
Citation: Shao, J.; Liang, J. Joint

Optimization of Memory Sharing

and Communication Distance for

Virtual Machine Instantiation in

Cloudlet Networks. Electronics 2023,

12, 4205. https://doi.org/10.3390/

electronics12204205

Academic Editor: Bahman Javadi

Received: 5 September 2023

Revised: 25 September 2023

Accepted: 3 October 2023

Published: 10 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Joint Optimization of Memory Sharing and
Communication Distance for Virtual Machine Instantiation
in Cloudlet Networks
Jianbo Shao and Junbin Liang *

Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of Computer and
Electronics Information, Guangxi University, Nanning 530004, China; shaojianbo@st.gxu.edu.cn
* Correspondence: liangjb@gxu.edu.cn

Abstract: Cloudlet networks are an emerging distributed data processing paradigm, which contain
multiple cloudlets deployed beside base stations to serve local user devices (UDs). Each cloudlet is a
small data center with limited memory, in which multiple virtual machines (VMs) can be instantiated.
Each VM runs a UD’s application components and provides dedicated services for that UD. The
number of VMs that serve UDs with low latency is limited by a lack of sufficient memory of cloudlets.
Memory deduplication technology is expected to solve this problem by sharing memory pages
between VMs. However, maximizing page sharing means that more VMs that can share the same
memory pages should be instantiated on the same cloudlet, which prevents the communication
distance between UDs and their VMs from minimizing, as each VM cannot be instantiated in the
cloudlet with the shortest communication distance from its UD. In this paper, we study the problem
of VM instantiation with the joint optimization of memory sharing and communication distance
in cloudlet networks. First, we formulate this problem as a bi-objective optimization model. Then,
we propose an iterative heuristic algorithm based on the ε-constraint method, which decomposes
original problems into several single-objective optimization subproblems and iteratively obtains
the subproblems’ optimal solutions. Finally, the proposed algorithm is evaluated through a large
number of experiments on the Google cluster workload tracking dataset and the Shanghai Telecom
base station dataset. Experimental results show that the proposed algorithm outperforms other
benchmark algorithms. Overall, the memory sharing between VMs increased by 3.6%, the average
communication distance between VMs and UDs was reduced by 22.7%, and the running time
decreased by approximately 29.7% compared to the weighted sum method.

Keywords: cloudlet networks; joint optimization; memory page sharing; virtual machine
instantiation; virtualization environment; ε-constraint method

1. Introduction

Cloud computing networks have been widely used in industries as a network archi-
tecture with flexibility and on-demand resource scalability. However, cloud computing
networks are gradually unable to meet the increasing demand for low-latency access to
private computing, communication, and storage resources from user devices (UDs) [1].
Therefore, the cloudlet network, which stretches cloud computing to the edge of net-
works [2], has become an emerging distributed data processing architecture. Each cloudlet
is a server cluster connected to the Internet, which is usually deployed near an access point
with a one hop distance from the UDs [3]. Each cloudlet serves as a container for virtual
machines (VMs), in which several VMs can be instantiated simultaneously [4]. As a result,
each VM can provide dedicated services to a UD over a shorter communication distance in
a cloudlet than from a remote cloud data center [5].

In the cloudlet network (as shown in Figure 1), each cloudlet is deployed near a base
station (BS) and is connected to it via high-speed fibers [6]. Therefore, a UD can connect to

Electronics 2023, 12, 4205. https://doi.org/10.3390/electronics12204205 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12204205
https://doi.org/10.3390/electronics12204205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0003-3148-0326
https://doi.org/10.3390/electronics12204205
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12204205?type=check_update&version=2

Electronics 2023, 12, 4205 2 of 30

a nearby BS via a wireless local area network (WLAN) and offload its tasks to the cloudlet
where this UD’s VM resides through wired links between BSs. Above the cloudlet layer, a
software-defined network (SDN)-based cellular core network is adopted to provide flexible
communication routing between BSs and between cloudlets [7,8]. On top of the cellular
core network, public data centers provide scalability for VM instantiation. When VMs
cannot be instantiated in cloudlets due to capacity constraints, they can be instantiated in
public data centers.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

In the cloudlet network (as shown in Figure 1), each cloudlet is deployed near a base

station (BS) and is connected to it via high-speed fibers [6]. Therefore, a UD can connect

to a nearby BS via a wireless local area network (WLAN) and offload its tasks to the cloud-

let where this UD’s VM resides through wired links between BSs. Above the cloudlet

layer, a software-defined network (SDN)-based cellular core network is adopted to pro-

vide flexible communication routing between BSs and between cloudlets [7,8]. On top of

the cellular core network, public data centers provide scalability for VM instantiation.

When VMs cannot be instantiated in cloudlets due to capacity constraints, they can be

instantiated in public data centers.

Figure 1. Architecture of cloudlet networks. (Remote cloud data centers, software-defined networks,

and wireless local area networks form the three-layer structure of cloudlet network.)

Although VMs can be instantiated in cloudlets, the development of physical memory

is slower than the increase in memory requirements, and the memory space of each cloud-

let is limited, so the number of VMs instantiated in each cloudlet is limited. Memory dedu-

plication is the core of virtualization and is an effective method to address the above issue,

as it merges similar data into a single copy using page sharing, thereby reducing the

memory requirements of each VM. Memory page sharing is a commonly used memory

deduplication technique, in which the hypervisor removes identical memory pages be-

tween VMs located at the same position and manages a single page shared among them.

When multiple VMs are instantiated in cloudlets, they will share a common memory page

set. Depending on the hypervisor in each cloudlet, each cloudlet’s memory utilization will

be improved by deleting the same memory pages between VMs and managing VMs to

share memory pages of a common memory page set.

However, maximizing memory page sharing between VMs means that VMs tend to

be instantiated in a few cloudlets, which prevents the average communication distance

between VMs and UDs from being minimized, because VMs cannot communicate with

UDs that are evenly distributed across the network with minimal latency. On the contrary,

minimizing average communication distance between VMs and UDs means that VMs are

Figure 1. Architecture of cloudlet networks. (Remote cloud data centers, software-defined networks,
and wireless local area networks form the three-layer structure of cloudlet network.)

Although VMs can be instantiated in cloudlets, the development of physical mem-
ory is slower than the increase in memory requirements, and the memory space of each
cloudlet is limited, so the number of VMs instantiated in each cloudlet is limited. Memory
deduplication is the core of virtualization and is an effective method to address the above
issue, as it merges similar data into a single copy using page sharing, thereby reducing
the memory requirements of each VM. Memory page sharing is a commonly used mem-
ory deduplication technique, in which the hypervisor removes identical memory pages
between VMs located at the same position and manages a single page shared among them.
When multiple VMs are instantiated in cloudlets, they will share a common memory page
set. Depending on the hypervisor in each cloudlet, each cloudlet’s memory utilization will
be improved by deleting the same memory pages between VMs and managing VMs to
share memory pages of a common memory page set.

However, maximizing memory page sharing between VMs means that VMs tend to
be instantiated in a few cloudlets, which prevents the average communication distance
between VMs and UDs from being minimized, because VMs cannot communicate with
UDs that are evenly distributed across the network with minimal latency. On the contrary,
minimizing average communication distance between VMs and UDs means that VMs are
instantiated in cloudlets depending on distribution of UDs, which prevents VMs with more
of the same memory pages from being instantiated in the same cloudlet.

Electronics 2023, 12, 4205 3 of 30

In this paper, we focus on solving the problem of virtual machine instantiation with the
joint optimization of memory sharing and communication distance (VMIJOMSCD), which
is a bi-objective optimization problem. This problem requires determining the set of VMs
scheduled to be instantiated in each cloudlet while minimizing average communication
distance between VMs and UDs and maximizing memory sharing between VMs. Due to
the difficulty of obtaining all Pareto solutions of a bi-objective optimization problem in
polynomial time, we designed an iterative heuristic algorithm based on the ε-constraint
method [9]. This algorithm decomposes the original problem into multiple single-objective
optimization subproblems and obtains optimal solutions for the subproblems through
iteration calculation. The major contributions of this paper are summarized as follows:

• For the first time, we focus on a new problem of virtual machine instantiation in
cloudlet networks, named VMIJOMSCD, and we build a new cloudlet network archi-
tecture with memory-shared virtual machines. We formulate the VMIJOMSCD as a
bi-objective optimization model.

• In order to obtain representative approximate Pareto solutions in a shorter computation
time. We designed an iterative heuristic algorithm, which can obtain relatively accurate
solutions in small-scale experimental scenarios. To the best of our knowledge, no
heuristic algorithms for solving the VMIJOMSCD problem have been proposed in the
research literature to date.

• We investigate the performance of our proposed algorithm by comparing it with the
performance of several other benchmark greedy algorithms on real datasets. The
experimental results show that compared with other benchmark algorithms, this
algorithm has better performance in terms of minimum communication distance and
maximum memory sharing.

Our paper is divided into six sections: In Section 2, we review some works related to
the field of this article. In Section 3, we give basic system models, including the model of
memory sharing between VMs and the model of average communication distance between
VMs and UDs. In Section 4, we describe detailed steps of the traditional ε-constraint
method and the iterative heuristic algorithm. Then, we evaluate the performance of the
proposed algorithm in Section 5. Finally, Section 6 concludes this paper.

2. Related Works

With the increasing popularity of virtualization technology, the multi-objective opti-
mization problem of VM instantiation has received widespread attention. Previous work
has explored improving memory sharing between VMs and maintaining low communica-
tion distance and latency between UDs and VMs.

2.1. Memory Sharing System

Currently, most research on memory sharing mainly focuses on developing page-
sharing systems using content-based page-sharing technology.

Bugnion et al. [10] designed a scalable memory-sharing multiprocessor and proposed
a transparent page-sharing technology.

VMWare’s ESX Server has proposed several new memory management mechanisms [11]:
Ballooning technology recovers pages from VMs that are considered the least valuable by
the operating system. Idle memory tax can improve memory utilization. Content-based
page-sharing technology eliminates memory redundancy.

Pan et al. [12] proposed a DAH mechanism that coordinates memory deduplication
engines with VM monitoring programs to promote memory sharing between VMs located
in the same position while minimizing the performance impact of memory deduplication
on running VMs.

Ji et al. [13] proposed STYX, a framework for offloading the intensive operations of
these kernel features to SmartNIC (SNIC). STYX first RDMA-copies the server’s memory
regions, on which these kernel features intend to operate, to an SNIC’s memory region,
exploiting SNIC’s RDMA capability. Subsequently, leveraging SNIC’s compute capability,

Electronics 2023, 12, 4205 4 of 30

STYX makes the SNIC CPU perform the intensive operations of these kernel features. Lastly,
STYX RDMA-copies their results back to a server’s memory region, based on which it
performs the remaining operations of the kernel features.

Ge et al. [14] proposed a memory sharing system, which integrates a mechanism
of threshold-based memory overload detection, that is presented for handling memory
overload of InfiniBand-networked PMs in data centers. It enables a PM with memory
overload to automatically borrow memory from a remote PM with spare memory. Similar
to swapping to a secondary memory, i.e., disks, inactive memory pages are swapped to the
remote PM with spare memory as a complement to VM live migration and other options
for memory tiering, thus handling the memory overload problem.

Wood et al. [15] proposed a memory-sharing-aware VM placement system called
Memory Buddies, which avoids memory redundancy by integrating VMs with higher
sharing potential on the same host. They also proposed an intelligent VM hosting algorithm
to optimize VM placement via real-time migration in response to server workload changes.

2.2. Memory Sharing Problem

The remaining research on memory sharing has focused on studying abstraction
problems to achieve certain goals.

He et al. [16] proposed a data routing strategy based on the global BloomFilter, which
does not need to maintain all data block fingerprint information, uses superblocks as
the data routing unit, maintains the BloomFilter array of the entire deduplication system
storage node in the memory of the client server (each row corresponds to one storage
node), and maintains the representative fingerprint of the superblock stored using the node,
which greatly reduces the memory space occupation. In addition, while maintaining the
BloomFilter array, the capacity information of a storage node is also maintained to ensure
the load balancing of the storage node.

Rampersaud et al. [17] developed a greedy algorithm to maximize the benefits of a
memory-sharing-aware VM deployment, considering only the memory usage of each VM
and the memory sharing between VMs.

Rampersaud et al. [18] designed a sharing-aware greedy approximation algorithm to
solve the problem of maximizing the benefits of a memory-sharing-aware VM placement
in a single-server environment, considering both memory sharing and multiple resource
constraints.

Sartakov et al. [19] described Object Reuse with Capabilities (ORC), a new cloud
software stack that allows deduplication across tenants with strong isolation, a small TCB,
and low overheads. ORC extends a binary program format to enable isolation domains
to share binary objects, i.e., programs and libraries, by design. Object sharing is always
explicit, thus avoiding the performance overheads of hypervisors with page deduplication.
For strong isolation, ORC only shares immutable and integrity-protected objects. To keep
the TCB small, object loading is performed using the untrusted guest OS.

Jagadeeswari et al. [20] proposed a modified approach of Memory Deduplication of
Static Memory Pages (mSMD) for achieving performance optimization in virtual machines
by reducing memory capacity requirements. It is based on the identification of similar
applications via Fuzzy hashing and clustering them using the Hierarchical Agglomerative
Clustering approach, followed by similarity detection between static memory pages based
on genetic algorithm and details stored in a multilevel shared page table; both operations
are performed offline, and final memory deduplication is carried out during online,

Wei et al. [21] proposed USM, a build-in module in the Linux kernel that enables
memory sharing among different serverless functions based on the content-based page
sharing concept. USM allows the user to advise the kernel of a memory area that can be
shared with others through the madvise system call, no matter if the memory is anonymous
or file-backed.

Jagadeeswari et al. [22] proposed an approach that virtual machines with similar oper-
ating systems of active domains in a node are recognized and organized into a homogenous

Electronics 2023, 12, 4205 5 of 30

batch, with memory deduplication performed inside that batch, to improve the memory
pages sharing efficiency.

Du et al. [23] proposed ESD, an ECC-assisted and Selective Deduplication for en-
crypted NVMM by exploiting both the device characteristics (ECC mechanism) and the
workload characteristics (content locality). First, ESD utilizes the ECC information asso-
ciated with each cache line evicted from the Last-Level Cache (LLC) as the fingerprint
to identify data similarity and avoids the costly hash calculating overhead on the non-
duplicate cache lines. Second, ESD leverages selective deduplication to exploit the content
locality within cache lines by only storing the fingerprints with high reference counts in
the memory cache to reduce the memory space overhead and avoid fingerprints NVMM
lookup operations.

2.3. Communication Distance Problem

On the other hand, the studies on reducing communication distance and latency
between UDs and VMs mainly focus on designing VM integration strategies.

Sun et al. [24] use cloudlets, software-defined networking, and cellular network in-
frastructure to bring computing resources to network edge. To minimize the average
response time of mobile UDs unloading their workloads to cloudlets, a latency-aware
workload offloading strategy is proposed, which assigns the workload of UDs’ applications
to appropriate cloudlets.

Genez et al. [25] propose PL-Edge, a latency-aware VM integration solution for mobile
edge computing, which dynamically reallocates VMs and network policies in a joint manner
to minimize end-to-end latency between UDs and VMs.

Liu et al. [26] study the placement and migration of VMs in mobile edge computing
environments and propose a mobile-aware dynamic services placement strategy, which
reduces the number of VM migrations by filtering out invalid migration and reduces the
overall latency perceived by users.

Sun et al. [27] propose a green cloudlet network architecture, where all cloudlets are
powered with green energy and grid energy. To minimize network energy consumption
while meeting the low latency requirements between UDs and VMs, VMs are migrated to
cloudlets with more green energy generation and less energy demand.

Sun et al. [8] propose the latency-aware VM replica placement algorithm, which places
multiple replicas of each VM’s virtual disk in appropriate cloudlets so that when a UD
roams away from its VM, the VM can quickly switch to a cloudlet with a shorter communi-
cation distance to that UD, avoiding an increase in communication latency between the two.
Meanwhile, considering the capacity of each cloudlet, the latency-aware VM switching
algorithm is proposed to migrate UDs’ VMs to appropriate cloudlets in each time slot to
minimize average communication latency.

2.4. Comparison with Related Works

The above articles propose methods from two perspectives to improve memory shar-
ing between VMs or reduce communication latency and distance between UDs and VMs.
However, no article considers solving these two important problems at the same time.
Compared to the development of memory sharing systems or virtual machine scheduling
strategies, this article focuses more on the research of abstract theoretical problems. To
our best knowledge, this is the first article to consider simultaneously minimizing average
communication distance between UDs and VMs and maximizing memory sharing between
VMs when instantiating VMs.

We use Table 1 to present the differences between this article and related works
more clearly.

Electronics 2023, 12, 4205 6 of 30

Table 1. Comparison with related works.

Article Publication
Time

Network
Environment Objectives

Whether to
Propose a

System

Experimental
Scenario

Whether
User-Dedicated

VMs are
Considered

Dataset

Memory Resource
Management in

VMware ESX Server
[11]

2002 General Server
Network

Maximize
hardware resource

reuse between
virtual machines

YES Multiple VMs on
a single server NO Real dataset

Memory Buddies:
Exploiting Page Sharing
for Smart Colocation in

Virtualized
Data Centers

[15]

2009 Data Center
Network

Maximize memory
sharing among

virtual machines
YES Multiple VMs on

multiple servers NO Real dataset

Hypervisor Support for
Efficient Memory

Deduplication
[12]

2011 General Server
Network

Minimize the
performance

impact of memory
deduplication on
running virtual

machines

YES Multiple VMs on
a single server NO Simulated

dataset

STYX: Exploiting
SmartNIC Capability to

Reduce Datacenter
Memory Tax [13]

2023 General Server
Network

Deploying memory
deduplication with

minimal
interference to

the running
applications.

YES Multiple VMs on
a single server NO Simulated

dataset

Memory Sharing for
Handling Memory

Overload on Physical
Machines in Cloud Data

Centers
[14]

2023
Cloud

Computing
Network

Minimize the
probability of

server memory
overload.

YES Multiple VMs on
multiple servers NO Simulated

dataset

Memory Deduplication
on ServerlessSystems

[21]
2021 Serverless

Network
Maximize memory

sharing NO Multiple VMs on
a single server NO Simulated

dataset

An Approximation
Algorithm for

Sharing-AwareVirtual
Machine Revenue

Maximization
[18]

2021
Cloud

Computing
Network

Maximize revenue
by deploying
sharing-aware

virtual machines

NO Multiple VMs on
multiple servers NO Real dataset

Homogeneous Batch
Memory Deduplication

Using Clustering of
Virtual Machines

[22]

2022
Cloud

Computing
Network

Maximize memory
sharing among

virtual machines of
the same user.

NO Multiple VMs on
a single server NO Simulated

dataset

Research on Global
BloomFilter-Based Data

Routing Strategy of
Deduplication inCloud

Environment
[16]

2023
Cloud

Computing
Network

Ensuring node load
balancing while

avoiding a
significant drop-in

memory
deduplication rate

NO Single VM on a
single server NO Simulated

dataset

ORC: Increasing Cloud
Memory Density via

Object Reuse with
Capabilities

[19]

2023
Cloud

Computing
Network

Maximize memory
sharing while

ensuring isolation
of tenants and their

workloads.

NO Multiple VMs on
a single server NO Real dataset

Optimization of Virtual
Machine

PerformanceUsing
Fuzzy Hashing and
Genetic-Algorithm-

basedMemory
Deduplication of

Static Pages
[20]

2023
Cloud

Computing
Network

Maximize memory
deduplication NO Multiple VMs on

a single server NO Simulated
dataset

Electronics 2023, 12, 4205 7 of 30

Table 1. Cont.

Article Publication
Time

Network
Environment Objectives

Whether to
Propose a

System

Experimental
Scenario

Whether
User-Dedicated

VMs are
Considered

Dataset

ESD: An ECC-assisted
and Selective

Deduplicationfor
Encrypted Non-Volatile

Main Memory
[23]

2023 General Server
Network

Maximize the
efficiency of memo-

rydeduplication
NO Multiple VMs on

a single server NO Simulated
dataset

Joint Optimization of
Memory Sharing and

Communication
Distance for Virtual

Machine Instantiation
in Cloudlet Networks

Cloudlet
Network

Maximize memory
sharing and

minimize
communication

distance

YES Multiple VMs on
multiple servers YES Real dataset

3. System Model and Problem Statement

We consider a wireless metropolitan area network consisting of multiple BSs located
at different positions. Therefore, the network can be represented using a fully undirected
connected graph G = (V, E), where V = {v1, v2, . . . , vn} is the set of BSs. The fiber optic
communication links between any two BS vi(vi ∈ V) and vj

(
vj ∈ V

)
constitute the set of

links, E =
{

e
(
vi, vj

)∣∣vi, vj ∈ V
}

. We use dij to represent distance between BSs vi and vj. If
there is a direct link between vi and vj, then dij equals the Euclidean distance between vi
and vj, which is the length of edge e

(
vi, vj

)
. Otherwise, dij represents the shortest multi-hop

cumulative distance from vi to vj. For BS vi, we assign w(vi) to represent the expected
number of user requests accessing the Internet through this BS. w(vi) can be calculated
based on historical UDs’ access data through this BS. The measurement of expected user
requests is not the focus of this paper, so we only consider w(vi) as a weight on vi.

Assuming Q, T, and O represent the sets of UDs, VMs, and cloudlets, respectively. For
each cloudlet o(o ∈ O), we assume that it contains three types of resources: memory, CPU,
and storage, and we use Cm

o , Cu
o , and Cs

o to represent the memory, CPU, and storage capacity
of o. In this paper, we assume that each cloudlet is deployed near a BS. The cloudlets in set
O are deployed near |O| BSs in set V. Therefore, we further assume that |O| � |V|. Each
cloudlet in set O can be connected to any BS through inter-BS links. We use lov to represent
the communication delay between BS v and cloudlet o. This value is proportional to dov ,
i.e., lov = 0.016dov + 22.3, and ref. [28] and lov can be measured and recorded using the
SDN controller [29,30].

For each UD q(q ∈ Q), we assume that a dedicated VM tq
(
tq ∈ T

)
is assigned to it,

which runs the same operating system as q, runs application components of q, and provides
dedicated services for q. Each VM will be allocated and instantiated in a cloudlet in O, so
|Q| VMs waiting to be instantiated constitute T, that is, |Q| = |T|. Each VM requires a
given number of three types of resources when instantiated, which are represented by rm

q ,
ru

q , and rs
q, respectively, for the memory resources, CPU resources, and storage resources

required for tq instantiation. Multiple VMs instantiated in the same cloudlet will share
memory resources, CPU resources, and storage resources of that cloudlet and are managed
by the hypervisor in that cloudlet. The hypervisor manages reclamation of memory pages
and converts memory pages between the cloudlet and VMs. Pan et al. [12] proposed to use
an external mechanism to coordinate works of hypervisors. We assume that an external
mechanism is used to assist the hypervisor running on each cloudlet to manage a unified
memory page library Π̃, which contains all the memory pages required when VMs are
instantiated. To identify memory pages in Π̃, we use πi to represent the i-th memory page
in Π̃. We assume that Π̃ contains Z pages, that is, Π̃ = ∪z

i=1
{

πi}, and let πi
q be the i-th

memory page required when tq is instantiated.
For the convenience of formulating the two objectives proposed in this paper, the

following decision variables are given: Let xqo be a binary variable used to represent
whether tq is instantiated on o. When xqo=1, it indicates that tq is instantiated on o, otherwise,

Electronics 2023, 12, 4205 8 of 30

xqo = 0. Let yqvo. be a binary variable used to represent whether the VM of q is instantiated
on o when q is in the coverage area of v. When yqvo = 1, it indicates that q is in the coverage
area of v, and the VM of q is instantiated on o. Otherwise, yqvo = 0.

In the following, we will introduce the model of memory sharing between VMs and
the model of average communication distance between VMs and UDs.

The notation used in the paper is presented in Table 2

3.1. Memory Sharing Model

To provide a more detailed explanation of memory page sharing between VMs, we
present an example. Suppose there are four VMs t1, t2, t3, and t4 that need to be instantiated
in two cloudlets o1 and o2. t5 has already been instantiated in o2, and its memory pages have
been hosted in the memory space of o2. We assume that t1, t2, t3, t4, and t5 have requested
a total of 32 different memory pages, which are represented by π1, π2, . . . , π32. Figure 2
shows the details of the memory pages required for the instantiation of t1, t2, t3, t4, and t5.
As shown in Figure 2, t1 requires a total of 11 memory pages (the shaded boxes in first
row correspond to the memory pages requested by t1). The thick vertical lines connecting
shaded boxes indicate the same pages between VMs. For example, page π12 is required for
the instantiation of t1, t2, t4, and t5, so the shaded boxes corresponding to π12 in t1, t2, t4,
and t5 are connected by a thick vertical line, indicating that t1, t2, t4, and t5 can share π12

when they are instantiated in the same cloudlet.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

𝒯𝑘
ℋ2

VM set that planned to be instantiated in 𝑜𝑘, aiming to minimize average

communication distance between VMs and UDs

𝒫(𝑇) Power set of 𝑇

𝐼 Subset of 𝒫(𝑇)

𝜎𝐼

The number of non-repeated pages shared among VMs in 𝐼, when |𝐼|=1, 𝜎𝐼

represents the number of memory pages corresponding to 𝑟𝑞
𝑚 of 𝑡𝑞 in 𝐼, i.e.,

𝜎𝑞 = 𝑟𝑞
𝑚/𝛹

𝑝𝑞𝑣 The probability of 𝑞 appearing in the coverage range of 𝑣

𝐼 Subset of 𝒫(𝑇)

ℱ Set of Pareto front solutions

𝑎𝑗𝑘
0 Shared potential of 𝑡𝑗 with all VMs in 𝑇

𝑎𝑗𝑘
𝑖

Same memory pages between 𝑡𝑗 and the instantiated VMs in 𝑜𝑘 in 𝑖-th itera-

tion

𝜂𝑖(𝑓𝑖
𝑘) Optimality of the 𝑘 −th solution on the 𝑖 −th objective

𝜂𝑘 Preference value of the 𝑘-th solution

𝑎𝑗𝑘
0 Shared potential of 𝑡𝑗 with all VMs in 𝑇

UP Ratio of the selected UDs to the total number of UDs

CP Ratio of the selected BSs to the total number of BSs

SP Weights of memory sharing among VMs

LP Weights of average communication distance between VMs and UDs

3.1. Memory Sharing Model

To provide a more detailed explanation of memory page sharing between VMs, we

present an example. Suppose there are four VMs 𝑡1, 𝑡2, 𝑡3, and 𝑡4 that need to be instan-

tiated in two cloudlets 𝑜1 and 𝑜2. 𝑡5 has already been instantiated in 𝑜2, and its memory

pages have been hosted in the memory space of 𝑜2. We assume that 𝑡1, 𝑡2, 𝑡3, 𝑡4, and 𝑡5

have requested a total of 32 different memory pages, which are represented by

𝜋1, 𝜋2, … , 𝜋32. Figure 2 shows the details of the memory pages required for the instantia-

tion of 𝑡1, 𝑡2, 𝑡3, 𝑡4, and 𝑡5. As shown in Figure 2, 𝑡1 requires a total of 11 memory pages

(the shaded boxes in first row correspond to the memory pages requested by 𝑡1). The thick

vertical lines connecting shaded boxes indicate the same pages between VMs. For exam-

ple, page 𝜋12 is required for the instantiation of 𝑡1, 𝑡2, 𝑡4, and 𝑡5, so the shaded boxes

corresponding to 𝜋12 in 𝑡1, 𝑡2, 𝑡4, and 𝑡5 are connected by a thick vertical line, indicating

that 𝑡1, 𝑡2, 𝑡4, and 𝑡5 can share 𝜋12 when they are instantiated in the same cloudlet.

Figure 2. Memory pages required for instantiating VMs. (The shaded boxes in each row correspond

to the memory pages requested by each VM. The thick vertical lines connecting shaded boxes indi-

cate the same pages between VMs.)

According to Figure 2, 𝑡5 has different numbers of identical memory pages with

𝑡1, 𝑡2, 𝑡3, and 𝑡4 . Therefore, in order to obtain a VM instantiation plan that maximizes

memory sharing among VMs, it is necessary to consider the impact of the number of iden-

tical memory pages between VMs on memory sharing when allocating and instantiating

Figure 2. Memory pages required for instantiating VMs. (The shaded boxes in each row correspond
to the memory pages requested by each VM. The thick vertical lines connecting shaded boxes indicate
the same pages between VMs.)

According to Figure 2, t5 has different numbers of identical memory pages with
t1, t2, t3, and t4. Therefore, in order to obtain a VM instantiation plan that maximizes
memory sharing among VMs, it is necessary to consider the impact of the number of iden-
tical memory pages between VMs on memory sharing when allocating and instantiating
t1, t2, t3, t4 in o1 and o2. To maximize memory sharing among VMs, we use an iterative
method to select one VM at a time from the VMs to be instantiated and determine which
cloudlet it will be instantiated in. To this end, we design a metric that considers memory
sharing between the selected VM and the VMs instantiated in each cloudlet, as well as the
proportion of resources occupied by this VM in a corresponding cloudlet. After determin-
ing the allocation position of a VM each time, we recalculate the metrics of remaining VMs
and adjust iteration order accordingly. The metric Zθ

jk of VM tj instantiated in the cloudlet
ok at the θ-th iteration is defined as follows:

Zθ
jk =

aθ
jk + aθ

jk√
rs

j
Cs

k
+

ru
j

Cu
k
+

rm
j −aθ

jk+1
Cm

k

(1)

Electronics 2023, 12, 4205 9 of 30

Table 2. Notation.

Expression Description

V Set of base stations

vi(vi ∈ V) Base station with index i

E Set of links

e
(
vi , vj

)
Link between vi(vi ∈ V) and vj

(
vj ∈ V

)
dij Link distance between vi and vj

d̃ij Euclidean distance between vi and vj

w(vi) Expected number of user requests accessing the Internet through vi

Q Set of UDs

T Set of VMs

O Set of cloudlets

Cm
o Memory capacity of cloudlet o

Cu
o CPU capacity of cloudlet o

Cs
o Storage capacity of cloudlet o

lov Communication delay between BS v and cloudlet o

tq
(
tq ∈ T

)
A dedicated VM for UD q(q ∈ Q)

rm
q Memory resources required for tq instantiation

ru
q CPU resources required for tq instantiation

rs
q Storage resources required for tq instantiation

Π̃ Unified memory page library

πi Memory page i

πi
q The i-th memory page required when tq is instantiated

xqo A binary variable used to represent whether tq is instantiated on o

yqvo
A binary variable used to represent whether the VM of q is instantiated on o when q is in the
coverage area of v

Zθ
jk The metric of VM tj instantiated in the cloudlet ok at the θ-th iteration

Ψ Size of a memory page that Ψ = 10MB

T H1
k VM set that planned to be instantiated in ok , aiming to maximize memory sharing among VMs

T H2
k

VM set that planned to be instantiated in ok , aiming to minimize average communication distance
between VMs and UDs

P(T) Power set of T

I Subset of P(T)

σI
The number of non− repeated pages shared among VMs in I, when |I|=
1, σI represents the number of memory pages corresponding to rm

q of tq in I, i.e., σq = rm
q /Ψ

pqv The probability of q appearing in the coverage range of v

I Subset of P(T)

F Set of Pareto front solutions

a0
jk Shared potential of tj with all VMs in T

ai
jk Same memory pages between tj and the instantiated VMs in ok in i-th iteration

ηi
(

f k
i

)
Optimality of the k-th solution on the i-th objective

ηk Preference value of the k-th solution

a0
jk Shared potential of tj with all VMs in T

UP Ratio of the selected UDs to the total number of UDs

CP Ratio of the selected BSs to the total number of BSs

SP Weights of memory sharing among VMs

LP Weights of average communication distance between VMs and UDs

We use Ψ to represent size of a memory page and assume that Ψ = 10MB. The aθ
jk

in (1) represents the product of Ψ and the number of the same memory pages between tj

and the VM set T H1
k that planned to be instantiated in ok in the θ iteration. If T H1

k is an
empty set, aθ

jk represents the memory sharing potential between tj and all the VMs to be

Electronics 2023, 12, 4205 10 of 30

instantiated in the θ iteration. aθ
jk is used to represent the minimum number of different

memory pages between tj and the VM set T H1
z (oz ∈ O/ok) instantiated in the cloudlets

other than ok in the θ iteration, multiplied by Ψ. After determining where a VM will be
instantiated in, the memory pages of this VM will be compared with the memory pages
hosted in the corresponding cloudlet’s memory space. The memory pages requested by
this VM but not yet hosted in the corresponding cloudlet will be added to this cloudlet’s
memory space. To maximize memory sharing between VMs, we calculate metric indicators
of t1, t2, t3, t4 with o1 and o2 in turn, and we select the VM and cloudlet with the maximum
metric indicator. In the first iteration, Z1

31 is greater than the other Z1
jk, so when θ = 1, t3

should be instantiated in o1. Then, we compare the memory pages of t3 with those hosted
in o1 and add different memory pages to o1’s memory space. Next, we add t3 to T H1

1 ,
update θ, and recalculate Zθ

jk for remaining VMs with corresponding cloudlets. Repeat
the above process until t1, t2, t3, and t4 are all allocated and instantiated in o1 and o2. At
this point, we can obtain the VM instantiation plan T H1

1 and T H1
2 and maximize memory

sharing between t1, t2, . . . , t5. Figure 3 shows a partial process diagram of VM allocation
and instantiation as well as the three types of resource capacity changes of o1 and o2.

In order to maximize memory sharing between VMs, we represent the objective
function f1 as the following:

f1 = max∑
o∈O

(∑
q∈Q

xqorm
q − (∑

I∈P(T)
(−1)(|I|+1)σI ∏

q∈I
xqo)Ψ) (2)

s.t. ∀q ∈ Q, ∑
o∈O

xqo = 1, (3)

∀o ∈ O, (∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ ≤ Cm
o , (4)

∀o ∈ O, ∑
q∈Q

ru
q xqo ≤ Cu

o , (5)

∀o ∈ O, ∑
q∈Q

rs
qxqo ≤ Cs

o, (6)

∀q ∈ Q ∀o ∈ O, xqo ∈ {0, 1}. (7)

P(T) represents power set of T, I represents a subset of P(T), and σI represents
the number of non-repeated pages shared among VMs in I.Taking t1, t2, . . . , t5 shown in
previous text as an example, suppose the set T̃ consisting of t1, t3, and t5 is to be instantiated
in the cloudlet o. We use P

(
T̃
)

to denote the power set of {t1, t3, t5} and I to denote the

element set of P
(

T̃
)

. For I = {t1, t3}, there are four pages π1, π6, π9, and π15 shared by
t1 and t3, so σI = 4 in this case. When |I| = 1, σI represents the number of memory pages
corresponding to rm

q of tq in I, i.e., σq = rm
q /Ψ. Equation (3) requires that each VM can only

be instantiated in a cloudlet.
By removing duplicate pages from all memory pages requested by t1, t3, and t5, we

can obtain the non-repeating set of memory pages, which is managed by Π̃ and shared by
VMs in T̃. When t1, t3, and t5 are instantiated in the same cloudlet o, 23 different memory
pages are required. Therefore, Π̃ needs to manage at least these 23 different memory pages,
and the memory capacity of o can accommodate these 23 memory pages so that t1, t3, and
t5 can be instantiated in o. In most cases, the set of VMs to be instantiated in each cloudlet
is a subset of all the VMs to be instantiated, selected based on the memory capacity of
that cloudlet. Therefore, (4) ensures that the sum of memory resource required by the
VMs instantiated in each cloudlet is less than the memory capacity of that cloudlet while
considering recycling memory through memory page sharing.

Electronics 2023, 12, 4205 11 of 30

Electronics 2023, 12, x FOR PEER REVIEW 10 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

𝑡1, 𝑡2, 𝑡3, 𝑡4 in 𝑜1 and 𝑜2. To maximize memory sharing among VMs, we use an iterative

method to select one VM at a time from the VMs to be instantiated and determine which

cloudlet it will be instantiated in. To this end, we design a metric that considers memory

sharing between the selected VM and the VMs instantiated in each cloudlet, as well as the

proportion of resources occupied by this VM in a corresponding cloudlet. After determin-

ing the allocation position of a VM each time, we recalculate the metrics of remaining VMs

and adjust iteration order accordingly. The metric 𝑍𝑗𝑘
𝜃 of VM 𝑡𝑗 instantiated in the cloud-

let 𝑜𝑘 at the 𝜃-th iteration is defined as follows:

𝑍𝑗𝑘
𝜃 =

𝑎𝑗𝑘
𝜃 + 𝑎̅𝑗𝑘

𝜃

√
𝑟𝑗

𝑠

𝐶𝑘
𝑠 +

𝑟𝑗
𝑢

𝐶𝑘
𝑢 +

𝑟𝑗
𝑚 − 𝑎𝑗𝑘

𝜃 + 1

𝐶𝑘
𝑚

(1)

We use 𝛹 to represent size of a memory page and assume that 𝛹 = 10MB. The 𝑎𝑗𝑘
𝜃

in (1) represents the product of 𝛹 and the number of the same memory pages between 𝑡𝑗

and the VM set 𝒯𝑘
ℋ1 that planned to be instantiated in 𝑜𝑘 in the 𝜃 iteration. If 𝒯𝑘

ℋ1 is an

empty set, 𝑎𝑗𝑘
𝜃 represents the memory sharing potential between 𝑡𝑗 and all the VMs to be

instantiated in the 𝜃 iteration. 𝑎̅𝑗𝑘
𝜃 is used to represent the minimum number of different

memory pages between 𝑡𝑗 and the VM set 𝒯𝑧
ℋ1(𝑜𝑧 ∈ 𝑂/𝑜𝑘) instantiated in the cloudlets

other than 𝑜𝑘 in the 𝜃 iteration, multiplied by 𝛹. After determining where a VM will be

instantiated in, the memory pages of this VM will be compared with the memory pages

hosted in the corresponding cloudlet’s memory space. The memory pages requested by

this VM but not yet hosted in the corresponding cloudlet will be added to this cloudlet’s

memory space. To maximize memory sharing between VMs, we calculate metric indica-

tors of 𝑡1, 𝑡2, 𝑡3, 𝑡4 with 𝑜1 and 𝑜2 in turn, and we select the VM and cloudlet with the

maximum metric indicator. In the first iteration, 𝑍31
1 is greater than the other 𝑍𝑗𝑘

1 , so when

𝜃 = 1, 𝑡3 should be instantiated in 𝑜1. Then, we compare the memory pages of 𝑡3 with

those hosted in 𝑜1 and add different memory pages to 𝑜1’s memory space. Next, we add

𝑡3 to 𝒯1
ℋ1, update 𝜃, and recalculate 𝑍𝑗𝑘

𝜃 for remaining VMs with corresponding cloud-

lets. Repeat the above process until 𝑡1, 𝑡2, 𝑡3, and 𝑡4 are all allocated and instantiated in

𝑜1 and 𝑜2 . At this point, we can obtain the VM instantiation plan 𝒯1
ℋ1 and 𝒯2

ℋ1 and

maximize memory sharing between 𝑡1, 𝑡2, … , 𝑡5. Figure 3 shows a partial process diagram

of VM allocation and instantiation as well as the three types of resource capacity changes

of 𝑜1 and 𝑜2.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

Figure 3. Diagram of VM instantiation process. (When 𝜃 = 0, four VMs, 𝑡1, 𝑡2, 𝑡3, and 𝑡4, need to

be instantiated in two cloudlets, 𝑜1 and 𝑜2; 𝑡5 has already been instantiated in 𝑜2, and its memory

pages have been hosted in the memory space of 𝑜2. In the first iteration, 𝑍31
1 is greater than the

other 𝑍𝑗𝑘
1 , so when 𝜃 = 1, 𝑡3 should be instantiated in 𝑜1.Then, we compare the memory pages of

𝑡3 with those hosted in 𝑜1 and add different memory pages to 𝑜1’s memory space. Next, we add

𝑡3 to 𝒯1
ℋ1, update 𝜃, and recalculate 𝑍𝑗𝑘

𝜃 for remaining VMs with corresponding cloudlets. Repeat

the above process until 𝑡1, 𝑡2, 𝑡3, and 𝑡4 are all allocated and instantiated in 𝑜1 and 𝑜2.)

In order to maximize memory sharing between VMs, we represent the objective func-

tion 𝑓1 as the following:

𝑓1 = max ∑(∑ 𝑥𝑞𝑜𝑟𝑞
𝑚

𝑞∈𝑄𝑜∈𝑂

− (∑ (−1)(|𝐼|+1)𝜎𝐼

𝐼∈𝒫(𝑇)

∏ 𝑥𝑞𝑜)Ψ

𝑞∈𝐼

) (2)

s. t. ∀𝑞 ∈ 𝑄, ∑ 𝑥𝑞𝑜

𝑜∈𝑂

= 1, (3)

∀𝑜 ∈ 𝑂, (∑ (−1)(|𝐼|+1)𝜎𝐼

𝐼∈𝒫(𝑇)

∏ 𝑥𝑞𝑜

𝑞∈𝐼

)Ψ ≤ 𝐶𝑜
𝑚, (4)

∀𝑜 ∈ 𝑂, ∑ 𝑟𝑞
𝑢𝑥𝑞𝑜

𝑞∈𝑄

≤ 𝐶𝑜
𝑢, (5)

Figure 3. Diagram of VM instantiation process. (When θ = 0, four VMs, t1, t2, t3, and t4, need to be
instantiated in two cloudlets, o1 and o2; t5 has already been instantiated in o2, and its memory pages
have been hosted in the memory space of o2. In the first iteration, Z1

31 is greater than the other Z1
jk, so

when θ = 1, t3 should be instantiated in o1. Then, we compare the memory pages of t3 with those
hosted in o1 and add different memory pages to o1’s memory space. Next, we add t3 to T H1

1 , update
θ, and recalculate Zθ

jk for remaining VMs with corresponding cloudlets. Repeat the above process
until t1, t2, t3, and t4 are all allocated and instantiated in o1 and o2.)

Equations (5) and (6), respectively, require that the sum of CPU and storage resources
required by the VMs instantiated in each cloudlet is less than the CPU and storage capacity
of that cloudlet. Equation (7) means that xqo(q ∈ Q, o ∈ O) is a binary variable.

Electronics 2023, 12, 4205 12 of 30

3.2. Communication Distance Model

Due to the frequent roaming of UDs, the duration of UDs accessing the Internet
through different BSs is different, so the frequency of UDs appearing in the coverage
area of each BS is different. If a UD’s VM is instantiated in a cloudlet near the BS, which
this UD has never accessed, it is not beneficial for communication between this UD and
its VM. The communication latency between a UD and its VM mainly depends on the
communication distance between the two [28]. Minimizing the average communication
distance between VMs and UDs can ensure that VMs and UDs that frequently appear in
different BSs’ coverage areas can always communicate with low latency. Therefore, each
VM should be instantiated in the cloudlet with the minimum average communication
distance to BSs where its UD frequently accesses.

For example, let us assume a cloudlet network topology as shown in Figure 4. There
are eight randomly distributed BSs in the area, with cloudlets located near four of them. In
order to demonstrate the impact of the average communication distance on the instantiation
of VMs, we randomly generate links between any two BSs instead of using the SDN-based
cellular core network, and the numbers on the links represent the relative length of the links.
We assume a UD q’s VM tq needs to be instantiated in a cloudlet and assume the probability
of q appearing in the coverage range of BS v is pqv, where v = 1, 2, . . . , 8. As shown in
Figure 4, generally, tq should be instantiated in the cloudlet B because pq3 is greater than
pq1, pq5, and pq6. This means q often accesses the Internet through BS-3. However, instanti-
ating tq in the cloudlet B does not minimize the average communication distance between
q and tq. On the contrary, instantiating tq in the cloudlet D can achieve this. This is because
the average communication distance between cloudlet B and other BSs is relatively large.
If tq is instantiated in cloudlet B, when q appears in the coverage range of other BSs, the
communication distance between q and tq is large, which will cause a large communication
delay between them. On the other hand, the average communication distance between
cloudlet D and other BSs is relatively small. When q appears in the coverage range of other
BSs, the communication distance between q and tq is small. Therefore, we conclude that
the value of pqv is not the only determining factor affecting the instantiation of VMs, and
the average communication distance will also affect the instantiation of VMs.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

the average communication distance between cloudlet D and other BSs is relatively small.

When 𝑞 appears in the coverage range of other BSs, the communication distance between

𝑞 and 𝑡𝑞 is small. Therefore, we conclude that the value of 𝑝𝑞𝑣 is not the only determin-

ing factor affecting the instantiation of VMs, and the average communication distance will

also affect the instantiation of VMs.

Figure 4. Diagram of VM instantiation location. (Value of 𝑝𝑞𝑣 is not the only determining factor

affecting instantiation of VMs, and average communication distance will also affect instantiation of

VMs.)

In order to minimize average communication distance between UDs and VMs, we

represent the objective function 𝑓2 as the following:

𝑓2 = min ∑ ∑ ∑ 𝑝𝑞𝑣𝑑𝑜𝑣𝑦𝑞𝑣𝑜

𝑜∈𝑂𝑣∈𝑉𝑞∈𝑄

 (8)

s. t. ∀𝑞 ∈ 𝑄, ∑ 𝑥𝑞𝑜

𝑜∈𝑂

= 1, (9)

∀𝑜 ∈ 𝑂, (∑ (−1)(|𝐼|+1)𝜎𝐼

𝐼∈𝒫(𝑇)

∏ 𝑥𝑞𝑜

𝑞∈𝐼

)Ψ ≤ 𝐶𝑜
𝑚, (10)

∀𝑜 ∈ 𝑂, ∑ 𝑟𝑞
𝑢𝑥𝑞𝑜

𝑞∈𝑄

≤ 𝐶𝑜
𝑢, (11)

∀𝑜 ∈ 𝑂, ∑ 𝑟𝑞
𝑠𝑥𝑞𝑜

𝑞∈𝑄

≤ 𝐶𝑜
𝑠, (12)

∀𝑞 ∈ 𝑄 ∀𝑜 ∈ 𝑂, 𝑥𝑞𝑜 ∈ {0,1}, (13)

∀𝑞 ∈ 𝑄∀𝑣 ∈ 𝑉, ∑ 𝑦𝑞𝑣𝑜

𝑜∈𝑂

= 1, (14)

∀𝑞 ∈ 𝑄∀𝑣 ∈ 𝑉∀𝑜 ∈ 𝑂, 𝑦𝑞𝑣𝑜 ≤ 𝑥𝑞𝑜 , (15)

∀𝑞 ∈ 𝑄∀𝑣 ∈ 𝑉∀𝑜 ∈ 𝑂, 𝑦𝑞𝑣𝑜 ∈ {0,1}. (16)

𝑝𝑞𝑣 is the probability that 𝑞 appears in the coverage area of 𝑣 during the period Δ,

and 𝑑𝑜𝑣 is the communication distance between 𝑜 and 𝑣 . The objective function 𝑓2

Figure 4. Diagram of VM instantiation location. (Value of pqv is not the only determining factor affecting
instantiation of VMs, and average communication distance will also affect instantiation of VMs.)

In order to minimize average communication distance between UDs and VMs, we
represent the objective function f2 as the following:

f2 = min∑
q∈Q

∑
v∈V

∑
o∈O

pqvdovyqvo (8)

s.t.∀q ∈ Q, ∑
o∈O

xqo = 1, (9)

Electronics 2023, 12, 4205 13 of 30

∀o ∈ O, (∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ ≤ Cm
o , (10)

∀o ∈ O, ∑
q∈Q

ru
q xqo ≤ Cu

o , (11)

∀o ∈ O, ∑
q∈Q

rs
qxqo ≤ Cs

o, (12)

∀q ∈ Q ∀o ∈ O, xqo ∈ {0, 1}, (13)

∀q ∈ Q∀v ∈ V, ∑
o∈O

yqvo = 1, (14)

∀q ∈ Q∀v ∈ V∀o ∈ O, yqvo ≤ xqo, (15)

∀q ∈ Q∀v ∈ V∀o ∈ O, yqvo ∈ {0, 1}. (16)

pqv is the probability that q appears in the coverage area of v during the period ∆, and
dov is the communication distance between o and v. The objective function f2 must satisfy
partial constraints together with the objective function f1, that is, (9)–(13). Equation (14)
requires that when a UD appears in any BS’s coverage range, this UD’s VM should be
instantiated on a cloudlet. Equation (15) requires that yqvo can only be set to 1 when the
q’s VM is instantiated in cloudlet o, i.e., xqo = 1; otherwise, yqvo can only be set to 0 when
xqo = 0. Equation (16) indicates that yqvo(q ∈ Q, o ∈ O, v ∈ V) is a binary variable.

4. Proposed Solution

This section introduces the algorithm proposed in this paper. First, we introduce the
traditional ε-constraint method, then we provide a detailed introduction to the iterative
heuristic algorithm.

4.1. Traditional ε-Constraint Method

We will now introduce multi-objective optimization problems and the traditional
ε-constraint method. Taking the minimization problem as an example, a multi-objective
optimization problem can be represented as the following:

min f (x) = min(f1(x), f2(x), . . . , fz(x)) (17)

x(x ∈ X) is decision variable, and X is solution space. f1(x), f2(x), . . . , fz(x) are the z
objective functions, and F = { f (x) | x ∈ X} refers to objective function vector space.

So far, several methods have been developed to deal with the multi-objective optimiza-
tion problems, among which the weighted sum method and the ε-constraint method are
two commonly used methods for solving multi-objective optimization problems. The for-
mer combines all objective functions using a weighted sum formula, thereby transforming
the multi-objective optimization problem into a single-objective optimization problem. The
quality of solutions obtained by this method largely depends on the weights of each objec-
tive. The latter method selects one of the objectives as a preferred optimization target and
transforms the other objectives into additional constraints, and by means of this transforma-
tion, the multi-objective optimization problem is converted into multiple single-objective
optimization problems. Then, by iteratively solving a series of single-objective optimization
problems, the Pareto front can be derived. This method can overcome the disadvantages
of the weighted sum method due to unreasonable weight allocation [31]. The ε-constraint
method was first proposed by Haimes et al. [9] and has been greatly improved over the
years. Therefore, this paper designs an algorithm based on the ε-constraint method.

Electronics 2023, 12, 4205 14 of 30

We will now introduce the principle of the ε-constraint method for bi-objective op-
timization problems. Without loss of generality, we assume a bi-objective optimization
function as the following:

min f (x) = min(f1(x), f2(x)) (18)

We choose f2(x) as the main optimization objective and transform f1(x) into an
additional constraint. At this point, the bi-objective problem can be transformed into the
following single-objective optimization problem P′:

P′ : min f2(x) (19)

s.t. f1(x) ≤ ε, x ∈ X. (20)

f1(x) is limited by ε. In order to obtain an effective solution, it is necessary to se-
lect an appropriate range for ε. The interval of ε can be determined based on the ideal
point and the nadir point in objective function vector space, where

(
f I
1 , f I

2
)

represents the
ideal point,

(
f N
1 , f N

2
)

represents the nadir point, and values of f I
1 , f I

2 , f N
1 and f N

2 can be
obtained by solving the following four single-objective optimization problems, respectively:
f I
1 = min{ f1(x)|x ∈ X}, f I

2 = min{ f2(x)|x ∈ X}, f N
1 = min

{
f1(x)

∣∣ f2(x) = f I
2 , x ∈ X

}
,

f N
2 = min

{
f2(x)

∣∣ f1(x) = f I
1 , x ∈ X

}
, where range of ε is defined as

[
f I
1 , f N

1
]
. Figure 5

shows positions of the ideal point and the nadir point in objective function vector space.
The Pareto front is contained between the ideal point and the nadir point.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

𝑚𝑖𝑛{ 𝑓2 (𝑥)|𝑓1(𝑥) = 𝑓1
𝐼 , 𝑥 ∈ 𝑋}, where range of 𝜀 is defined as [𝑓1

𝐼 , 𝑓1
𝑁]. Figure 5 shows po-

sitions of the ideal point and the nadir point in objective function vector space. The Pareto

front is contained between the ideal point and the nadir point.

Figure 5. Illustration of ideal point, nadir point, and Pareto front.

In this method, the objective function vector of the first solution is set as (𝑓1
𝑁 , 𝑓2

𝐼) and

then let 𝜀 = 𝑓1
𝑁 − 𝛿, where 𝛿 is a sufficiently small positive number, and we set it to 1.

We then solve 𝑃′ and obtain the current optimal solution 𝑥∗, which is the second solution

in the Pareto front and corresponds to objective function vector (𝑓1(𝑥∗), 𝑓2(𝑥∗)). Next, let

𝜀 = 𝑓1(𝑥∗) − 𝛿 and repeat the above process until 𝜀 ≤ 𝑓1
𝐼. Finally, we remove dominated

solutions from a solution set and keep all non-dominated solutions to obtain the Pareto

front ℱ. Detailed steps of this method are shown in Algorithm 1.

Algorithm 1 ε-Constraint Method

1: Calculate 𝑓1
𝐼 , 𝑓2

𝐼 , 𝑓1
𝑁, and 𝑓2

𝑁 to obtain (𝑓1
𝐼 , 𝑓2

𝐼) and (𝑓1
𝑁 , 𝑓2

𝑁).

2: Set ℱ = {(𝑓1
𝑁 , 𝑓2

𝐼)}, 𝜀 = 𝑓1
𝑁 − 𝛿.

3: Solve 𝑃′ and obtain the optimal solution 𝑥∗. Incorporate the objective vector corre-

sponding to 𝑥∗, i.e., (𝑓1(𝑥∗), 𝑓2(𝑥∗)), into ℱ.

4: Set 𝜀 = 𝑓1(𝑥∗) − 𝛿.

5: If 𝜀 ≥ 𝑓1
𝐼 , turn to Step 3; otherwise, proceed to the next step.

6: Delete all dominated solutions in ℱ to obtain the Pareto front.

As each single-objective optimization problem is still NP-hard, and using ILP manner

cannot solve large-scale problems in a short time, we propose an iterative heuristic algo-

rithm based on the ε-constraint method to generate approximate Pareto front solutions

that can be obtained in a shorter computation time.

4.2. Iterative Heuristic Algorithm

We propose an iterative heuristic algorithm based on the ε-constraint method, which

applies the framework of the ε-constraint method to transform the bi-objective optimiza-

tion problem into a series of single-objective optimization problems. We adjust parame-

ters in 𝑓1 to convert it into a minimization objective function:

min ∑((∑ (−1)(|𝐼|+1)𝜎𝐼

𝐼∈𝒫(𝑇)

∏ 𝑥𝑞𝑜)Ψ

𝑞∈𝐼

− ∑ 𝑥𝑞𝑜𝑟𝑞
𝑚

𝑞∈𝑄𝑜∈𝑂

) (21)

Then we set (21) as main optimization goal, and we convert 𝑓2 into an additional

constraint. At this point, we can obtain the formula 𝑃(𝜀) as follows:

Figure 5. Illustration of ideal point, nadir point, and Pareto front.

In this method, the objective function vector of the first solution is set as
(

f N
1 , f I

2
)

and
then let ε = f N

1 − δ, where δ is a sufficiently small positive number, and we set it to 1. We
then solve P′ and obtain the current optimal solution x∗, which is the second solution in
the Pareto front and corresponds to objective function vector (f1(x∗), f2(x∗)). Next, let
ε = f1(x∗)− δ and repeat the above process until ε ≤ f I

1 . Finally, we remove dominated
solutions from a solution set and keep all non-dominated solutions to obtain the Pareto
front F . Detailed steps of this method are shown in Algorithm 1.

Algorithm 1 ε-Constraint Method

1: Calculate f I
1 , f I

2 , f N
1 , and f N

2 to obtain
(

f I
1 , f I

2

)
and

(
f N
1 , f N

2

)
.

2: Set F =
{(

f N
1 , f I

2

)}
, ε = f N

1 − δ.
3: Solve P′ and obtain the optimal solution x∗ . Incorporate the objective vector corresponding to x∗ , i.e., (f1(x∗), f2(x∗)),
into F .
4: Set ε = f1(x∗)− δ.
5: If ε ≥ f I

1 , turn to Step 3; otherwise, proceed to the next step.
6: Delete all dominated solutions in F to obtain the Pareto front.

As each single-objective optimization problem is still NP-hard, and using ILP manner
cannot solve large-scale problems in a short time, we propose an iterative heuristic algo-
rithm based on the ε-constraint method to generate approximate Pareto front solutions that
can be obtained in a shorter computation time.

Electronics 2023, 12, 4205 15 of 30

4.2. Iterative Heuristic Algorithm

We propose an iterative heuristic algorithm based on the ε-constraint method, which
applies the framework of the ε-constraint method to transform the bi-objective optimization
problem into a series of single-objective optimization problems. We adjust parameters in f1
to convert it into a minimization objective function:

min∑
o∈O

((∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ−∑
q∈Q

xqorm
q) (21)

Then we set (21) as main optimization goal, and we convert f2 into an additional
constraint. At this point, we can obtain the formula P(ε) as follows:

P(ε) : min∑
o∈O

((∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ−∑
q∈Q

xqorm
q) (22)

s.t. ∀q ∈ Q, ∑
o∈O

xqo = 1, (23)

∀o ∈ O, (∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ ≤ Cm
o , (24)

∀o ∈ O, ∑
q∈Q

ru
q xqo ≤ Cu

o , (25)

∀o ∈ O, ∑
q∈Q

rs
qxqo ≤ Cs

o, (26)

∀q ∈ Q ∀o ∈ O, xqo ∈ {0, 1}, (27)

∀q ∈ Q ∀v ∈ V, ∑
o∈O

yqvo = 1, (28)

∀q ∈ Q∀v ∈ V∀o ∈ O, yqvo ≤ xqo, (29)

∀q ∈ Q∀v ∈ V∀o ∈ O, yqvo ∈ {0, 1}, (30)

∑
q∈Q

∑
v∈V

∑
o∈O

pqvlovyqvo ≤ ε. (31)

To calculate the range of ε, we need to use the iterative heuristic algorithm to approxi-
mately solve P(f I

1) and P(f I
2) and obtain the approximate ideal point (f AI

1 , f AI
2), where f AI

1
and f AI

2 are optimal objective function values of P(f I
1) and P(f I

2), respectively. P(f I
1) and

P(f I
2) are shown as follows:

P (f I
1) : min∑

o∈O

((∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ−∑
q∈Q

xqorm
q) (32)

s.t. ∀q ∈ Q, ∑
o∈O

xqo = 1, (33)

∀o ∈ O, (∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ ≤ Cm
o , (34)

∀o ∈ O, ∑
q∈Q

ru
q xqo ≤ Cu

o , (35)

Electronics 2023, 12, 4205 16 of 30

∀o ∈ O, ∑
q∈Q

rs
qxqo ≤ Cs

o, (36)

∀q ∈ Q ∀o ∈ O, xqo ∈ {0, 1}. (37)

P (f I
2) : min∑

q∈Q
∑
v∈V

∑
o∈O

pqvlovyqvo (38)

s.t. ∀q ∈ Q, ∑
o∈O

xqo = 1, (39)

∀o ∈ O, (∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ ≤ Cm
o , (40)

∀o ∈ O, ∑
q∈Q

ru
q xqo ≤ Cu

o , (41)

∀o ∈ O, ∑
q∈Q

rs
qxqo ≤ Cs

o, (42)

∀q ∈ Q ∀o ∈ O, xqo ∈ {0, 1}, (43)

∀q ∈ Q ∀v ∈ V, ∑
o∈O

yqvo = 1, (44)

∀q ∈ Q ∀v ∈ V ∀o ∈ O, yqvo ≤ xqo, (45)

∀q ∈ Q ∀v ∈ V ∀o ∈ O, yqvo ∈ {0, 1}. (46)

Similarly, by using the iterative heuristic algorithm to approximately solve P
(

f N
1
)

and
P
(

f N
2
)
, we can obtain the approximate nadir point (f AN

1 , f AN
2), where f AN

1 and f AN
2 are

optimal objective function values of P
(

f N
1
)

and P
(

f N
2
)
, respectively. P

(
f N
1
)

and P
(

f N
2
)

are
shown as follows:

P (f N
1) : min∑

o∈O

((∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ−∑
q∈Q

xqorm
q) (47)

s.t. ∀q ∈ Q, ∑
o∈O

xqo = 1, (48)

∀o ∈ O, (∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ ≤ Cm
o , (49)

∀o ∈ O, ∑
q∈Q

ru
q xqo ≤ Cu

o , (50)

∀o ∈ O, ∑
q∈Q

rs
qxqo ≤ Cs

o, (51)

∀q ∈ Q ∀o ∈ O, xqo ∈ {0, 1}, (52)

∑
q∈Q

∑
v∈V

∑
o∈O

pqvlovyqvo = f AI
2 . (53)

Electronics 2023, 12, 4205 17 of 30

P (f N
2) : min∑

q∈Q
∑
v∈V

∑
o∈O

pqvlovyqvo (54)

s.t. ∀q ∈ Q, ∑
o∈O

xqo = 1, (55)

∀o ∈ O, (∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ ≤ Cm
o , (56)

∀o ∈ O, ∑
q∈Q

ru
q xqo ≤ Cu

o , (57)

∀o ∈ O, ∑
q∈Q

rs
qxqo ≤ Cs

o, (58)

∀q ∈ Q ∀o ∈ O, xqo ∈ {0, 1}, (59)

∀q ∈ Q ∀v ∈ V, ∑
o∈O

yqvo = 1, (60)

∀q ∈ Q ∀v ∈ V ∀o ∈ O, yqvo ≤ xqo, (61)

∀q ∈ Q ∀v ∈ V ∀o ∈ O, yqvo ∈ {0, 1}, (62)

∑
o∈O

((∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ−∑
q∈Q

xqorm
q) = f AI

1 . (63)

Next, we set δ to 1, and we can formulate the single-objective optimization problem
P(εi) corresponding to the i-th iteration as follows:

P(εi) : min∑
o∈O

((∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ−∑
q∈Q

xqorm
q) (64)

s.t. ∀q ∈ Q, ∑
o∈O

xqo = 1, (65)

∀o ∈ O, (∑
I∈P(T)

(−1)(|I|+1)σI ∏
q∈I

xqo)Ψ ≤ Cm
o , (66)

∀o ∈ O, ∑
q∈Q

ru
q xqo ≤ Cu

o , (67)

∀o ∈ O, ∑
q∈Q

rs
qxqo ≤ Cs

o, (68)

∀q ∈ Q ∀o ∈ O, xqo ∈ {0, 1}, (69)

∀q ∈ Q ∀v ∈ V, ∑
o∈O

yqvo = 1, (70)

∀q ∈ Q ∀v ∈ V ∀o ∈ O, yqvo ≤ xqo, (71)

∀q ∈ Q ∀v ∈ V ∀o ∈ O, yqvo ∈ {0, 1}, (72)

Electronics 2023, 12, 4205 18 of 30

∑
q∈Q

∑
v∈V

∑
o∈O

pqvlovyqvo ≤ εi. (73)

The value of εi is defined as f i−1
2 − δ, where f i−1

2 is the optimal value of f2 in the
previous iteration, and we set ε1 = f AN

2 − δ. Thus, the bi-objective optimization prob-
lem is transformed into a series of single-objective optimization subproblems. However,
since the transformed sub-problems are still NP-hard. Therefore, we use corresponding
heuristic algorithms in the main algorithm to approximately obtain effective solutions in a
short time and finally select the preferred solution based on the fuzzy-logic-based method.
Algorithm 2 outlines the iterative heuristic algorithm.

The iterative heuristic algorithm proposed in this article mainly consists of two stages.
In the first stage (lines 2–46), we use greedy heuristic algorithms to solve P

(
f I
1
)

and P
(

f I
2
)
,

respectively, and obtain approximate optimal solutions, with corresponding objective function
values denoted as f AI

1 and f AI
2 . Based on the approximate optimal solutions of P

(
f I
1
)

and
P
(

f I
2
)
, we respectively calculate P

(
f N
2
)

and P
(

f N
1
)

to obtain f AN
2 and f AN

1 .
Firstly, we initialize the Pareto front set F and define two sets, T H1

k (ok ∈ O) and
T H2

k (ok ∈ O), to represent VMs to be instantiated in each cloudlet. However, the former
aims to maximize memory sharing among VMs, while the latter aims to minimize average
communication distance between VMs and UDs. We determine the first VM to be instantiated
in each cloudlet by calculating Z0

jk for each VM and each cloudlet (lines 2–10), and we select

the VM with maximum Z0
jk as t j̃. Then, we remove t j̃ from T and put it into T H1

k , and we
subtract three types of resources required for t j̃’s instantiation from ok (lines 6–7). Finally,

we determine whether πb is requested by t j̃ through the activePage() function (lines 8–9).

If πb is requested, the return value of activePage() is 1, otherwise it is 0. For the memory
pages requested by t j̃ but not existing in ok, they are allocated to ok through the allocatePage()
function (line 10). The results obtained by the activePage() function is based on VM memory
fingerprint information determined in the preprocessing stage, which can be implemented
based on the memory fingerprint technology proposed by Wood et al. [15].

Next, we start by checking if there are enough resources available for VMs instantiation
in all cloudlets (line 12). When T is not yet empty and there are still VMs can be instantiated
in cloudlets, we determine which cloudlet where each VM is to be instantiated in one by
one. We define a local variable maxZ and use i to represent the iteration order instead of θ
in (1), and we set it to 1. Then, in each iteration, we repeatedly calculate Zi

jk for each pair
of VMs and cloudlets, and we determine the cloudlet ok̃ and the VM t j̃ with the maximum

Zi
jk (lines 14–19). When calculating the ratio of required resources for instantiating tj to the

remaining resources of ok in line 17, we consider the impact of ai
jk, as there are already VMs

instantiated in ok. Unlike a0
jk, which represents shared potential of tj with all VMs in T, ai

jk
represents same memory pages between tj and the instantiated VMs on ok in the i-th iteration.
If Cm

k is greater than the difference between rm
j and ai

jk, then tj can be instantiated in ok,
otherwise it cannot. In line 21, since there are several VMs that have already been instantiated
in ok̃, when t j̃ is instantiated in ok̃, Cm

k̃
will be reduced by the memory capacity occupied

by different memory pages between t j̃ and ok̃. When |T| > 0 and none of ok ∈ O, tj ∈ T

satisfies
[
Cm

k , Cu
k , Cs

k] ≥ [
(

rm
j − ai

jk

)
, ru

j , rs
j

]
, the VMs in T can only be instantiated in public

data centers. At this time, we can calculate f AI
1 and f AN

2 based on the T H1
k of each cloudlet.

Then, according to approximate process, we determine the T H2
k of each cloudlet and calculate

f AI
2 and f AN

1 (lines 30–45).

Electronics 2023, 12, 4205 19 of 30

Algorithm 2 Iterative Heuristic Method

Input: Parameters related to UDs, VMs, and cloudlets.
Output: The preferred solution in Pareto front.
1 : Initialization : i = 0, j = 0, k = 0, b = 0, j̃ = 0, k̃ = 0,F = ∅, T H1

k (ok ∈ O) = ∅, T H2
k (ok ∈ O) = ∅,δ = 1;

2 : for all k : ok ∈ O do
3 : if T H1

k = ∅ then
4 : for all j : tj ∈ T do

5 : Z0
jk =

a0
jk+a0

jk√√√√ rs
j

Cs
k
+

ru
j

Cu
k
+

rm
j

Cm
k

;

6 : j̃ = argmaxj

{
Z0

jk

}
; T H1

k =
{

t j̃

}
; T = T\

{
t j̃

}
;

7 :
[
Cm

k , Cu
k , Cs

k

]
=
[
Cm

k , Cu
k , Cs

k

]
−
[
rm

j̃
, ru

j̃
, rs

j̃

]
;

8 : for all b : πb ∈ Π̃ do
9 : if

(
activePage

(
πb

j̃

))
then

10 : allocatePage
(
πb
)

on ok ;
11 : i = 1;
12 : While

(
exist ok ∈ O, tj ∈ T satisfy

[
Cm

k , Cu
k , Cs

k

]
≥
[(

rm
j − ai

jk

)
, ru

j , rs
j

]
& |T| > 0) do

13 : maxZ = 0;
14 : for all k : ok ∈ O do
15 : for all j : tj ∈ T do

16 : if
(

Cm
k −

(
rm

j − ai
jk

)
> 0

)
&
(

Cu
k − ru

j > 0
)

&
(

Cs
k − rs

j > 0
)

then

17 : Zi
jk =

ai
jk+ai

jk√√√√ rs
j

Cs
k
+

ru
j

Cu
k
+

rm
j −ai

jk+1

Cm
k

;

18 : if
(

Zi
jk > maxZ

)
then

19 : maxZ = Zi
jk , j̃ = j, k̃ = k;

20 : T = T\
{

t j̃

}
; T H1

k̃
= T H1

k̃
∪
{

t j̃

}
;

21 :
[
Cm

k̃
, Cu

k̃
, Cs

k̃

]
=
[
Cm

k̃
, Cu

k̃
, Cs

k̃

]
−
[(

rm
j̃
− ai

j̃k̃

)
, ru

j̃
, rs

j̃

]
;

22 : for all b : πb ∈ Π̃ do
23 : if

(
activePage

(
πb

j̃

))
then

24 : allocatePage
(
πb
)

on ok̃ ;
25 : i = i + 1;
26 : if

(
any ok ∈ O, tj ∈ T does not satisfy

[
Cm

k , Cu
k , Cs

k

]
≥
[(

rm
j − ai

jk

)
, ru

j , rs
j]

& |T| > 0) then
27 : Instantiate all VMs to be instantiated in the public data center;
28 : Calculate f AI

1 and f AN
2 based on all T H1

k ;
29 : Reset T and

[
Cm

k , Cu
k , Cs

k

]
(ok ∈ O); reset i = 1;

30 : While
(
exist ok ∈ O, tj ∈ T satisfy

[
Cm

k , Cu
k , Cs

k

]
≥
[(

rm
j − ai

jk

)
, ru

j , rs
j

]
& |T| > 0) do

31 : minZ = MAX_VALUE;
32 : for all k : ok ∈ O do
33 : for all j : tj ∈ T do

34 : if
(

Cm
k −

(
rm

j − ai
jk

)
> 0

)
&
(

Cu
k − ru

j > 0
)

&
(

Cs
k − rs

j > 0
)

then

35 : Zi
jk =

∑v∈V pjvdkv√√√√ rs
j

Cs
k
+

ru
j

Cu
k
+

rm
j −ai

jk+1

Cm
k

;

36 : if
(

Zi
jk < minZ

)
then

37 : minZ = Zi
jk ; j̃ = j; k̃ = k;

38 : T = T\
{

t j̃

}
; T H2

k̃
= T H2

k̃
∪
{

t j̃

}
;

39 :
[
Cm

k̃
, Cu

k̃
, Cs

k̃

]
=
[
Cm

k̃
, Cu

k̃
, Cs

k̃

]
−
[(

rm
j̃
− ai

j̃k̃

)
, ru

j̃
, rs

j̃

]
;

40 : for all b : πb ∈ Π̃ do
41 : if

(
activePage

(
πb

j̃

))
then

42 : allocatePage
(
πb
)

on ok̃ ;
43 : i = i + 1;
44 : if

(
any ok ∈ O, tj ∈ T does not satisfy

[
Cm

k , Cu
k , Cs

k

]
≥ [(rm

j − ai
jk) , ru

j , rs
j]& |T| > 0) then

45 : Instantiate all VMs to be instantiated in the public data center;
46 : Calculate f AI

2 and f AN
1 based on all T H2

k ;
47 : Set F =

{(
f AI
1 , f AN

2

)
,
(

f AN
1 , f AI

2

)}
; i = 1; ε i = f AN

2 − δ;
48 : While

(
f AI
2 ≤ ε i

)
do

49 : Use backtracking method to solve P(ε i) and obtain feasible solutions, and label the corresponding objective
function values as f i

1 and f i
2;

50 : F = F ∪
(

f i
1, f i

2

)
; i = i + 1; ε i = f i−1

2 − δ;
51 : Delete all dominated solutions in F ; calculate the optimality of each solution on multiple objectives. For the k-

th solution, calculate η2
(

f k
2

)
and η1

(
f k
1

)
;

52 : Calculate the overall preference value of each solution in F based on the η2
(

f k
2

)
and η1

(
f k
1

)
. For the k-

th solution, preference value ηk =
∑n

i=1 ηi
(

f k
i

)
∑K+1

k=1 ∑n
i=1 ηi

(
f k
i

) ;

53: Select the solution with the maximum value of ηk from F as the preferred solution.

Electronics 2023, 12, 4205 20 of 30

In the second stage (lines 47–54), we first set F =
{(

f AI
1 , f AN

2
)
,
(

f AN
1 , f AI

2
)}

, and i = 1,
εi = f AN

2 − δ, and when f AI
2 ≤ εi, we use the backtracking method to iteratively solve

P(εi). At each iteration, we obtain a feasible solution that satisfies all constraints, and
we label its corresponding objective function value as

(
f i
1, f i

2
)
. Then we update F and let

i = i + 1. At this point, we update εi = f i−1
2 − δ based on the objective function values

of the solution obtained in the previous iteration, and we repeat the above process until
εi < f AI

2 . Later, we remove the dominated solutions in F .
Considering that the multi-objective optimization problems usually do not have a

solution that optimizes all objectives simultaneously, in this paper, we hope to select a
preferred solution from F based on the trade-off between different objectives and obtain
degree of optimality of this solution. According to the previous literature, various methods
have been used to select the preferred solution from Pareto front, such as the k-means
clustering method, the weighted sum method, and the fuzzy-logic-based method. However,
the k-means clustering method usually selects a group of solutions rather than a single
solution. When preferred objective weight vectors are provided, the weighted sum method
can select the preferred solution. But the weighted sum method cannot reflect the degree of
optimality of this solution. Finally, the fuzzy-logic-based method [32] can not only select
the preferred solution but also indicate the degree of optimality of the preferred solution.
Therefore, in this paper, we use the fuzzy-logic-based method to select the preferred
solution.

The fuzzy-logic-based method first calculates optimality of each solution on multiple
objectives in turn. For an n-objective optimization problem with K + 1 Pareto-optimal
solutions, we use the optimality function ηi

(
f k
i

)
to represent optimality of the k-th solution

on the i-th objective, which is defined as follows:
In the case of minimizing objective function,

ηi (f k
i) =


1, f k

i ≤ f I
i

f N
i − f k

i
f N
i − f I

i
, f I

i < f k
i < f N

i (1 ≤ i ≤ n, 1 ≤ k ≤ K + 1)

0, f k
i ≥ f N

i

(74)

In the case of maximizing objective function,

ηi (f k
i) =


1, f k

i ≤ f I
i

f k
i − f N

i
f I
i − f N

i
, f N

i < f k
i < f I

i (1 ≤ i ≤ n, 1 ≤ k ≤ K + 1)

0, f k
i ≥ f N

i

(75)

In the case of minimizing objective function, f I
i and f N

i represent the lower and upper
bounds of fi, respectively. In the case of maximizing objective function, f I

i and f N
i represent

the upper and lower bounds of fi, respectively. f k
i represents value of the i-th objective

function of the k-th Pareto-optimal solution.
Then we combine the optimality value of each solution on each objective to calcu-

late the overall preference value of this solution. For the k-th solution, we calculate the
preference value ηk as follows:

ηk =
∑n

i=1 ηi

(
f k
i

)
∑K+1

k=1 ∑n
i=1 ηi

(
f k
i
) (76)

Finally, we select the solution with the maximum value of ηk from F as the preferred
solution.

Electronics 2023, 12, 4205 21 of 30

5. Performance Evaluation

In this section, in order to demonstrate performance of the proposed algorithm, we
conducted a set of experiments on the publicly available Google cluster workload tracking
dataset and the Shanghai Telecom base station dataset. The performance of the proposed
algorithm is evaluated mainly on three aspects: (1) the shared memory resources between
VMs (GB), (2) the average communication distance between VMs and UDs (km), and (3)
the execution time of algorithms (s).

5.1. Experimental Data

This paper aims to combine the Google cluster workload tracking dataset with the
Shanghai Telecom base station dataset to obtain real VM data, BS information, and data
of UDs accessing the Internet through BSs. The Google cluster workload tracking dataset
is a collection of cluster usage trace data from workloads running on Google computing
units [33], where each computing unit is a set of machines within a single cluster managed
using a common cluster management system. We select ClusterData from the Google cluster
workload tracking dataset, which aggregates activity data from 12,000 machine units on
Google Cloud Storage [34]. Although the dataset is publicly available, the data have been
normalized to avoid exposing real information about users, servers, and other entities
corresponding to each machine unit. The data we use mainly come from the task_events
table in ClusterData. To filter out redundant and unusable data in the task_events table,
the following data filtering strategy is adopted in this paper:

• Eliminate traces where the value of “missinginfo” is 1 and obtain records without
missing data;

• Remove traces where the value of “eventtype” is not 1, i.e., remove traces that have
been evicted (eventtype = 2), failed (eventtype = 3), completed (eventtype = 4), termi-
nated (eventtype = 5), or lost (eventtype = 6), and remove traces with update events
(eventtype = 7,8);

• Since multiple VMs can only share memory pages when they are instantiated in the
same cloudlet at the same time, we eliminate traces where the value of “different-
machine-constraint” is 1.

In order to associate resource usage data of VMs in experiments with the real dataset,
we generate VMs’ resource usage data based on the normalized CPU, memory, and storage
resource data provided by the task_events table and correspond each VM with a trace
randomly. We recalculate the normalized CPU and memory request values of each trace
and match it with a Google Compute Engine VM Instance [35]. The characteristics of
the Google Compute Engine VM Instances are shown in Table 3. Since Google separates
storage services from Google Compute Engine [33], specific storage request values of VMs
are not provided in ClusterData, and the storage scheme and expansion options [36] used
by the Google Compute Engine VM Instance mainly depend on user demand. Therefore,
for each VM, we select a suitable storage resource request size from the storage resource
optional range [10, 65536] (GB), based on the normalized storage request values provided
by the task_events table.

As shown in Table 3, Google Compute Engine VM instances can be classified into
three categories: standard VM instances, high-memory VM instances, and high-CPU VM
instances. At the same level, high-memory VM instances require more memory resources
compared to standard VM instances, while high-CPU VM instances require more CPU
resources. Each type of VM instance has two models, n1 and n2. Compared to n1 VM
instances, n2 VM instances require more memory resources at the same level.

Due to data normalization, it is not possible to accurately identify server specifications.
Therefore, we refer to resource parameters of various servers in the SPECvirt_sc benchmark
test [37] to set cloudlets’ parameters. In order to facilitate management of sharing memory
pages between different VMs on the same cloudlet, we assume that each cloudlet only
contains one server, and this server’s resource parameters are randomly matched with
a server in the SPECvirt_sc benchmark test. Characteristics of several servers in the

Electronics 2023, 12, 4205 22 of 30

SPECvirt_sc benchmark test are shown in Table 4. Table 4 shows resource parameters of
four servers, which are HP ProLiant DL360 Gen9, H3C UIS R390, HP ProLiant DL560 Gen8,
and HP ProLiant DL380p Gen8. Three types of parameters are marked under each server
name, which are the available number of CPU, the amount of memory, and the maximum
supported storage disk size, respectively.

Table 3. Google Compute Engine VM Instance type.

Instance
Type-{size} CPU Memory Instance

Type-{size} CPU Memory Instance
Type-{size} CPU Memory

n1-standard-1 1 3.75 GB n1-highmem-2 2 13 GB n1-highcpu-2 2 1.80 GB

n1-standard-2 2 7.5 GB n1-highmem-4 4 26 GB n1-highcpu-4 4 3.60 GB

n1-standard-4 4 15 GB n1-highmem-8 8 52 GB n1-highcpu-8 8 7.20 GB

n1-standard-8 8 30 GB n1-highmem-16 16 104 GB n1-highcpu-16 16 14.40 GB

n1-standard-16 16 60 GB n1-highmem-32 32 208 GB n1-highcpu-32 32 28.80 GB

Instance
Type-{size} CPU Memory Instance

Type-{size} CPU Memory Instance
Type-{size} CPU Memory

n2-standard-2 2 8 GB n2-highmem-2 2 16 GB n2-highcpu-2 2 2 GB

n2-standard-4 4 16 GB n2-highmem-4 4 32 GB n2-highcpu-4 4 4 GB

n2-standard-8 8 32 GB n2-highmem-8 8 64 GB n2-highcpu-8 8 8 GB

n2-standard-16 16 64 GB n2-highmem-16 16 128 GB n2-highcpu-16 16 16 GB

n2-standard-32 32 128 GB n2-highmem-32 32 256 GB n2-highcpu-32 32 32 GB

Table 4. Server parameters in SPECvirt_sc benchmark test.

ProLiant DL360 Gen9 (Hewlett-Packard
Company, California, America)

UIS R390 (Hangzhou H3C Technologies Company,
Hangzhou, China)

Processor Cores 36 cores, 2 chips, 18
cores/chip, 2 threads/core Processor Cores 16 cores, 2 chips, 8

cores/chip, 2 threads/core

Memory
512 GB (16 × 32 GB, 4R ×
4 PC4-17000 DDR4 2133

MHz LRDIMM)
Memory 256 GB (16 × 16 GB

PC3L-12600R at 1600 MHz)

Disk Description
2 × 300 GB 15K SFF SAS

48 × 400 GB 12G SAS
MLC SEF Solid State Drive

Disk Description
8 × 300 GB 15K SFF SAS

37 × 240 GB 12G SAS MLC
SFF Solid State Drive

ProLiant DL560 Gen8 (Hewlett-Packard
Company, California, America)

ProLiant DL380p Gen8 (Hewlett-Packard Company,
California, America)

Processor Cores 32 cores, 4 chips, 8
cores/chip, 2 threads/core Processor Cores 16 cores, 2 chips, 8

cores/chip, 2 threads/core

Memory
512 GB (32 × 16 GB, Dual
Rank × 4 PC3-12800R ECC
DDR3 1600 MHz RDIMM)

Memory 256 GB (16 × 16 GB
PC3L-12600R at 1600 MHZ)

Disk Description
2 × 146 GB 15K SFF SAS

16 × 400 GB 6G SAS MLC
SFF Solid State Drive

Disk Description

2 × 300 GB 6 Gb SCSI
15KRPM

6 × 400 GB MLC SSD SCS
I8 × 400 GB MLC SSD SCSI

We used the Shanghai Telecom base station dataset [38] to obtain real BS information
and the data of UDs accessing the Internet through BSs. The Shanghai Telecom base station
dataset contains accurate location information of 3233 BSs and detailed information of
mobile UDs accessing the Internet through these BSs [39]. Specifically, the dataset includes
over 72 million traffic access records of 7481 UDs accessing the Internet through 3233
BSs. Each record contains start and end time when a mobile UD accesses the Internet
through a certain BS. We randomly selected a period and counted the duration of each
UD accessing the Internet through each BS in that period, as well as the total duration of

Electronics 2023, 12, 4205 23 of 30

each UD accessing the Internet through all BSs in that period. We analyzed each record
and extracted UD information (i.e., start and end time when the UD accessed the Internet
through a BS) and BS information (i.e., latitude and longitude of the BS). Figure 6 shows
the distribution of 3233 BSs in the Shanghai base station dataset. Each region in Figure 6 is
represented by a hexagon, and the number on each hexagon represents the number of BSs
in that region.

Electronics 2023, 12, x FOR PEER REVIEW 24 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

Table 4. Server parameters in SPECvirt_sc benchmark test.

ProLiant DL360 Gen9 (Hewlett-Packard Company,

California, America)

UIS R390 (Hangzhou H3C Technologies Company,

Hangzhou, China)

Processor Cores
36 cores, 2 chips, 18

cores/chip, 2 threads/core
Processor Cores

16 cores, 2 chips, 8

cores/chip, 2 threads/core

Memory

512 GB (16 × 32 GB, 4R × 4

PC4-17000 DDR4 2133

MHz LRDIMM)

Memory
256 GB (16 × 16 GB PC3L-

12600R at 1600 MHz)

Disk Description

2 × 300 GB 15K SFF SAS

48 × 400 GB 12G SAS MLC

SEF Solid State Drive

Disk Description

8 × 300 GB 15K SFF SAS

37 × 240 GB 12G SAS MLC

SFF Solid State Drive

ProLiant DL560 Gen8 (Hewlett-Packard Company,

California, America)

ProLiant DL380p Gen8 (Hewlett-Packard Company,

California, America)

Processor Cores
32 cores, 4 chips, 8

cores/chip, 2 threads/core
Processor Cores

16 cores, 2 chips, 8

cores/chip, 2 threads/core

Memory

512 GB (32 × 16 GB, Dual

Rank × 4 PC3-12800R ECC

DDR3 1600 MHz RDIMM)

Memory
256 GB (16 × 16 GB PC3L-

12600R at 1600 MHZ)

Disk Description

2 × 146 GB 15K SFF SAS

16 × 400 GB 6G SAS MLC

SFF Solid State Drive

Disk Description

2 × 300 GB 6 Gb SCSI

15KRPM

6 × 400 GB MLC SSD SCSI

8 × 400 GB MLC SSD SCSI

We used the Shanghai Telecom base station dataset [38] to obtain real BS information

and the data of UDs accessing the Internet through BSs. The Shanghai Telecom base sta-

tion dataset contains accurate location information of 3233 BSs and detailed information

of mobile UDs accessing the Internet through these BSs [39]. Specifically, the dataset in-

cludes over 72 million traffic access records of 7481 UDs accessing the Internet through

3233 BSs. Each record contains start and end time when a mobile UD accesses the Internet

through a certain BS. We randomly selected a period and counted the duration of each

UD accessing the Internet through each BS in that period, as well as the total duration of

each UD accessing the Internet through all BSs in that period. We analyzed each record

and extracted UD information (i.e., start and end time when the UD accessed the Internet

through a BS) and BS information (i.e., latitude and longitude of the BS). Figure 6 shows

the distribution of 3233 BSs in the Shanghai base station dataset. Each region in Figure 6

is represented by a hexagon, and the number on each hexagon represents the number of

BSs in that region.

Figure 6. Distribution of Shanghai Telecom base stations. (The above figure mainly shows the dis-

tribution of streets and urban areas around Shanghai. The text in the figure indicates the urban area

5

21

4
14

14
16

23
14

9

26

17

20

14 67
75

42

21 47
26

29

51 37 77

43
110

367

641

292

30
55

22

88

204

45

2 69 118

57

56 184

Figure 6. Distribution of Shanghai Telecom base stations. (The above figure mainly shows the
distribution of streets and urban areas around Shanghai. The text in the figure indicates the urban
area of Shanghai and its surrounding towns. Each region is represented by a hexagon, and the
number on each hexagon represents the number of BSs in that region.)

By analyzing the association between each UD and each BS, we can calculate the
probability of each UD appearing within the coverage range of each BS during that period
(i.e., Φq =

{
pqv
∣∣v ∈ V

}
, where pqv is shown in (77)).

pqv =
Duration of UD q′s association with BS v during that period

Total duration of UD q′s association with all BSs in that period
(77)

We assume that each cloudlet is deployed adjacent to a BS, and the probability of generat-
ing a direct link between any pair of BSs follows an exponential model, i.e., the probability of
generating a direct link between any two BSs decreases exponentially with the increase in their
Euclidean distance, and the probability function is β (u, v) = a ∗ exp (−d̃ij/ (

√
2L− d̃ij)),

where L represents the maximum Euclidean distance between any two BSs in a network,
d̃ij represents the Euclidean distance between vi and vj that can be calculated based on the
geographical location (longitude and latitude) of BSs, and a is a positive decimal number
set to adjust the number of links between BSs (we set it as 0.006). The larger the value of a,
the greater the probability of generating direct links between any two base stations, and the
greater the number of links between base stations. The smaller the value of a, the smaller
the probability of generating direct links between any two base stations, and the smaller the
number of links between base stations.

5.2. Memory Page Simulation

When maximizing memory sharing between VMs, it is necessary to identify the
applications and operating systems running on the VMs to be instantiated, which cannot
be obtained from ClusterData. Although each task event operates in its own container [25],
we consider each task event as a VM instance running a different operating system. In our
experiments, we considered the percentage of page content similarity between different
operating systems reported by Bazarbayev et al. [40], as shown in Figure 7. We considered
a fixed memory-sharing percentage for any combination of two operating systems in

Electronics 2023, 12, 4205 24 of 30

experiments. Each entry in Figure 7 represents the percentage of memory sharing between
a pair of operating systems, which is defined as the proportion of memory used by the
operating system of an already instantiated VM that can be shared with the operating
system of a newly arrived VM.

Electronics 2023, 12, x FOR PEER REVIEW 25 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

of Shanghai and its surrounding towns. Each region is represented by a hexagon, and the number

on each hexagon represents the number of BSs in that region.)

By analyzing the association between each UD and each BS, we can calculate the

probability of each UD appearing within the coverage range of each BS during that period

(i.e., 𝛷𝑞 = { 𝑝𝑞𝑣 ∣∣ 𝑣 ∈ 𝑉 }, where 𝑝𝑞𝑣 is shown in (77)).

𝑝𝑞𝑣 =
Duration of UD 𝑞’s association with BS 𝑣 during that period

 Total duration of UD 𝑞’s association with all BSs in that period
 (77)

We assume that each cloudlet is deployed adjacent to a BS, and the probability of

generating a direct link between any pair of BSs follows an exponential model, i.e., the

probability of generating a direct link between any two BSs decreases exponentially with

the increase in their Euclidean distance, and the probability function is 𝛽(u, 𝑣) = 𝑎 ∗

𝑒𝑥𝑝(−𝑑̃𝑖𝑗/(√2𝐿 − 𝑑̃𝑖𝑗)), where 𝐿 represents the maximum Euclidean distance between

any two BSs in a network, 𝑑̃𝑖𝑗 represents the Euclidean distance between 𝑣𝑖 and 𝑣𝑗 that

can be calculated based on the geographical location (longitude and latitude) of BSs, and

𝑎 is a positive decimal number set to adjust the number of links between BSs (we set it as

0.006). The larger the value of a, the greater the probability of generating direct links be-

tween any two base stations, and the greater the number of links between base stations.

The smaller the value of a, the smaller the probability of generating direct links between

any two base stations, and the smaller the number of links between base stations.

5.2. Memory Page Simulation

When maximizing memory sharing between VMs, it is necessary to identify the ap-

plications and operating systems running on the VMs to be instantiated, which cannot be

obtained from ClusterData. Although each task event operates in its own container [25],

we consider each task event as a VM instance running a different operating system. In our

experiments, we considered the percentage of page content similarity between different

operating systems reported by Bazarbayev et al. [40], as shown in Figure 7. We considered

a fixed memory-sharing percentage for any combination of two operating systems in ex-

periments. Each entry in Figure 7 represents the percentage of memory sharing between

a pair of operating systems, which is defined as the proportion of memory used by the

operating system of an already instantiated VM that can be shared with the operating

system of a newly arrived VM.

Figure 7. Memory sharing between operating systems. (The percentage of memory sharing between
a pair of operating systems, which is defined as the proportion of memory used by the operating
system of an already instantiated VM that can be shared with the operating system of a newly
arrived VM.)

In our experiments, we assume that the operating system of each VM is randomly
selected from 14 versions of 5 types of operating systems, including CentOS Server x86_64
(C5.0, C5.5, C5.8), Fedora x86_64 (F16, F17), Red Hat Enterprise Linux x86_64 (R6.0, R6.1,
R6.2), Ubuntu Server i386 (U10, U11, U12), and Windows Server (W64b, WR2, WR2S). For
each version of operating system, we associate a binary array that specifies the required
memory pages, based on the memory-sharing ratio between different operating systems. If
a page is requested by an operating system, the corresponding entry for that page in the
binary array of that system is set to 1; otherwise, it is set to 0.

5.3. Experimental Method

All experiments were conducted on a PC (Windows 10) with the following specifica-
tions: AMD Ryzen 5 4600H with Radeon Graphics 3.00 GHz and 16.0 GB RAM.

We conducted experiments in three parts; in each part, we randomly selected a portion
of UDs from the Shanghai Telecom base station dataset to form the set of UDs used in
experiments and randomly selected a portion of BSs as the deployment location of cloudlets.
We use UP to represent the ratio of the selected UDs to the total number of UDs, and we
use CP to represent the ratio of the selected BSs to the total number of BSs; CP can also be
viewed as the ratio of the number of deployed cloudlets to the total number of BSs.

The first part uses the weighted sum method to verify that maximizing memory
sharing between VMs and minimizing average communication distance between VMs and
UDs cannot be achieved simultaneously in experimental scenarios with different CP and
UP, and the two objectives conflict with each other. In the second part, we designed three
experimental scenarios based on three different CPs to compare results of the iterative
heuristic algorithm and the weighted sum method. In each scenario, the links between
BSs are fixed, the parameters of cloudlets are also fixed, and we set up six different UPs
to determine the number of VMs. Meanwhile, we compared the computation time of the

Electronics 2023, 12, 4205 25 of 30

iterative heuristic algorithm and the weighted sum method. In the third part, we designed
three experimental scenarios based on three different CPs to compare results of the iterative
heuristic algorithm and other benchmark algorithms. In each scenario, the links between
BSs are fixed, the parameters of cloudlets are also fixed, and we set up five different UPs
for validation.

In order to facilitate the superiority of the iterative heuristic algorithm (ε-CBIHA),
we selected some benchmark VM instantiation methods for comparison: the first is the
memory sharing greedy heuristic algorithm (RSGA), which first sorts VMs into groups
based on their potential for sharing memory and then greedily instantiates VM groups in
cloudlets. The second is the average communication distance greedy heuristic algorithm
(ADGA), which first sorts VMs in ascending order based on the sum of communication
distances between each VM and all BSs and then determines the instantiation location for
each VM in turn. The third is a random allocation algorithm (Random), used to select a
random cloudlet to instantiate VMs. The fourth is the weighted sum method based on the
ILP method (IBWSA), which combines the two objective functions into a single-objective
function through weighted summation and solves it based on an ILP solver.

5.4. Experimental Results and Analysis

In the first part, we selected two pairs of UP and CP to construct two experimental
scenarios, namely CP = 0.0138, UP = 0.012, and CP = 0.0104, UP = 0.0135. We set up nine
sets of comparative experiments by changing the weights of two objectives. We use SP and
LP to represent the weights of memory sharing among VMs and average communication
distance between VMs and UDs, respectively. We initialize SP to 0.1 and increase it to 0.9 in
steps of 0.1, while initializing LP to 0.9 and decreasing it to 0.1 in steps of 0.1.

Figure 8a,b respectively show the experimental results obtained by adjusting SP and
LP in experimental scenarios with CP = 0.0138 and UP = 0.012 as well as CP = 0.0104 and UP
= 0.0135. We can see that the trends of these two goals are opposite. As the SP increases, the
value of memory sharing between VMs increases correspondingly, while the decrease in LP
leads to an increase in average communication distance between VMs and UDs. Therefore,
it is not possible to simultaneously achieve these two goals in experimental scenarios with
different CPs and UPs.

Electronics 2023, 12, x FOR PEER REVIEW 27 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

communication distance between VMs and UDs, respectively. We initialize SP to 0.1 and

increase it to 0.9 in steps of 0.1, while initializing LP to 0.9 and decreasing it to 0.1 in steps

of 0.1.

Figure 8a,b respectively show the experimental results obtained by adjusting SP and

LP in experimental scenarios with CP = 0.0138 and UP = 0.012 as well as CP = 0.0104 and

UP = 0.0135. We can see that the trends of these two goals are opposite. As the SP increases,

the value of memory sharing between VMs increases correspondingly, while the decrease

in LP leads to an increase in average communication distance between VMs and UDs.

Therefore, it is not possible to simultaneously achieve these two goals in experimental

scenarios with different CPs and UPs.

In the second part, we designed three experimental scenarios based on three different

CPs, i.e., CP = 0.0104, CP = 0.0138, and CP = 0.0172, and we set six different UPs to deter-

mine the number of VMs, i.e., UP = {0.0045, 0.006, 0.0075, 0.009, 0.0105, 0.012}, and then,

the mean and standard deviation of experimental results were calculated by selecting

VMs with different parameters for multiple experiments. Figure 9 shows the results of

IBWSA and ε-CBIHA for six different UPs in three experimental scenarios with CP =

0.0104, CP = 0.0138, and CP = 0.0172, respectively.

(a) (b)

Figure 8. (a) Results for IBWSA with different weights in CP = 0.0138 and UP = 0.012 scenario; (b)

results for IBWSA with different weights in CP = 0.0104 and UP = 0.0135 scenario. (As the SP in-

creases, the value of memory sharing between VMs increases correspondingly, while the decrease

in LP leads to an increase in average communication distance between VMs and UDs.)

(a) (b)

Figure 8. (a) Results for IBWSA with different weights in CP = 0.0138 and UP = 0.012 scenario;
(b) results for IBWSA with different weights in CP = 0.0104 and UP = 0.0135 scenario. (As the SP
increases, the value of memory sharing between VMs increases correspondingly, while the decrease
in LP leads to an increase in average communication distance between VMs and UDs.)

In the second part, we designed three experimental scenarios based on three different
CPs, i.e., CP = 0.0104, CP = 0.0138, and CP = 0.0172, and we set six different UPs to
determine the number of VMs, i.e., UP = {0.0045, 0.006, 0.0075, 0.009, 0.0105, 0.012}, and
then, the mean and standard deviation of experimental results were calculated by selecting
VMs with different parameters for multiple experiments. Figure 9 shows the results of

Electronics 2023, 12, 4205 26 of 30

IBWSA and ε-CBIHA for six different UPs in three experimental scenarios with CP = 0.0104,
CP = 0.0138, and CP = 0.0172, respectively.

Electronics 2023, 12, x FOR PEER REVIEW 27 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

communication distance between VMs and UDs, respectively. We initialize SP to 0.1 and

increase it to 0.9 in steps of 0.1, while initializing LP to 0.9 and decreasing it to 0.1 in steps

of 0.1.

Figure 8a,b respectively show the experimental results obtained by adjusting SP and

LP in experimental scenarios with CP = 0.0138 and UP = 0.012 as well as CP = 0.0104 and

UP = 0.0135. We can see that the trends of these two goals are opposite. As the SP increases,

the value of memory sharing between VMs increases correspondingly, while the decrease

in LP leads to an increase in average communication distance between VMs and UDs.

Therefore, it is not possible to simultaneously achieve these two goals in experimental

scenarios with different CPs and UPs.

In the second part, we designed three experimental scenarios based on three different

CPs, i.e., CP = 0.0104, CP = 0.0138, and CP = 0.0172, and we set six different UPs to deter-

mine the number of VMs, i.e., UP = {0.0045, 0.006, 0.0075, 0.009, 0.0105, 0.012}, and then,

the mean and standard deviation of experimental results were calculated by selecting

VMs with different parameters for multiple experiments. Figure 9 shows the results of

IBWSA and ε-CBIHA for six different UPs in three experimental scenarios with CP =

0.0104, CP = 0.0138, and CP = 0.0172, respectively.

(a) (b)

Figure 8. (a) Results for IBWSA with different weights in CP = 0.0138 and UP = 0.012 scenario; (b)

results for IBWSA with different weights in CP = 0.0104 and UP = 0.0135 scenario. (As the SP in-

creases, the value of memory sharing between VMs increases correspondingly, while the decrease

in LP leads to an increase in average communication distance between VMs and UDs.)

(a) (b)

Electronics 2023, 12, x FOR PEER REVIEW 28 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

(c)

Figure 9. (a) Results for IBWSA and ε-CBIHA with different UPs in CP = 0.0104 scenario; (b) results

for IBWSA and ε-CBIHA with different UPs in CP = 0.0138 scenario; and (c) results for IBWSA and

ε-CBIHA with different UPs in CP = 0.0172 scenario. (The results obtained with IBWSA and ε-

CBIHA are almost equal in terms of memory sharing, and the standard deviations of the results

obtained with both are also almost equal. In terms of average communication distance, the results

obtained with ε-CBIHA are slightly worse than results obtained with IBWSA.)

We can see that the results obtained with IBWSA and ε-CBIHA are almost equal in

terms of memory sharing, and the standard deviations of the results obtained with both

are also almost equal. In terms of average communication distance, the results obtained

with ε-CBIHA are slightly worse than results obtained with IBWSA, and we observe that

in the experimental scenario with CP = 0.0104, the standard deviation of results obtained

with IBWSA and ε-CBIHA when UP ≥ 0.0105 is larger than that obtained when UP <

0.0105. We speculate that when CP = 0.0104 and UP = 0.009, all VMs can be instantiated in

cloudlets, so the results obtained with IBWSA and ε-CBIHA are relatively stable. How-

ever, when CP = 0.0104 and UP = 0.0105, the number of VMs increases so that cloudlets

cannot host all the VMs, and some VMs can only be instantiated in public data centers,

resulting in large fluctuations in the standard deviation of the results obtained with IB-

WSA and ε-CBIHA.

We compare the computation time of IBWSA and ε-CBIHA in the following. We ran-

domly select nine different CP and UP pairs to form experimental scenarios and run IB-

WSA and ε-CBIHA 10 times in each scenario. We calculate the average computation time

of the two algorithms, as shown in Table 5. The results show that in all nine experimental

scenarios, the computation time of ε-CBIHA is smaller than that of IBWSA, and the dif-

ference between the two becomes larger as the size of the scenario increases. The average

computation time of ε-CBIHA is only 70.34% of that of IBWSA, and in the best, the com-

putation time of ε-CBIHA is 52.51% of that of IBWSA. Therefore, the iterative heuristic

algorithm proposed in this paper can indeed speed up the solution process.

Figure 9. (a) Results for IBWSA and ε-CBIHA with different UPs in CP = 0.0104 scenario; (b) results
for IBWSA and ε-CBIHA with different UPs in CP = 0.0138 scenario; and (c) results for IBWSA and
ε-CBIHA with different UPs in CP = 0.0172 scenario. (The results obtained with IBWSA and ε-CBIHA
are almost equal in terms of memory sharing, and the standard deviations of the results obtained
with both are also almost equal. In terms of average communication distance, the results obtained
with ε-CBIHA are slightly worse than results obtained with IBWSA.)

We can see that the results obtained with IBWSA and ε-CBIHA are almost equal in
terms of memory sharing, and the standard deviations of the results obtained with both are
also almost equal. In terms of average communication distance, the results obtained with
ε-CBIHA are slightly worse than results obtained with IBWSA, and we observe that in the
experimental scenario with CP = 0.0104, the standard deviation of results obtained with
IBWSA and ε-CBIHA when UP ≥ 0.0105 is larger than that obtained when UP < 0.0105. We
speculate that when CP = 0.0104 and UP = 0.009, all VMs can be instantiated in cloudlets,
so the results obtained with IBWSA and ε-CBIHA are relatively stable. However, when CP
= 0.0104 and UP = 0.0105, the number of VMs increases so that cloudlets cannot host all
the VMs, and some VMs can only be instantiated in public data centers, resulting in large
fluctuations in the standard deviation of the results obtained with IBWSA and ε-CBIHA.

We compare the computation time of IBWSA and ε-CBIHA in the following. We
randomly select nine different CP and UP pairs to form experimental scenarios and run
IBWSA and ε-CBIHA 10 times in each scenario. We calculate the average computation
time of the two algorithms, as shown in Table 5. The results show that in all nine exper-
imental scenarios, the computation time of ε-CBIHA is smaller than that of IBWSA, and
the difference between the two becomes larger as the size of the scenario increases. The
average computation time of ε-CBIHA is only 70.34% of that of IBWSA, and in the best, the
computation time of ε-CBIHA is 52.51% of that of IBWSA. Therefore, the iterative heuristic
algorithm proposed in this paper can indeed speed up the solution process.

Electronics 2023, 12, 4205 27 of 30

Table 5. Calculation time of IBWSA and ε-CBIHA.

Group Calculation Time of
ε-CBIHA

Calculation Time of
IBWSA

Ratio of Calculation
Time

1 282.2 287.6 98.12%

2 798.0 1115.4 71.54%

3 2820.5 5105.8 55.23%

4 1089.0 1098.7 99.11%

5 3548.6 5217.0 68.01%

6 10,333.2 17,632.7 58.60%

7 1485.7 2041.0 72.79%

8 3790.2 7216.6 52.51%

9 11,564.6 20,218.9 57.19%

In the third part, we compare the results obtained with ε-CBIHA with those obtained
using other baseline algorithms. Figure 10 shows the results of ε-CBIHA and three baseline
algorithms under different CPs and UPs. The values of CP are 0.0104, 0.0172, and 0.024,
while the values of UP are 0.006, 0.0075, 0.009, 0.0105, and 0.012. In these three figures, we
can observe that ε-CBIHA has better performance than other algorithms. In all cases, the
value of memory sharing among VMs obtained with ε-CBIHA is greater than those obtained
using other algorithms, and the value of average communication distance between VMs
and UDs obtained with ε-CBIHA is also smaller than those obtained using other algorithms.

Electronics 2023, 12, x FOR PEER REVIEW 30 of 32

Electronics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/electronics

(a) (b) (c)

Figure 10. (a) Results of ε-CBIHA and benchmark algorithms in CP=0.0104 scenario; (b) results of ε-

CBIHA and benchmark algorithms in CP = 0.0172 scenario; (c) results of ε-CBIHA and benchmark

algorithms in CP = 0.024 scenario. (In terms of memory sharing among VMs, the results obtained

with ε-CBIHA are the best, followed by RSGA and ADGA, and finally the Random. In terms of

average communication distance between VMs and UDs, the results obtained with ε-CBIHA are the

best, followed by ADGA and RSGA, and finally the Random method.)

6. Conclusions and Future Work

In this paper, we have addressed the problem of virtual machine instantiation with

the joint optimization of memory sharing and communication distance in cloudlet net-

works, which is a bi-objective optimization problem. The problem has been formulated as

VM memory sharing maximization and average communication distance minimization

problem to find the solution for virtual machine instantiation. Then, we designed an iter-

ative heuristic algorithm based on the ε-constraint method, which decomposes the bi-ob-

jective optimization problem into multiple single-objective optimization subproblems,

and iteratively obtains the subproblems’ optimal solutions. Finally, extensive experiments

have been conducted on actual datasets to validate the feasibility and effectiveness of our

algorithm.

Regarding the problem of virtual machine instantiation with the joint optimization

of memory sharing and communication distance in cloudlet networks, the algorithm pro-

posed in this article is only suitable for obtaining accurate solutions in small-scale cloudlet

networks. However, in large-scale cloudlet networks, the algorithm proposed in this pa-

per cannot obtain representative Pareto solutions within an acceptable time. When setting

up the experimental environment, we assume that each cloudlet has only one server with-

out considering the heterogeneity of cloudlets, which is different from real cloudlet net-

works. At the same time, when considering memory sharing between virtual machines,

we only consider the memory pages related to operating systems, without considering the

dynamic shareability of memory pages within virtual machines. In future work, we will

consider how to achieve more memory sharing between virtual machines with different

distributed locations based on application categories in heterogeneous cloudlet networks.

Figure 10. (a) Results of ε-CBIHA and benchmark algorithms in CP=0.0104 scenario; (b) results of
ε-CBIHA and benchmark algorithms in CP = 0.0172 scenario; (c) results of ε-CBIHA and benchmark
algorithms in CP = 0.024 scenario. (In terms of memory sharing among VMs, the results obtained
with ε-CBIHA are the best, followed by RSGA and ADGA, and finally the Random. In terms of
average communication distance between VMs and UDs, the results obtained with ε-CBIHA are the
best, followed by ADGA and RSGA, and finally the Random method.)

Electronics 2023, 12, 4205 28 of 30

In each figure, we can see that in terms of memory sharing among VMs, the results
obtained with ε-CBIHA are the best, followed by RSGA and ADGA, and finally the Random.
The results obtained with ε-CBIHA are about 3.6% higher than other baseline algorithms
overall. In terms of average communication distance between VMs and UDs, the results
obtained with ε-CBIHA are the best, followed by ADGA and RSGA, and finally the Random
method. The results obtained with ε-CBIHA are about 22.7% lower than other baseline
algorithms overall. ADGA is better than RSGA in minimizing average communication
distance between VMs and UDs, while RSGA is better than ADGA in maximizing memory
sharing among VMs. The Random may not be able to instantiate VMs with more identical
memory pages in the same cloudlet or instantiate VMs in cloudlets with a larger average
communication distance from their UDs, so the results obtained using this method are the
worst in both aspects.

Meanwhile, we observed that with the continuous increase in CP, the results obtained
with ε-CBIHA under the same UP showed an overall upward trend in memory sharing
among VMs and an overall downward trend in average communication distance between
VMs and UDs. We speculate that the continuous increase in CP leads to more optional
cloudlets available when instantiating VMs, which is conducive to further increasing the
probability of instantiating VMs in cloudlets with smaller average communication distances
to UDs or increasing the probability of aggregating VMs with more identical memory pages
in the same cloudlet.

6. Conclusions and Future Work

In this paper, we have addressed the problem of virtual machine instantiation with the
joint optimization of memory sharing and communication distance in cloudlet networks,
which is a bi-objective optimization problem. The problem has been formulated as VM
memory sharing maximization and average communication distance minimization prob-
lem to find the solution for virtual machine instantiation. Then, we designed an iterative
heuristic algorithm based on the ε-constraint method, which decomposes the bi-objective
optimization problem into multiple single-objective optimization subproblems, and itera-
tively obtains the subproblems’ optimal solutions. Finally, extensive experiments have been
conducted on actual datasets to validate the feasibility and effectiveness of our algorithm.

Regarding the problem of virtual machine instantiation with the joint optimization
of memory sharing and communication distance in cloudlet networks, the algorithm
proposed in this article is only suitable for obtaining accurate solutions in small-scale
cloudlet networks. However, in large-scale cloudlet networks, the algorithm proposed in
this paper cannot obtain representative Pareto solutions within an acceptable time. When
setting up the experimental environment, we assume that each cloudlet has only one server
without considering the heterogeneity of cloudlets, which is different from real cloudlet
networks. At the same time, when considering memory sharing between virtual machines,
we only consider the memory pages related to operating systems, without considering the
dynamic shareability of memory pages within virtual machines. In future work, we will
consider how to achieve more memory sharing between virtual machines with different
distributed locations based on application categories in heterogeneous cloudlet networks.

Author Contributions: Conceptualization, J.S. and J.L.; methodology, J.S.; software, J.S.; validation,
J.S.; formal analysis, J.S. and J.L.; investigation, J.S.; resources, J.S.; data curation, J.S.; writing—original
draft preparation, J.S.; writing—review and editing, J.S. and J.L.; visualization, J.S.; supervision, J.S.
and J.L.; project administration, J.S. and J.L.; funding acquisition, J.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 62362005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Electronics 2023, 12, 4205 29 of 30

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jararweh, Y.; Tawalbeh, L.; Ababneh, F.; Dosari, F. Resource Efficient Mobile Computing Using Cloudlet Infrastructure. In

Proceedings of the 2013 IEEE 9th International Conference on Mobile Ad-hoc and Sensor Networks, Dalian, China, 11–13
December 2013; pp. 373–377.

2. Uma, D.; Udhayakumar, S.; Tamilselvan, L.; Silviya, J. Client Aware Scalable Cloudlet to Augment Edge Computing with Mobile
Cloud Migration Service. Int. J. Interact. Mob. Technol. IJIM 2020, 14, 165. [CrossRef]

3. Vhora, F.; Gandhi, J. A Comprehensive Survey on Mobile Edge Computing: Challenges, Tools, Applications. In Proceedings
of the 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13
March 2020; pp. 49–55.

4. Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive
Comput. 2009, 8, 14–23. [CrossRef]

5. Borcea, C.; Ding, X.; Gehani, N.; Curtmola, R.; Khan, M.A.; Debnath, H. Avatar: Mobile Distributed Computing in the Cloud.
In Proceedings of the 2015 3rd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, San
Francisco, CA, USA, 30 March–3 April 2015; pp. 151–156.

6. Shaukat, U.; Ahmed, E.; Anwar, Z.; Xia, F. Cloudlet Deployment in Local Wireless Networks: Motivation, Architectures,
Applications, and Open Challenges. J. Netw. Comput. Appl. 2016, 62, 18–40. [CrossRef]

7. Jin, X.; Li, L.E.; Vanbever, L.; Rexford, J. SoftCell: Scalable and Flexible Cellular Core Network Architecture. In Proceedings of the
Ninth ACM Conference on Emerging Networking Experiments and Technologies, Santa Barbara, CA, USA, 9–13 December 2013;
Association for Computing Machinery: New York, NY, USA, 2013; pp. 163–174.

8. Sun, X.; Ansari, N. Adaptive Avatar Handoff in the Cloudlet Network. IEEE Trans. Cloud Comput. 2019, 7, 664–676. [CrossRef]
9. Haimes, Y. On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization. IEEE

Trans. Syst. Man Cybern. 1971, SMC-1, 296–297. [CrossRef]
10. Bugnion, E.; Devine, S.; Govil, K.; Rosenblum, M. Disco: Running Commodity Operating Systems on Scalable Multiprocessors.

ACM Trans. Comput. Syst. 1997, 15, 412–447. [CrossRef]
11. Waldspurger, C.A. Memory Resource Management in VMware ESX Server. ACM SIGOPS Oper. Syst. Rev. 2003, 36, 181–194.

[CrossRef]
12. Pan, Y.-S.; Chiang, J.-H.; Li, H.-L.; Tsao, P.-J.; Lin, M.-F.; Chiueh, T. Hypervisor Support for Efficient Memory De-Duplication. In

Proceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed Systems, Tainan, Taiwan, 7–9 December
2011; pp. 33–39.

13. Ji, H.; Mansi, M.; Sun, Y.; Yuan, Y.; Huang, J.; Kuper, R.; Swift, M.M.; Kim, N.S. STYX: Exploiting SmartNIC Capability to Reduce
Datacenter Memory Tax. In Proceedings of the 2023 USENIX Annual Technical Conference, Boston, MA, USA, 10–12 July 2023;
pp. 619–633.

14. Ge, Y.; Tian, Y.-C.; Yu, Z.-G.; Zhang, W. Memory Sharing for Handling Memory Overload on Physical Machines in Cloud Data
Centers. J. Cloud Comput. 2023, 12, 27. [CrossRef]

15. Wood, T.; Tarasuk-Levin, G.; Shenoy, P.; Desnoyers, P.; Cecchet, E.; Corner, M.D. Memory Buddies: Exploiting Page Sharing for
Smart Colocation in Virtualized Data Centers. ACM SIGOPS Oper. Syst. Rev. 2009, 43, 27–36. [CrossRef]

16. He, Q.; Li, Z.; Chen, C.; Feng, H. Research on Global BloomFilter-Based Data Routing Strategy of Deduplication in Cloud
Environment. IETE J. Res. 2023, 1–11. [CrossRef]

17. Rampersaud, S.; Grosu, D. A Sharing-Aware Greedy Algorithm for Virtual Machine Maximization. In Proceedings of the 2014
IEEE 13th International Symposium on Network Computing and Applications, Cambridge, MA, USA, 21–23 August 2014;
pp. 113–120.

18. Rampersaud, S.; Grosu, D. An Approximation Algorithm for Sharing-Aware Virtual Machine Revenue Maximization. IEEE Trans.
Serv. Comput. 2021, 14, 1–15. [CrossRef]

19. Sartakov, V.A.; Vilanova, L.; Geden, M.; Eyers, D.; Shinagawa, T.; Pietzuch, P. ORC: Increasing Cloud Memory Density via Object
Reuse with Capabilities. In Proceedings of the 17th USENIX Symposium on Operating Systems Design and Implementation,
Boston, MA, USA, 10–12 July 2023; pp. 573–587.

20. Jagadeeswari, N.; Mohanraj, V.; Suresh, Y.; Senthilkumar, J. Optimization of Virtual Machines Performance Using Fuzzy Hashing
and Genetic Algorithm-Based Memory Deduplication of Static Pages. Automatika 2023, 64, 868–877. [CrossRef]

21. Qiu, W. Memory Deduplication on Serverless Systems. Master’s Thesis, ETH Zürich, Zürich, Switzerland, 2015.
22. Jagadeeswari, N.; Mohan Raj, V. Homogeneous Batch Memory Deduplication Using Clustering of Virtual Machines. Comput.

Syst. Sci. Eng. 2023, 44, 929–943. [CrossRef]
23. Du, C.; Wu, S.; Wu, J.; Mao, B.; Wang, S. ESD: An ECC-Assisted and Selective Deduplication for Encrypted Non-Volatile Main

Memory. In Proceedings of the 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA),
Montreal, QC, Canada, 25 February–1 March 2023; pp. 977–990.

https://doi.org/10.3991/ijim.v14i12.14407
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1016/j.jnca.2015.11.009
https://doi.org/10.1109/TCC.2017.2701794
https://doi.org/10.1109/tsmc.1971.4308298
https://doi.org/10.1145/265924.265930
https://doi.org/10.1145/844128.844146
https://doi.org/10.1186/s13677-023-00405-x
https://doi.org/10.1145/1618525.1618529
https://doi.org/10.1080/03772063.2023.2194260
https://doi.org/10.1109/TSC.2017.2786728
https://doi.org/10.1080/00051144.2023.2223479
https://doi.org/10.32604/csse.2023.024945

Electronics 2023, 12, 4205 30 of 30

24. Sun, X.; Ansari, N. Latency Aware Workload Offloading in the Cloudlet Network. IEEE Commun. Lett. 2017, 21, 1481–1484.
[CrossRef]

25. Genez, T.A.L.; Tso, F.P.; Cui, L. Latency-Aware Joint Virtual Machine and Policy Consolidation for Mobile Edge Computing. In
Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA,
12–15 January 2018; pp. 1–6.

26. Liu, G.; Wang, J.; Tian, Y.; Yang, Z.; Wu, Z. Mobility-Aware Dynamic Service Placement for Edge Computing. EAI Endorsed Trans.
Internet Things 2019, 5, e2. [CrossRef]

27. Sun, X.; Ansari, N. Green Cloudlet Network: A Distributed Green Mobile Cloud Network. IEEE Netw. 2017, 31, 64–70. [CrossRef]
28. Landa, R.; Araújo, J.T.; Clegg, R.G.; Mykoniati, E.; Griffin, D.; Rio, M. The Large-Scale Geography of Internet Round Trip Times.

In Proceedings of the 2013 IFIP Networking Conference, Brooklyn, NY, USA, 22–24 May 2013; pp. 1–9.
29. van Adrichem, N.L.M.; Doerr, C.; Kuipers, F.A. OpenNetMon: Network Monitoring in OpenFlow Software-Defined Networks.

In Proceedings of the 2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014;
pp. 1–8.

30. Yu, C.; Lumezanu, C.; Sharma, A.; Xu, Q.; Jiang, G.; Madhyastha, H.V. Software-Defined Latency Monitoring in Data Center
Networks. In Passive and Active Measurement; Mirkovic, J., Liu, Y., Eds.; Springer International Publishing: Cham, Switzerland,
2015; pp. 360–372.

31. Wu, P.; Che, A.; Chu, F.; Zhou, M. An Improved Exact ε-Constraint and Cut-and-Solve Combined Method for Biobjective Robust
Lane Reservation. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1479–1492. [CrossRef]

32. Esmaili, M.; Amjady, N.; Shayanfar, H.A. Multi-Objective Congestion Management by Modified Augmented ε-Constraint Method.
Appl. Energy 2011, 88, 755–766. [CrossRef]

33. Reiss, C.; Wilkes, J.; Hellerstein, J.L. Google Cluster-Usage Traces: Format+ Schema; White Paper; Google Inc.: Mountain View, CA,
USA, 2011; pp. 1–14.

34. Google Cloud Storage. Available online: https://cloud.google.com/storage/docs/overview (accessed on 7 January 2023).
35. Google Compute Engine Pricing. Available online: https://cloud.google.com/compute/pricing (accessed on 7 January 2023).
36. Google Compute Engine Disks. Available online: https://cloud.google.com/compute/docs/disks (accessed on 9 January 2023).
37. Second Quarter 2015 SPECvirt_sc2013 Results. Available online: https://www.spec.org/virt_sc2013/ (accessed on 14 January 2023).
38. The Distribution of 3233 Base Stations. Available online: http://www.sguangwang.com/dataset/telecom.zip (accessed on

12 January 2023).
39. Wang, S.; Zhao, Y.; Xu, J.; Yuan, J.; Hsu, C.-H. Edge Server Placement in Mobile Edge Computing. J. Parallel Distrib. Comput. 2019,

127, 160–168. [CrossRef]
40. Bazarbayev, S.; Hiltunen, M.; Joshi, K.; Sanders, W.H.; Schlichting, R. Content-Based Scheduling of Virtual Machines (VMs) in the

Cloud. In Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems, Philadelphia, PA,
USA, 8–11 July 2013; pp. 93–101.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LCOMM.2017.2690678
https://doi.org/10.4108/eai.13-7-2018.163922
https://doi.org/10.1109/MNET.2017.1500293NM
https://doi.org/10.1109/TITS.2014.2368594
https://doi.org/10.1016/j.apenergy.2010.09.014
https://cloud.google.com/storage/docs/overview
https://cloud.google.com/compute/pricing
https://cloud.google.com/compute/docs/disks
https://www.spec.org/virt_sc2013/
http://www.sguangwang.com/dataset/telecom.zip
https://doi.org/10.1016/j.jpdc.2018.06.008

	Introduction
	Related Works
	Memory Sharing System
	Memory Sharing Problem
	Communication Distance Problem
	Comparison with Related Works

	System Model and Problem Statement
	Memory Sharing Model
	Communication Distance Model

	Proposed Solution
	Traditional -Constraint Method
	Iterative Heuristic Algorithm

	Performance Evaluation
	Experimental Data
	Memory Page Simulation
	Experimental Method
	Experimental Results and Analysis

	Conclusions and Future Work
	References

