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Abstract: Unmanned aerial vehicles (UAVs) have received widespread attention due to their flexible
deployment characteristics. Automated airports equipped with UAVs are expected to become
important equipment for improving quality and reducing costs in many inspection scenarios. This
paper focuses on the automated inspection business of UAVs dispatched by automated airports in
highway scenarios. On the basis of considering the shape of highway curves, inspection targets, and
the energy consumption characteristics of UAVs, planning the flight parameters of UAVs is of great
significance for ensuring the effectiveness of the inspection process. This paper first sets the inspection
path points for the UAV based on highway curves, and then proposes an efficient heuristic method
for the nonlinear non-convex parameter optimization problem, through which the parameters of the
UAV’s inspection altitude, hovering altitude, and flight speed are planned. Simulation and analysis
show that the proposed method possesses good parameter planning efficiency. By combining several
existing trajectory planning methods, e.g., the traversal method, the deep Q-network based method,
and the genetic method, it can be concluded that the proposed method in this paper has better overall
planning performance including planning efficiency and inspection effectiveness.

Keywords: UAV; highway inspection; path planning; inspection quality; automatic airport

1. Introduction

In recent years, the development of information technology has greatly promoted
the application of UAVs (also know as drones) in many fields [1,2], such as public safety,
environmental monitoring, military strikes, etc. The application of UAV platforms can
significantly improve the efficiency of traditional business operations, reduce business
costs, or enhance the security capabilities of business operations [3,4]. The task planning
and trajectory setting for integrating the main body of UAVs and their many characteristics
is of great significance for the operational efficiency of UAV platforms [5,6].

Data collection through UAV systems generally requires the prediction of energy
consumption, endurance, etc., based on environmental conditions and UAV performance
parameters. By optimizing the flight altitude, speed, and route parameters of the UAV,
the coverage or quality of inspections can be improved [7–10]. At present, there are
difficulties in the inspection process of highways, such as low inspection efficiency, poor
safety assurance, high economic costs, and many blind spots in inspection.

The intelligent inspection system based on UAVs is expected to provide key support
for three-dimensional, flexible, and rapid response of highway management and services.
Specifically, there are two issues with route planning in the UAV inspection process for
highway scenarios: Firstly, the matching between the inspection path and the geographic
curve of the highway is not perfect, and the density of inspection path points is sparse
compared to the highway, which limits the detection opportunities and inspection effects of
the inspection process; secondly, during the inspection process, the flight parameters of the
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drone were not optimized to match the scene, resulting in excessive energy consumption
or limited inspection coverage radius.

1.1. Related Work

Targeting different application scenarios and business objectives, conducting path
planning and task planning is of great significance for improving the coverage of UAVs,
reducing energy consumption, or ensuring their own safety. Referring to the application of
artificial intelligence (AI) technology, planning methods can be generally divided into two
categories, namely non-AI methods and AI-based methods.

Non-AI programming methods mainly include biological evolution methods and
mathematical programming. As a method of biological evolution, genetic algorithms (GA)
are often used in complex and time rich planning scenarios due to their significantly better
computational efficiency compared to traversal methods [11–14]. In order to minimize the
energy consumption of the UAV for completing a task, a genetic algorithm was proposed
in [11], and its simulation performance is significantly superior to the greedy method.
For inventory counting scenarios, ref. [12] proposed a path planning model with a genetic
algorithm to determine the access routes of a swarm of drones. To achieve 3D path
planning for disaster rescue, the adaptive genetic algorithm and sine–cosine particle swarm
optimization (PSO) were combined in [13], and the simulation showed that the method
can sometimes achieve the global optimization. In [14], a hybrid algorithm integrating
the genetic algorithm and the estimation of distribution algorithm was presented for
cooperative path planning of UAVs and unmanned ground vehicles.

Mathematical programming is often used for the rapid setting of drone flight param-
eters to match the dynamics of the considered scene. A dynamic group reconstruction
algorithm on the basis of a fourth-order motif was proposed in [15] for UAV swarm dynamic
reconstruction. A planning framework of the drone swarm missions was proposed in [16],
where the mixed integer linear programming methods were adopted. K. Kuru et al. [17]
forged the Hungarian and cross-entropy Monte Carlo techniques together to assign tasks
and plan 3D routes dynamically in logistics. In order to generate trajectories in real-time
for multiple robots, a distributed model predictive control method on the basis of an
on-demand collision avoidance algorithm was proposed in [18], which showed a high
success rate in transition tasks with a high density of agents. For handling complex spatial,
temporal and reactive requirements, a method that satisfies a given signal temporal logic
requirement was presented in [19] to generate trajectories for multiple drones. To achieve
efficient coverage path planning of the UAV, a rural postman problem was formulated and
solved in [20] by two steps, i.e., optimization of the visiting order and optimization of the
flight lines orientation. In [21], an edge computing D* lite algorithm with distributed char-
acteristics was proposed to autonomously plan the flight path, fly in formation, and avoid
obstacles for the UAV swarm.

Thanks to the rapid development of computing technology, AI technology can ef-
fectively empower drone trajectory and mission planning [22–29]. In [22], a half random
Q-Learning-based task assignment method was raised for multi-UAV cooperation. A novel
sequential deep model integrating proximal policy optimization and long short-term mem-
ory (LSTM) was proposed in [23] for assigning tasks and planning the route of UAVs to
achieve good energy efficiency, data collection ratio, and geographic fairness. To save
energy consumption of the UAV in sea-farming scenarios, a deep Q-network (DQN)-based
path planning method was presented in [24], and the performance of the proposed method
was verified through simulation in a virtual environment. A double deep Q-network
was adopted in [25] for UAV path planning in wireless data harvesting process, and the
method achieved good performance in flight efficiency and collision avoidance. A multi-
task regression-based learning method, which is capable of defining flight commands in
unstructured outdoor environments, was proposed in [26], and the simulation showed
that the approach could perform sufficient exploration within the target search perimeter.
In [27], a deep reinforcement learning (DRL) method that integrates three main components,
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i.e., optimization, learning, and prediction, for generating reliable and efficient routes for
swarms of UAVs was presented. A. Loquercio et al. [28] explored a data-driven approach
using convolutional neural network (CNN) for UAV swarm in highly dynamic scenarios to
keep the navigating process as well as to avoid obstacles. In order to provide long-term
coverage for the ground communication, the deep reinforcement learning technology was
adopted in [29] to navigate a group of UAVs with the function of the base station.

1.2. Contributions of This Paper

Currently, there are few UAV mission or path planning methods that combine the
characteristics of highway scenes, while transferring existing methods directly to the high-
way scenario is likely to greatly reduce the inspection effectiveness. In this case, to improve
the inspection performance of UAV systems in highway scenes, this paper optimizes the
flight parameters of the UAV, and the key contributions of this paper are threefold:

• By analyzing the highway scene inspection business, this paper summarizes the UAV
flight parameter planning problem with the goal of optimizing inspection quality.
The problem is limited by practical requirements such as UAV available energy and
data transmission quality.

• By presenting an efficient approach, we supplement the patrol points of drones in
order to improve the matching degree of UAV flight routes with highway curves.

• We propose an effective heuristic method that combines the characteristics of the
business scenario to address the nonlinear and non-convex optimization problem,
and the method has low operational complexity.

• Finally, we verify the performance of the proposed method and the comparative meth-
ods. The multi-dimensional simulation results indicate that the proposed method in
this paper has significant advantages in terms of comprehensive planning effectiveness
and operational efficiency.

This paper is organized as follows. The system model and problem formulation are in-
troduced in Section 2. Section 3 covers the proposed operational planning method. Section 4
provides the experimental results and performance analysis, and Section 5 presents the con-
clusions.

Notation: In this paper, scalars are expressed by a non-boldface type, while matrices as
well as vectors are expressed by a boldface type. (·)T and E{·} denote the matrix transpose
and statistical expectation respectively. Finally, ωi represents the ith entry of the vector ω.

2. System Model and Problem Formulation

In this section, we first introduce the model of using UAV for highway inspection,
and then summarize the drone inspection planning issues that need to be optimized.

2.1. System Model

Using UAVs based on automated airports to patrol the highway environment can
greatly reduce the cost of manual inspection processes, and due to their broad field of vision
(see Figure 1), their inspection effectiveness is more advantageous compared to the ground
inspection. Thanks to the development of mobile communication systems, the visual
content (the inspection data) of the drone’s flight process can be wirelessly transmitted
back to the unmanned airport and the management platform behind it. Therefore, multiple
inspection targets on highways must be covered during drone flight, and in order to ensure
inspection quality, the signal transmission quality of the UAV needs to be guaranteed in
order to meet the clarity requirements of returning video and other data. The field of view
of UAV mounted camera should be able to cover the inspection targets and highway curves
well, to ensure that the content of concern can be inspected.
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Figure 1. Schematic diagram of UAV inspection process for highway scenes. (a) Patrol trajectory of
UAV in highway scenes. (b) System model for UAV inspection on the highway.

The inspection process of the UAV is set from the starting point S to the destination
point D, which includes N inspection targets. Considering the curve characteristics of high-
ways themselves, this paper assumes that the inspection sequence of targets is determined.
This setting is reasonable, as for safety reasons, the UAV needs to patrol on the periphery
of both sides of the highway, and the order in which the UAV flies through inspection
points can be ensured by dividing inspection targets (inspection points) onto both sides
of the highway. The total number of inspection sections for the UAV is N + 1, and their
corresponding interval lengths are represented as L0, L1, . . . , LN . For convenience, this
paper sets the flight altitude of the UAV to be fixed within each inspection section. The fly-
ing heights corresponding to multiple inspection sections are represented as h0, h1, . . . , hN .
Without loss of generality, this paper sets each patrol target in the expressway scene as a
circle, and their space radii are expressed as r1, r2, . . . , rN . The UAV takes photos or records
the inspection targets by hovering around them, and the hovering time for each inspection
target is represented as t1, t2, . . . , tN . The hovering heights of the UAV for inspection of
each target are hH

1 , hH
2 , . . . hH

N .
To ensure the spatial integrity of the UAV’s onboard camera for the inspection sec-

tion and inspection target, the minimum flight altitude of the UAV can be calculated as
hmin = f×r

RCCD
, where f represents the focal length of the airborne camera, RCCD denotes the

lens radius size of the airborne camera equivalent to the CCD camera, and r signifies the
radius size of the inspection object [30,31].
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In highway scenarios, the patrol process of the UAV may frequently encounter non-
line of sight (NLOS) transmission of signals, and the probability of line of sight (LOS)
transmission of the UAV is expressed as [32]

PLOS =
1

1 + a exp(−b[θ − a])
, (1)

where θ = arctan h
L , a and b represent parameters related to the transmission environment,

h and L represent the flight altitude of the UAV and the distance interval between the UAV’s
vertical projection on the ground and the ground signal transceiver, respectively. Corre-
spondingly, the expected received power of the signal of the UAV at its current position is
P̄(h) = PLOSβδLOS + (1− PLOS)βδNLOS, where β, δLOS, and δNLOS, respectively, represent
the transmission power of the signal, the corresponding path loss in LOS environment,
and the corresponding path loss in NLOS environment.

Taking into account the starting and ending points, inspection sections, and inspection
targets of the UAV, the inspection height of the UAV in the entire highway scene can be
summarized as hS, h0, hH

1 , h1, hH
2 , h2, . . . hH

N , hN , hD︸ ︷︷ ︸
2N+3

, where hS and hD denote the altitude of

the starting and ending unmanned airports, respectively. And if the starting and ending
points are the same unmanned airport, then hS = hD. For the convenience of representation,
this paper re-expresses the sequence as τ0, τ1, τ2, . . . τM, with M = 2N + 2.

For the rotorcraft drone, its power consumption during the hovering process can be
expressed as [33,34]

Ph =
δ

8
ρsAΩ3R3 + (1 + χ)

W3/2√
2ρA

, (2)

where δ denotes the profile drag coefficient, ρ represents air density, while A, s, R, Ω,
χ and W, respectively, signify rotor disc area, rotor solidity, rotor radius, blade angular
velocity, incremental correction factor to induced power and aircraft weight. The power
consumption of the UAV during flight is expressed as

P(V) = P0

(
1 +

3V2

U2
tip

)
+ Pi

(√
1 +

V4

4v4
0
− V2

2v2
0

)1/2

+
1
2

d0ρsAV3, (3)

in which P0 and Pi correspond to the first and second terms in Equation (2), respectively.
V represents the flight speed of the UAV, Utip represents the speed of the rotor blades,
v0 represents the average rotor speed generated during hovering, and d0 represents the
fuselage drag ratio. Furthermore, the power consumption of the UAV during ascent and
descent can be written as

P(V, κ̃) = P0

(
1 +

3V2

Ω2R2

)
+ Piκ̃

(√
κ̃2 +

V4

4v4
0
− V2

2v2
0

)1/2

+
1
2

d0ρsAV3, (4)

where κ̃ represents the thrust to weight ratio, we have κ̃ > 1 when the UAV rises, otherwise
κ̃ < 1 when the UAV descends. For simplicity, this paper sets the speed of the UAV’s ascent
and descent processes to be constant at VUD, and the thrust to weight ratio is fixed at κ̃U
and κ̃D, respectively. Therefore, the power consumption of the corresponding processes
can be expressed as P(VUD, κ̃U) and P(VUD, κ̃D).

2.2. Problem Formulation

The effectiveness of the UAV inspection process is crucial. By referring to the minimum
flight altitude of the UAV, this pair sets the inspection effect coefficient as e

√
hmin/hx−1 with

e denoting the Euler number and hx representing the current flight altitude of the UAV.
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Let Ψ represent the overall effect of the inspection process, which can be calculated
using the following equation:

Ψ =
N

∑
i=0

(
e
√

hmin/hi−1
)
× Li +

N

∑
j=1

(
e
√

hmin/hH
j −1

)
×Mj, (5)

in which Mj, j = 1, 2, . . . , N represents the importance of the j-th inspection target.
Due to the relatively small communication power of UAVs compared to flight power

consumption, this paper ignores the former and aims to optimize the inspection effect
for highway scenarios. With the available energy of the UAV supporting the inspection
process, inspection altitude and speed, as well as signal transmission quality as constraints,
the optimization problem of UAV inspection process can be summarized as follows:

max
hi ,hH

j ,v f
i ,i=0,1,...,N,j=1,2,...,N

(Ψ) (6a)

s.t.
M−1

∑
k=0
|(τk+1 − τk)× P(VUD, κ̃U)orP(VUD, κ̃D)| ×

|(τk+1 − τk)|
VUD

+

N

∑
i=0

(
P(v f

i )×
Li

v f
i

)
+

N

∑
i=1

(Ph × ti) ≤ E (6b)

1
2N + 1

(
N

∑
i=0

P̄(hi) +
N+1

∑
i=0

P̄
(

hH
i

))
≥ Φ (6c)

f × rway

RCCD
≤ hi ≤ hmax, i = 0, 1, . . . N (6d)

f × ri
RCCD

≤ hH
i ≤ hmax, i = 1, 2, . . . N (6e)

0 ≤ v f
i ≤ vmax, i = 0, 1, . . . N, (6f)

where rway represents the equivalent radius of the highway, hmax represents the upper limit
of the UAV’s cruising altitude, vmax represents the upper limit of the UAV’s cruising speed,
and Φ represents the threshold requirement for the expected average received power of the
UAV’s signal.

We can observe that problem (6) belongs to a mixed integer nonlinear programming
problem. This paper will propose an effective heuristic method in the next section to
improve the effectiveness of planning.

3. Proposed Path Planning Method

In this section, we first provide a method for supplementing the cruise points of the
unmanned aerial vehicle, and then introduce the proposed drone inspection planning for
highways (DIPH) method.

3.1. Selection of Supplementary Inspection Points

We have noticed that the density of patrol points can greatly affect the quality of drone
inspections on highways, as (1) the highway management department does not recommend
drones to fly directly over highways, but rather over both sides of the road to prevent
drones from falling to the ground and posing risks to the operation of highways; (2) if the
drone’s patrol points are too sparse, the drone’s straight-line flight between points will
significantly affect the correlation between the camera mounted on it and the highway
road surface. Therefore, we first briefly provide a method for selecting patrol points for
highways before introducing the unmanned aerial vehicle path planning method proposed
in this paper.
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As a feasible method, we believe that the acquisition of patrol points can be briefly
divided into four steps, i.e., data acquisition, center point selection, side delineation and
patrol points selection. We now introduce these four steps separately.

3.1.1. Data Acquisition

In order to obtain the patrol points of the highway area, it is first necessary to obtain the
longitude and latitude information of the area. Generally, this information can be obtained
from geographic information system (GIS) data. Figure 2a illustrates the longitude and
latitude value points of Guiyang section of the highway (Guizhou Province, China).

Figure 2. Schematic diagram of the selection process of patrol points for highways. (a) The longitude
and latitude value points corresponding to the highway area of concern, this paper takes the Guiyang
section of the highway (Guizhou Province, China) as an example. (b) Divide the area into several sub-
segments, select the center of each sub-segment, and divide each sub-segment into two sub-regions.
(c) Select one point in each sub-segment’s two sub-regions as the patrol point. (d) An enlarged display
of part areas of (c).

3.1.2. Center Point Selection

The goal of this method is to obtain dense points on both sides of the highway as
patrol points for UAVs. Therefore, we divide the focus area into multiple sub-road sections
based on the range of longitude and latitude values, and obtain the center of each sub-road
section by averaging the longitude and latitude values (see Figure 2b). Note that the
selected density of sub-road sections corresponds to the density of patrol points. By relying
on these selected centers, we can further divide the edges and select inspection points.

3.1.3. Side Delineation

For the deployment of a single automatic airport on a highway, the drone’s patrol
process needs to cover both sides of the highway, and this inspection perspective and
content are more diverse compared to unilateral inspections on highways. On this condition,
the selection of patrol points needs to be on both sides of the highway, and we then
divide the sub-section into two parts based on the latitude of the points in the sub-section
compared to the latitude of the center point (see Figure 2b).

3.1.4. Patrol Points Selection

In this step, we select one point on each side of each sub-section as the patrol point.
Since each sub-section is divided into two parts, we only need to select one point located at
the edge of the highway in each part. For simplicity, we select the point farthest from the
center point in each part as the patrol point (see Figure 2c,d).
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By performing the above four steps and finally sorting all selected patrol points by
the highway side, we can obtain the drone’s patrol points, which are spatially fitted to the
highway curve. It should be noted that the patrol points in this section are not completely
equivalent to the patrol target points mentioned earlier. The patrol target points can be
integrated into the drone’s patrol points, such as by replacing some close points in the
patrol points or directly adding them to the set of patrol points. For the convenience of
understanding, we use patrol points as a general term in the following text, which includes
the target points to be inspected and the path points to improve the effectiveness of drone
patrols, considering that patrol points can also be considered as inspection target points.

3.2. Summary of the Proposed DIPH Method
3.2.1. Method Preliminary

We notice that the solution to problem (6) includes three types of parameters, namely,
the hovering heights of the drone facing the inspection targets, the patrol heights of
the drone between the inspection targets, and the patrol speeds. Additionally, through
observation, we can find that the goal of the problem is to maximize the effectiveness of
cruising, while the cruising speed of drones is only a parameter of the energy consumption
condition (i.e., (6b)). Therefore, by referring to Equation (3), the speed of cruising can be
calculated from the perspective of minimizing energy consumption, and this speed has the
least impact on the energy consumption condition.

Regarding the cruising altitude of the UAV between cruising points, this paper sets
the flight altitude of the UAV to be consistent within each segment, considering that the
selection of patrol points has already matched the highway curve and the distance between
adjacent patrol points is short. The selection of UAV patrol altitude and the selection
of UAV suspension altitude towards patrol targets have similarities in ideas. Both of
which have the same relationship with patrol effectiveness, signal quality, and the energy
consumption. By referring to Equation (1), it can be observed that the higher the flying
(hovering) altitude of the UAV, the greater the probability of LOS in the communication link
between the UAV and the airport. Specifically, as the flight altitude increases, the strength
of the communication signal first increases and then decreases. However, the flight altitude
of the drone used in this paper cannot reach the altitude corresponding to the maximum
communication signal strength (see Figure 6 in [32]). In other words, we can assume
that the higher the flight altitude of the drone, the stronger its communication signal
strength, and we can obtain the flight altitude that matches the signal strength through
one-dimensional search.

Considering that the UAV inspection process needs to meet the requirements of
inspection field of view quality, and the higher the drone’s flight altitude, the greater the
energy consumed during its ascent, the preliminary selected drone inspection (hovering)
altitude in this paper corresponds to the higher values of the altitude corresponding to
the inspection field of view quality and the signal strength threshold corresponding to the
altitude. At this point, we can preliminarily obtain solutions for three types of parameters.
Considering that the currently selected parameters may not meet condition (6b), this paper
reduces the energy consumption of the UAV by smoothing out the differences between the
cruising heights of the UAV on certain road sections and the hovering heights of adjacent
cruising points.

3.2.2. Method Summary

We summarize the proposed DIPH method and its process in Algorithm 1 and Figure 3,
respectively. In the method, we first calculate the hovering height of the corresponding
drone for each inspection target, combined with the transmission requirements of signal
quality. Meanwhile, considering the requirements for inspection quality, we obtain the
suspension height of the drone by taking a larger value in Step 5. We then determine
whether each obtained drone’s hovering height exceeds the drone’s ceiling, and if so, it is
determined that a feasible solution to the parameters cannot be obtained.
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Algorithm 1: The drone inspection planning for highways (DIPH) method.
1: Input: δ, ρ, A, s, R, Ω, χ, W, d0, v0, Utip, VUD, κ̃U , κ̃D, a, b, RCCD, L0, L1, . . . , LN , f ,

r1, r2, . . . , rN , t1, t2, . . . , tN , β, Mj, j = 1, 2, . . . , N.

2: Output: hi, hH
j , v f

i , i = 0, 1, . . . , N, j = 1, 2, . . . , N.
3: Initialize: rway, hmax, vmax, Φ.

———————————————————————————————————
4: Let P̄

(
hH

i
)
= Φ, i = 1, 2, . . . , N, and obtain hH

i,1 by using the dichotomy
algorithm.

5: Calculate hH
i,2 = max

(
hH

i,1, f×ri
RCCD

)
, i = 1, 2, . . . , N.

6: If ∃i, hH
i,2 > hmax, i = 1, 2, . . . , N Do

7: Break, there is no feasible solution.
8: Else
9: Let P̄(hi) = Φ, i = 0, 1, . . . , N, and obtain hi,1 by using the dichotomy

algorithm.
10: Calculate hi,2 = max

(
hi,1, f×rway

RCCD

)
.

11: If ∃i, hi,2 > hmax, i = 0, 1, . . . , N Do
12: Break, there is no feasible solution.
13: Else
14: Combine (3) and use the dichotomy method to obtain v = min(P(V)),

and
set v f

i = v, i = 0, 1, . . . , N.

15: If v f
i , hH

i,2, hi,2 satisfy (6b) Do

16: Output v f
i , hH

i,2, hi,2.
17: Else
18: Search for max

i

(∣∣∣hi,2 − hH
i−1,2

∣∣∣) in the current results, and let

hi,2 = hH
i−1,2 = max

(
hi,2, hH

i−1,2

)
.

19: Perform Step 15.
20: End If
21: End If
22: End If

Next, we calculate the cruising altitude of the drone on each road section (correspond-
ing to the road section between adjacent inspection points) through a process similar to the
above, and make conditional judgments on the obtained altitudes. Considering that the
cruising energy consumption of drones decreases first and then increases with their flight
speed, this paper uses the dichotomy method to obtain the cruising speed corresponding
to the minimum energy consumption during the drone cruising process.

Finally, based on obtaining three types of parameters to be solved, this paper evaluates
the availability of the parameters in Step 15. If the parameters cannot meet condition (6b),
we search to find the maximum difference in height between the adjacent patrol section and
patrol point, and reduce the energy consumption of the drone by making the two heights
equal (take the larger of the two). The height adjustment and condition judgment loop
execution until the parameters meet condition (6b).
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Figure 3. Flowchart of the proposed DIPH method.

3.2.3. Complexity Analysis

We now analyze the complexity of the proposed DIPH method. We assume that the
number of optional heights and speeds for the UAV is Λ and Υ discrete values, respectively.
Then, the complexity of Steps 4, 9 and 14 is O(log2Λ), O(log2Λ), and O(log2Υ), respectively.
Additionally, the complexity of Steps 5, 6, 10 and 11 is O(N). The complexity of the loop
from Steps 18 to 19 is O(vN) with v denoting the number of times the loop is executed.
Therefore, the complexity of the DIPH method proposed in this paper can be expressed as
O(4N + vN + 2log2Λ + log2Υ). Considering that v is almost zero in the simulation and
we have N > Λ, N > Υ, the complexity can be further simplified as O(N).

4. Simulation and Performance Analysis
4.1. Simulation Settings

To verify the effectiveness of the method proposed in this paper, we generate a rectan-
gle 5 km long and 30 m wide to simulate a highway, and generate 20 to 200 patrol points
using the method in Section 3.1, where 20% of the patrol points are considered as inspection
targets for the UAV. This paper sets the drone’s hovering observation time for patrol points
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to be randomly generated with equal probability between 0 and 30 s. The transmission
bandwidth and power of the drone’s return data are set to 20 MHz and 20 dBm, respec-
tively, while the threshold requirement for the expected average received power of the
UAV’s signal Φ is set as −160 dBm/Hz. The fuselage drag ratio d0, average rotor speed
v0, speed of the rotor blades Utip, profile drag coefficient δ, air density ρ, rotor solidity s,
rotor disc area A, rotor radius R, blade angular velocity Ω, incremental correction factor to
induced power χ are, respectively, set as 0.6, 1.44∼7.19, 48 m/s, 0.012, 1.225 kg/m3, 0.05,
0.79 m2, 0.12 m, 400 rads/s and 0.1. We randomly generate the importance coefficient of
the inspection target (i.e., Mj) between 1 and 100.

To demonstrate the performance of the proposed method under parameter changes,
we set the weight variation range of the as 5 to 50 Newton, while the available energy
of the UAV is set to 100∼500 Wh. Parameters related to the transmission environment
(i.e., a and b) are set as 0.5 and 1.2, respectively. Meanwhile, the focal length of the airborne
camera f and the lens radius size of the airborne camera equivalent to the CCD camera
RCCD are separately set as 105 mm and 25 mm. The simulation parameters are summarized
in Table 1, and all simulations are carried out in Matlab R2016a on a PC with Windows 10
and an Intel i7-12700 CPU. The results shown in this paper are averaged over 200 trials.

Table 1. Simulation parameters.

Parameter Value

The width and length of the highway 30 m, 5 km

Number of patrol points 20∼200

Transmit power of the signal β 20 dBm (i.e., 100 mW)

The fuselage drag ratio d0 0.6

The average rotor speed v0 1.44∼7.19

The speed of the rotor blades Utip 48 m/s

Profile drag coefficient δ 0.012

Air density ρ, Rotor solidity s 1.225 kg/m3, 0.05

Rotor disc area A, Rotor radius R 0.79 m2, 0.12 m

Blade angular velocity Ω 400 rads/s

Incremental correction factor to induced power χ 0.1

Weight of UAV W 5∼50 Newton

Available energy of UAV E 100∼500 Wh

Φ, Noise power σ2 −160 dBm/Hz, −174 dBm/Hz

VUD, κ̃U , κ̃D 1 m/s, 1.2, 0.8

a, b, RCCD, f 0.5, 1.2, 25 mm, 105 mm

rway, hmax, vmax 20 m, 1000 m, 30 m/s

ti, i = 1, 2, . . . , N 0∼30 s

Mj, j = 1, 2, . . . , N 1∼100

To comprehensively demonstrate the path planning efficiency and planning effective-
ness of the proposed DIPH method, the following five additional methods are adopted for
performance comparison:

• GA, the genetic algorithm [11], in the simulation, we set the three parameters of
cruising altitude, cruising speed, and hovering altitude as gene sequences and solve
them with objective (6a) as the optimization value.
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• DQN, method based on deep Q-network [25], this paper takes the parameters of the
UAV and patrol points as the state inputs of the method, and takes the patrol altitude,
patrol speed, and hovering altitude as the model’s actions step by step. The model is
trained with the patrol quality as the reward.

• FH, the DIPH method with fixed height, on the basis of using the DIPH method to
obtain the various cruising heights and hovering heights of the UAV, this method
directly takes the maximum value of all heights as the cruising and hovering heights.

• RanG, method of randomly generating relevant parameters, this method randomly
generates the three types of parameters for the UAV within the feasible range.

• TA, the traversal method, this method determines all possible combination solutions
through traversal, and selects the solution that can achieve target (6a) as the output of
the method.

4.2. Performance and Analysis

We first verify the energy consumption of the drone and the quality of the patrol
process under different patrol points using the method proposed in this paper. Figure 4
shows the results. We set W = 10 Newton, E = 400 Wh, and the number of inspection
targets and corresponding inspection time are fixed in the current simulation. For ease of
presentation, we have normalized the two performance values. As can be seen, the energy
consumption and inspection effectiveness of the UAV gradually improve with the increase
in inspection points. This is because the increase in the number of patrol points means that
there are more adjustments to the cruising altitude of the drone, which requires additional
energy consumption. However, this adjustment process is beneficial for improving the
cruising quality of the drone, as the patrol route that matches the shape of the highway and
the patrol height that matches the highway section can improve the inspection effect in
terms of inspection field of view and return signal quality.
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Figure 4. Energy consumption and inspection effectiveness of the proposed DIPH method under
changes in inspection points.

Secondly, the planning performance of each comparison method under different
number of patrol points is shown in Figure 5. We set W = 10 Newton and E = 500 Wh,
which ensures that the energy required for the drone inspection process is sufficient.
The number of inspection targets and corresponding inspection time are fixed in the
current simulation. We can observe that all six methods increase with the number of patrol
points, which is attributed to the gradual improvement of shooting results achieved by
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drone mounted camera. GA and DQN methods have some interleaving in performance,
but overall, GA performs better than DQN. The TA method performs best among all
methods because it compares all possible solutions. Compared to the highly complex TA
method, although there is a significant gap, the DIPH method proposed in this paper has
better performance than the other four methods.
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Figure 5. Planning performance of various comparison methods under different number of pa-
trol points.

We then compare and verify the performance of six methods under the condition of
changes in available energy of the UAV, and the results are shown in Figure 6. We set
W = 10 Newton, and the number of patrol points is set as 50. The number of inspection
targets and corresponding inspection time are fixed in the current simulation. A value
of 0 for inspection quality means that the current method cannot obtain a valid solution.
It can be seen that when the available energy of the UAV is low, FH method and RanG
method cannot obtain feasible solutions, this is because the flight altitude of the FH method
is too high, making the required energy higher than the available energy of the drone,
while the RanG method cannot obtain a feasible solution under harsh conditions due to the
randomness of solution selection. An interesting phenomenon can be seen from Figure 6,
which is that when the energy of the UAV exceeds 200 Wh, the FH method is feasible,
and as the energy increases, the inspection effect of this method remains fixed. This is
because the results of the FH method do not change with the energy of the UAV, and the
output solution is a fixed value. Meanwhile, we can conclude from the figure that the
overall ranking of the performance of the six methods is successively TA, DIPH, GA, DQN,
FH and RanG.

Fourthly, we validate the performance of the methods in response to changes in drone
weight, and the results are illustrated in Figure 7. We set E = 400 Wh, and the number of
patrol points is set as 60. The number of inspection targets and corresponding inspection
time are fixed in the current simulation. It can be observed that except for the FH method
with special characteristics, the inspection quality of other methods gradually decreases
with the increase in UAV weight. Due to the fact that the fixed flight altitude selected by
the FH method does not change with the weight of the drone, the inspection quality of
this method remains constant during the initial increase in UAV weight, and in the later
stages of increase, the planning becomes ineffective due to insufficient available energy.
Among the remaining five methods, the DIPH method proposed in this paper is second
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only to the TA method in terms of performance, and sequentially superior to GA, DQN,
and RanG methods.
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Figure 6. Performance of the method under the condition of changes in available energy of the UAV.
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Figure 7. The inspection quality of methods under changes in drone weight.

We finally summarize the time consumption of each method in Table 2. It should
be noted that the DQN method requires pre-training of the model, therefore it requires
training time. Although the training process can be carried out before the DQN method
is applied, compared to methods that do not require training, this time cannot be directly
ignored. From the table, we can see that among the six methods, the TA method takes
the longest time, surpassing the DIPH method by 5000 times, and this is unacceptable
in certain situations (such as the need to dispatch the UAV for emergency patrols in a
timely manner). The average time spent on DIPH, GA, FH, and RanG is 15.7 ms, 2168.2 ms,
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10.5 ms, and 1.2 ms, respectively. It can be considered that the DIPH method does not have
disadvantages compared to other methods in terms of computational efficiency.

Table 2. Time consumed by methods.

Method Average Execution Time

DIPH 15.7 ms

GA 2168.2 ms

DQN 3.6 ms (Average training time: 52,815.1 ms)

FH 10.5 ms

RanG 1.2 ms

TA 89,436.7 ms

4.3. Discussion

In order to clearly observe the performance of the methods, this paper sorts and
summarizes the performance of the methods in Table 3. Due to the long training time
required, the DQN method is not taken into account in the efficiency entry therein. It can
be seen that the DIPH proposed in this paper ranks third in terms of operational efficiency,
and its performance in other aspects is only second to the TA method which has very low
operational efficiency and cannot be used in practical scenarios. Taking into account the
overall performance (i.e., inspection quality and execution efficiency) of methods, we can
conclude that the DIPH method proposed in this paper has better performance compared
to other methods.

Table 3. Summary of methods’ performance.

Performance Category Performance Sorting

Inspection quality vs. Number of inspection
points

TA > DIPH > GA > DQN > FH > RanG

Inspection quality vs. Available energy of the
UAV

TA > DIPH > GA > DQN > FH > RanG

Inspection quality vs. Weight of the UAV TA > DIPH > GA > DQN > FH ≈ RanG

Operational efficiency RanG > FH > DIPH� GA� TA

5. Conclusions

This paper considered the path planning problem of unmanned aerial vehicles for
highway scenarios. In response to the mismatch between the drone patrol path and the
shape of the highway, as well as the urgent need to improve the quality of drone inspection,
this paper proposed an efficient path planning method for the unmanned aerial vehicle,
aiming to improve the quality of the UAV inspection process by quickly setting parameters
including the UAV’s inspection altitudes, suspension altitudes towards inspection targets,
and inspection speeds. The simulation results with multiple feasible comparison methods
indicate that the proposed method has advantages in terms of overall performance of
operational efficiency and planning effectiveness.
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