processing and communication
overhead. That way, hardware and channel capabilities are fully exploited.

The limitations of the proposed firmware architecture are related to reliance on pre-
sumed hardware capabilities. To enable the running of an RTOS, at least one general-
purpose timer capable of generating periodic ticks should be present on the platform. A
DMA controller is required to support fast data transfer from either an internal ADC buffer
or communication interface buffer to which an external ADC is connected. At least a
100 Mbps Ethernet interface with a dedicated DMA controller for the transfer of an Ethernet
frame from memory to the interface is needed as well. It is advisable that one fast memory
block (such as tightly coupled memory or SRAM) of sufficient size is available.

Regarding the proposed host software architecture, there are no obvious limitations
since the presumption of the existence of the Ethernet interface, an SSD, enough RAM
memory, and a fast enough CPU is satisfied by modern personal computers.

Because our DAQ device implementation includes a two-stage pipeline, maximum
system throughput is limited by the processing and sending of data. If the frame sampling
time is shorter than the time required to process and send data, frame buffers will be
overrun, and the acquisition will be interrupted. As seen in Figure 12a, the implementation
of the design is at its limit for 10-bit resolution and its corresponding sampling rate of
4.57 MSps.

Besides general limitations related to the software architecture, there is a potential
for further optimization. Influences of sample bit-packing method, number of pipeline
stages, and Ethernet package size on Ethernet link utilization, execution performance, and
energy consumption of the DAQ device are seen as parts of future work. It is also possible
to implement the start of data transfer when ADC output is higher than a configurable
threshold as a noise baseline value. It would demand minimal changes in control protocol,
as well as changes in both DAQ device and host software. Utilizing a platform with a
hardware TCP/IP stack would decrease frame processing time, thus improving the overall
performance of the system.

Author Contributions: Conceptualization, H.T. and V.R.; methodology, M.K., V.R. and I.P.; software,
H.T.; validation, M.K. and V.R.; formal analysis, H.T. and M.K.; investigation, H.T., M.K. and I.P.;
resources, V.R. and I.P.; data curation, M.K.; writing—original draft preparation, H.T. and M.K.;
writing—review and editing, M.K., V.R. and I.P.; visualization, H.T.; supervision, V.R. and I.P.; project
administration, H.T.; funding acquisition, H.T., M.K., V.R. and I.P. All authors have read and agreed
to the published version of the manuscript.

Funding: The publication of this paper was funded by the IPCEI on ME project.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This work was financially supported by the Ministry of Science, Technological
Development, and Innovation of the Republic of Serbia under contract number: 451-03-47/2023-
01/200103.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Doebelin, O.E. Data-Acquisition Systems for Personal Computers. In Measurement Systems Application and Design; McGraw-Hill

Science/Engineering/Math: New York, NY, USA, 2003; pp. 981–983.
2. Park, J.; Mackay, S. Practical Data Acquisition for Instrumentation and Control Systems, 1st ed.; Newnes: Oxford, UK, 2003.

Electronics 2023, 12, 4206 29 of 30

3. Maurizio, D.P.E. Data Acquisition Systems: From Fundamentals to Applied Design, 1st ed.; Springer: Berlin/Heidelberg, Germany,
2013; pp. 1–15.

4. Abdallah, M.A.S.; Omar, S.A.E.; Ali, T.A. A Low-Cost Stand-Alone Multichannel Data Acquisition, Monitoring, and Archival
System with On-Chip Signal Preprocessing. IEEE Trans. Instrum. Meas. 2011, 60, 2813–2827. [CrossRef]

5. Spencer, B.F.; Park, J.W.; Mechitov, K.A.; Jo, H.; Agha, G. Next Generation Wireless Smart Sensors Toward Sustainable Civil
Infrastructure. Procedia Eng. 2017, 171, 5–13. [CrossRef]

6. Arm Limited. Arm Cortex-M7 Processor Datasheet; Arm Limited: Cambridge, UK, 2020. Available online: https://www.arm.com/-/
media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm-Cortex-M7-Processor-Datasheet.pdf (accessed
on 15 August 2023).

7. Zimmerman, C.E.S.J.; Spurgeon, C.E. Ethernet: The Definitive Guide, 2nd ed.; O’Reilly Media, Incorporated: Sebastopol, CA, USA,
2014; ISBN 978-1-4493-6298-0.

8. FreeRTOS Real-Time Operating System for Microcontrollers. Available online: https://freertos.org/ (accessed on 15 August
2023).

9. Qt Design and Development Software Framework. Available online: https://www.qt.io/ (accessed on 15 August 2023).
10. Arm Limited. STM32H747xI/G Microcontroller Datasheet; Arm Limited: Cambridge, UK, 2023. Available online: https://www.st.

com/resource/en/datasheet/stm32h747ag.pdf (accessed on 15 August 2023).
11. Khedkar, A.A.; Khade, R.H. High Speed FPGA-Based Data Acquisition System. Microprocess. Microsyst. 2017, 49, 87–94. [CrossRef]
12. Shu, S.; Wang, L.; Liu, D.; Chen, M.; Zhang, Y.; Luo, J.; Ji, F. A High-Speed Data Acquisition System Based on FPGA for Tokamak.

Rev. Sci. Instrum. 2018, 89, 10K120. [CrossRef] [PubMed]
13. Wan, B. Experimental Advanced Superconducting Tokamak. In Magnetic Fusion Energy; Woodhead Publishing: Sawston, UK,

2016; pp. 409–437. ISBN 978-0-08-100315-2.
14. Oberhumer, M.F.X.J. LZO Real-Time Data Compression Library. Available online: http://www.oberhumer.com/opensource/lzo/

(accessed on 15 August 2023).
15. Sahoo, S.; Chaddha, N.; Sahoo, S.; Biswas, N.; Roy, A.; Das, M.; Pal, S. FPGA-Based Multi-Channel Data Acquisition System for

Superheated Emulsion Detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2021, 1009,
165457. [CrossRef]

16. Apfel, R.E. The Superheated Drop Detector. Nucl. Instrum. Methods 1979, 162, 603–608. [CrossRef]
17. Dawoud, D.S.; Dawoud, P. Universal Asynchronous Receiver/Transmitter (UART). In Serial Communication Protocols and Standards;

River Publishers: Aalborg, Denmark, 2022; pp. 47–92. ISBN 978-1-00-079691-9.
18. National Instruments LabVIEW. Available online: https://www.ni.com/en-rs/shop/labview.html (accessed on 15 August 2023).
19. Podešva, P.; Gebauer, J.; Fojtik, D.; Mahdal, M. High Speed Current Sensing System for Welding. IFAC-PapersOnLine 2019, 52,

139–144. [CrossRef]
20. RTX Real-Time Operating System. Available online: https://www.keil.com/arm/rl-arm/kernel.asp (accessed on 15 August

2023).
21. Mathworks Matlab Product Webpage. Available online: https://www.mathworks.com/products/matlab.html (accessed on 15

August 2023).
22. Zhang, H.; Kang, W. Design of the Data Acquisition System Based on STM32. Procedia Comput. Sci. 2013, 17, 222–228. [CrossRef]
23. Arm Limited. Arm Cortex-M3 Processor Datasheet; Arm Limited: Cambridge, UK, 2020. Available online: https://documentation-

service.arm.com/static/62053c120ca305732a3a5c14?token= (accessed on 15 August 2023).
24. UC/OS-II Documentation. Available online: https://micrium.atlassian.net/wiki/spaces/osiidoc/overview (accessed on 15

August 2023).
25. Micrium, Inc. MC/GUI Embedded Graphical User Interface; Micrium, Inc.: Weston, FL, USA, 2022. Available online: https:

//www.mouser.com/datasheet/2/266/gui_dsheet-1326.pdf (accessed on 15 August 2023).
26. Fu, Y.; Mechitov, K.A.; Hoang, T.; Kim, J.; Lee, D.H.; Spencer, B.F. Development and Full-Scale Validation of High-Fidelity Data

Acquisition on a next-Generation Wireless Smart Sensor Platform. Adv. Struct. Eng. 2019, 22, 3512–3533. [CrossRef]
27. Arm Limited. Arm Cortex-M4 Processor Datasheet; Arm Limited: Cambridge, UK, 2020. Available online: https://documentation-

service.arm.com/static/62053f0a0ca305732a3a5c17?token= (accessed on 15 August 2023).
28. Farahani, S. ZigBee Basics. In ZigBee Wireless Networks and Transceivers; Newnes: Oxford, UK, 2008; pp. 1–24.
29. Ferrero, M.F.J.; Valledor, L.M.; Campo, R.J.C.; Blanco, G.J.R.; Menéndez, B.J. Low-Cost Open-Source Multifunction Data

Acquisition System for Accurate Measurements. Measurement 2014, 55, 265–271. [CrossRef]
30. 8-Bit AVR®MCUs Website. Available online: https://www.microchip.com/en-us/products/microcontrollers-and-

microprocessors/8-bit-mcus/avr-mcus (accessed on 15 August 2023).
31. Arduino Website Home Page. Available online: https://www.arduino.cc/ (accessed on 15 August 2023).
32. Python Programming Language Official Website. Available online: https://www.python.org/ (accessed on 15 August 2023).
33. González, A.; Olazagoitia, J.L.; Vinolas, J. A Low-Cost Data Acquisition System for Automobile Dynamics Applications. Sensors

2018, 18, 366. [CrossRef] [PubMed]
34. Arduino Due Documentation. Available online: https://docs.arduino.cc/hardware/due (accessed on 15 August 2023).

https://doi.org/10.1109/TIM.2009.2036402
https://doi.org/10.1016/j.proeng.2017.01.304
https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm-Cortex-M7-Processor-Datasheet.pdf
https://www.arm.com/-/media/Arm%20Developer%20Community/PDF/Processor%20Datasheets/Arm-Cortex-M7-Processor-Datasheet.pdf
https://freertos.org/
https://www.qt.io/
https://www.st.com/resource/en/datasheet/stm32h747ag.pdf
https://www.st.com/resource/en/datasheet/stm32h747ag.pdf
https://doi.org/10.1016/j.micpro.2016.11.006
https://doi.org/10.1063/1.5035364
https://www.ncbi.nlm.nih.gov/pubmed/30399864
http://www.oberhumer.com/opensource/lzo/
https://doi.org/10.1016/j.nima.2021.165457
https://doi.org/10.1016/0029-554X(79)90735-3
https://www.ni.com/en-rs/shop/labview.html
https://doi.org/10.1016/j.ifacol.2019.12.746
https://www.keil.com/arm/rl-arm/kernel.asp
https://www.mathworks.com/products/matlab.html
https://doi.org/10.1016/j.procs.2013.05.030
https://documentation-service.arm.com/static/62053c120ca305732a3a5c14?token=
https://documentation-service.arm.com/static/62053c120ca305732a3a5c14?token=
https://micrium.atlassian.net/wiki/spaces/osiidoc/overview
https://www.mouser.com/datasheet/2/266/gui_dsheet-1326.pdf
https://www.mouser.com/datasheet/2/266/gui_dsheet-1326.pdf
https://doi.org/10.1177/1369433219866093
https://documentation-service.arm.com/static/62053f0a0ca305732a3a5c17?token=
https://documentation-service.arm.com/static/62053f0a0ca305732a3a5c17?token=
https://doi.org/10.1016/j.measurement.2014.05.010
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/8-bit-mcus/avr-mcus
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/8-bit-mcus/avr-mcus
https://www.arduino.cc/
https://www.python.org/
https://doi.org/10.3390/s18020366
https://www.ncbi.nlm.nih.gov/pubmed/29382039
https://docs.arduino.cc/hardware/due

Electronics 2023, 12, 4206 30 of 30

35. Mukati, M.R.; Kocatürk, S.; Kocatürk, M.; Baykaş, T. A Microcontroller-Based Wireless Multichannel Neural Data Transmis-sion
System. In Proceedings of the 21st National Biomedical Engineering Meeting (BIYOMUT), Istanbul, Turkey, 24 November–26
December 2017; pp. 1–4. [CrossRef]

36. Tibor, S.; Dukán, P.; Odadžíc, B.; Péter, O. Realization of Reliable High-Speed Data Transfer over UDP with Continuous Storage.
In Proceedings of the 11th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary,
18–20 November 2010; pp. 307–310. [CrossRef]

37. Espressif Systems ESP32 Series Datasheet; Espressif Systems: Shanghai, People’s Republic of China, 2023. Available online:
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf (accessed on 15 August 2023).

38. Cadence Design Systems. Xtensa LX6 Customizable DPU; Cadence Design Systems: San Jose, CA, USA, 2014; Available online:
https://mirrobo.ru/wp-content/uploads/2016/11/Cadence_Tensillica_Xtensa_LX6_ds.pdf (accessed on 15 August 2023).

39. Pun-García, E.; López-Vallejo, M. A Survey of Analog-to-Digital Converters for Operation under Radiation Environments.
Electronics 2020, 9, 1694. [CrossRef]

40. Marcelloni, F.; Vecchio, M. A Simple Algorithm for Data Compression in Wireless Sensor Networks. IEEE Commun. Lett. 2008, 12,
411–413. [CrossRef]

41. Christensen, M.J.; Richter, T. Achieving Reliable UDP Transmission at 10 Gb/s Using BSD Socket for Data Acquisition Systems. J.
Instrum. 2020, 15, T09005. [CrossRef]

42. Raspberry Pi Product Webpage. Available online: https://www.raspberrypi.com/products/ (accessed on 15 August 2023).
43. BeagleBone Black Product Webpage. Available online: https://beagleboard.org/black (accessed on 15 August 2023).
44. Discovery Kit with STM32H747XI MCU. Available online: https://www.st.com/en/evaluation-tools/stm32h747i-disco.html

(accessed on 15 August 2023).
45. STMicroelectronics. Getting Started with the STM32H7 Series MCU 16-Bit ADC—Application Note; STMicroelectronics: Geneva,

Switzerland, 2020. Available online: https://www.st.com/resource/en/application_note/an5354-getting-started-with-the-stm3
2h7-series-mcu-16bit-adc-stmicroelectronics.pdf (accessed on 15 August 2023).

46. LwIP—A Lightweight TCP/IP Stack—Summary. Available online: https://savannah.nongnu.org/projects/lwip/ (accessed on
15 August 2023).

47. STM32Cube IDE—Integrated Development Environment for STM32. Available online: https://www.st.com/en/development-
tools/stm32cubeide.html (accessed on 15 August 2023).

48. Wireshark Network Protocol Analyzer. Available online: https://www.wireshark.org/ (accessed on 15 August 2023).
49. STMicroelectronics. STM32H745/755 and STM32H747/757 Advanced Arm®-Based 32-Bit MCUs—Reference Manual; STMicroe-

lectronics: Geneva, Switzerland, 2023. Available online: https://www.st.com/resource/en/reference_manual/rm0399-stm32h7
45755-and-stm32h747757-advanced-armbased-32bit-mcus-stmicroelectronics.pdf (accessed on 15 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/BIYOMUT.2017.8479160
https://doi.org/10.1109/CINTI.2010.5672228
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://mirrobo.ru/wp-content/uploads/2016/11/Cadence_Tensillica_Xtensa_LX6_ds.pdf
https://doi.org/10.3390/electronics9101694
https://doi.org/10.1109/LCOMM.2008.080300
https://doi.org/10.1088/1748-0221/15/09/T09005
https://www.raspberrypi.com/products/
https://beagleboard.org/black
https://www.st.com/en/evaluation-tools/stm32h747i-disco.html
https://www.st.com/resource/en/application_note/an5354-getting-started-with-the-stm32h7-series-mcu-16bit-adc-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an5354-getting-started-with-the-stm32h7-series-mcu-16bit-adc-stmicroelectronics.pdf
https://savannah.nongnu.org/projects/lwip/
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.wireshark.org/
https://www.st.com/resource/en/reference_manual/rm0399-stm32h745755-and-stm32h747757-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0399-stm32h745755-and-stm32h747757-advanced-armbased-32bit-mcus-stmicroelectronics.pdf

	Introduction
	Related Work on Fast DAQ Systems
	FPGA-Based Fast DAQ Systems
	Microcontroller-Based Fast DAQ Systems
	Comparison of the Reviewed DAQ Systems

	Theoretical Considerations of High-Speed DAQ Systems
	The Source
	The Communication Channel
	The Host

	Proposed Architecture of a High-Performance Remote DAQ System
	General Software Requirements
	Specific DAQ Related Software Requirements
	Architecture Overview

	Practical Implementation of a High-Performance Remote DAQ System
	Description of the DAQ Device Firmware Implementation
	Implementation of the DAQ System Host Application

	Performance Analysis
	Conclusions
	References

