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Abstract: Human–object interaction (HOI) detection is important for promoting the development of 

many fields such as human–computer interactions, service robotics, and video security surveillance. 

A high percentage of human–object pairs with invalid interactions are discovered in the object de-

tection phase of conventional human–object interaction detection algorithms, resulting in inaccurate 

interaction detection. To recognize invalid human–object interaction pairs, this paper proposes a 

model structure, the interactivity recognition graph neural network (IR-GNN) model, which can 

directly infer the probability of human–object interactions from a graph model architecture. The 

model consists of three modules: The first one is the human posture feature module, which uses key 

points of the human body to construct relative spatial pose features and further facilitates the dis-

crimination of human–object interactivity through human pose information. Second, a human–ob-

ject interactivity graph module is proposed. The spatial relationship of human–object distance is 

used as the initialization weight of edges, and the graph is updated by combining the message pass-

ing of attention mechanism so that edges with interacting node pairs obtain higher weights. Thirdly, 

the classification module is proposed; by finally using a fully connected neural network, the inter-

activity of human–object pairs is binarily classified. These three modules work in collaboration to 

enable the effective inference of interactive possibilities. On the datasets HICO-DET and V-COCO, 

comparative and ablation experiments are carried out. It has been proved that our technology can 

improve the detection of human–object interactions. 
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1. Introduction 

A major research area in computer vision, human–object interaction detection is es-

sential for robots to obtain a more holistic understanding of the physical environment [1]. 

Unlike object detection, human pose detection, and scene segmentation, which are vision 

tasks that only detect and segment objects in the scene independently, human–object in-

teraction detection is performed to further infer the possible interaction between a person 

and an object in a scene, specifically to locate the person and object in the interaction re-

lationship while inferring their interaction action category [2]. Human–computer interac-

tions, service robots, and video security monitoring are just a few of the numerous areas 

where human–object interaction detection could have a significant impact on future re-

search [3–5]. Improving the precision with which human–object interaction is detected is 

becoming an increasingly critical concern in these areas. 

In recent years, this research has tended to introduce more and more features (e.g., 

visual appearance features, spatial features, human pose features, etc.) for the input of 

neural networks to facilitate the inference of human–object interactions, and accordingly, 

many neural network architectures have been explored to solve the HOI detection prob-

lem [6–26]. In general, to solve such problems, human–object interaction detection is 

transformed into an interaction classification problem. First, an object detector is trained 
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to obtain the localization of people and objects, and then the contextual information con-

tained in the image is combined to classify the interaction between humans and objects, 

and the extraction of common contextual information in images is mainly divided into 

three kinds: the pose information of the human body, the detail information of human 

body parts, and the relative position information of humans and objects [6–10]. The most 

common method is based on the detection of a human and an object by an object detection 

network, followed by the fusion of one or more pieces of contextual information to assess 

the interaction between the human and the object. For example, Gkioxari et al. developed 

InteractNet [6], a human-centric model that extends the Faster R-CNN model with an ex-

tra branch to categorize actions at the target object position and action-specific probability 

density estimations to recognize human–object interactions; Gao et al. used an instance-

centric attention module to extract contextual features that are complimentary to the ap-

pearance features of the local region (human/object frame) to improve HOI identification 

using an Instance-Centric Attention Network for Human–Object Interaction Detection 

(ICAN) [7]; Fang et al. presented a new paired body part attention model [8] to learn to 

attend to important parts and their connections for HOI detection; Li et al. created TIN 

[9], which uses interaction networks to gain general interaction knowledge from different 

HOI datasets and performs noninteraction suppression prior to HOI classification during 

inference; and Wan et al. introduced the Pose-aware Multilevel Feature Network 

(PMFNet) in light of the wide variations in human–object appearance and spatial arrange-

ments, in addition to the subtle variances in similarity relations [10]. However, most meth-

ods based on human–object detection combine all detected humans and objects in the im-

age sequentially when constructing a human–object pair, while in practice, a person gen-

erally interacts with only individual objects in the scene. This has certain pitfalls for most 

methods. 

As seen in Figure 1a, the object detection network detects all persons and objects 

within the image, and then only a real interaction exists between the person and the table. 

However, since the existing methods combine humans with all objects, the combination 

yields <human, plate>, <human, cup>, <human, wine item>, etc. Nevertheless, these com-

binations are without any interaction information, and the number of these noninteractive 

combinations is more than the number of truly interactive <human, table> combinations. 

Due to the large number of noninteractive human–object pairs as negative samples do not 

provide useful learning information for training, the sample imbalance problem is often 

encountered in the training process, which makes adequate model training difficult; ad-

ditionally, the network gradient decreases more slowly, and the optimization direction of 

the model is not as expected and may not be optimized the best, which eventually leads 

to inaccurate detection results and other problems. 

  

(a) (b) 

Figure 1. The figure on the left (a) shows existing methods to detect all persons and objects in an 

image, using yellow line connections with valid human–object interaction pairs. The figure on the 

right (b) shows the high probability of a ‘ride’ or ‘jump’ interaction indicated by the human bound-

ing box above the skateboard, which will be described in Section 2.3. 
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In order to improve the accuracy of detecting interactions between persons and ob-

jects, we introduce a novel interactivity recognition graph neural network. The strategy 

described in this study is divided into three major parts, which are the human posture 

feature module, human–object pair graph module, and classification output module, in 

which the human body feature module uses a pretrained model to extract human key 

point information [10,22,27] and calculates relative spatial pose features, which are 

mapped to higher dimensional features using a connectivity layer. The person–object pair 

graph model employs a pretrained model to extract the coordinates and confidence of all 

persons and objects in an image [6,7,9,16,17,19]. Using the coordinates of persons and ob-

jects, instance features are extracted by ROI [9,10,12,20] cropping of persons and objects. 

Human and object instance features are used as nodes to construct a graph neural network 

(GNN) centered on humans [14,28,29]. The model uses the spatial relationship of distances 

between nodes as initialization weights for edges, guiding message passing to learn con-

textual information between related nodes. We consider that since the number of connec-

tions for invalid interactions is greater than the number of connections for valid interac-

tions, an attention mechanism is used to reduce the impact of invalid interactions. Finally, 

the person–object pairs and their respective node features are output through a pairing 

operation. The advantages indicated in this study have been tested on HICO-Det [30] and 

V-COCO [31] through a number of experimental comparisons. 

Overall, the contributions of this paper include the following:  

(1) We present interactivity identification graph neural networks that identify valid in-

teracting human–object pairings to increase the accuracy of human–object interaction 

detection. Before HOI model inference, removing invalid interactive human–object 

pairs and carrying only valid interactive human–object pairs for HOI inference helps 

to improve HOI inference performance. 

(2) The advantage of our proposed model on the V-COCO and HICO-DET datasets is 

proved through experimental and comparative validation. 

2. Related Works 

2.1. Object Detection 

One of the core goals of computer vision scene understanding is object detection, 

which tries to localize and identify the types of objects in the scene [32]. Numerous excep-

tional and mature object recognition algorithms, such as Faster R-CNN [33], SSD [34], 

YOLO [35], and Feature Pyramid Network [36] are now capable of detecting multiscale 

objects in images due to the rapid growth of computer technology and deep learning. The 

human–object interaction detection technique typically begins with an object detector to 

identify potential scene items and then proceeds to infer HOIs based on the resulting data. 

Based on previous work, we chose to use a pretrained object detector so that we could 

focus on the second half of the HOI inference network research design. 

2.2. Human–Object Interaction Detection 

Deep learning has greatly improved the performance of computer vision, and one 

can now extract features from large scale datasets rather than being limited to manually 

extracted features. Combined with the emergence of datasets dedicated to HOI detection, 

HOI detection tasks have entered a new phase of development. For example, Chao et al. 

proposed the Human–Object Region-based Convolutional Neural Network (HO-RCNN) 

[30], which is of great importance for the study of HOI detection. Researchers have at-

tempted to model a structured output with attention mechanisms, and Gao et al. [7] pro-

posed an instance-centric attention module to extract contextual features that are comple-

mentary to the appearance features of local regions (human/object frames) to improve 

HOI detection using HO-RCNN, their proposed Instance-Centric Attention Network for 

Human–Object Interaction Detection (ICAN). Graph models or graph convolution are be-

ing used by researchers to tackle the HOI detection challenge. Liang et al. built a Visual–
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Semantic Graph Attention Network (VS-GATS) [16], which is a dual graph attention net-

work that aggregates visual spatial and semantic information in parallel while providing 

robust disambiguation. However, the above two-stage method exhausts the combinations 

of people and objects in an image and then makes inference judgments pair by pair, which 

puts a huge burden on computational resources and has a high error rate. Our key idea is 

to identify human–object combinations that are valid interactions and remove the invalid 

interaction combinations as much as possible before performing HOI relationship identi-

fication. 

2.3. Relative Posture Spatial Detection 

Relative posture spatial features can provide important information when inferring 

interactive actions. For example, in Figure 1b, the human bounding box above the skate-

board indicates a high probability of “ride” or “jump” interactions. Two methods are com-

monly used to encode spatial information between objects: One is by Chao et al. to acquire 

relative spatial information implicitly, build a “interactive pattern” (interactive template 

feature), and feed it into a convolutional neural network. This “interactive template fea-

ture” is a feature map where the pixels inside the object bounding box are 1 and the re-

mainder are 0 [30]. The other is by Gupta et al. to use object bounding box coordinates 

explicitly to build relative or absolute posture spatial information [37]. This study also 

adopts the same relative spatial feature encoding as Gupta et al. [37]. Specifically, the rel-

ative distance feature from each joint point of the human body to the center of the object 

is measured so that a more detailed spatial feature can be constructed from the human 

body joint point coordinates. 

2.4. Graph Neural Network 

Graph neural networks (GNNs) have lately emerged as a scientific and technical 

hotspot in the field of computer vision, while convolutional neural networks (CNNs) [38] 

are among the most widely utilized neural networks in the area of computer vision. There 

has been some work integrating network structures with graphical models [38,39], and 

good results have been obtained in applications such as scene understanding [40,41], ob-

ject detection and parsing [6,42], and Visual Question Answering (VQA) [43]. In the hu-

man–object interaction detection task, in order to address the HOI detection problem, it is 

crucial to take use of the notion of employing a graph model or graph convolution, as 

there is an unavoidable interaction between humans and objects, which builds a con-

nected network. The objectives of the graph model in HOI detection are to represent peo-

ple and things as nodes and interactions between people and items as edges, with the 

strength of the edges increasing as the relationship between persons and objects becomes 

more relevant. Qi et al. first integrated graph models and neural networks to implement 

HOI recognition, and they proposed a Graph Parsing Neural Network (GPNN) [13], 

which is a generalization of the Message Passing Neural Network (MPNN), which inherits 

the learning ability of neural networks and the representation ability of graphical models, 

but the representation of people and objects with the same type of nodes in a GPNN is not 

perfect. Therefore, Wang et al. proposed a contextually heterogeneous graph network [14] 

where persons and objects are represented by different nodes while the spatial relation-

ship between persons and objects is the basic information for recognizing interactions, so 

it is encoded into the edges connecting the heterogeneous nodes. To further enhance the 

visual features, VSGNet [17] expands on the GPNN by using the spatial layout of human–

object pairings and graph convolution branches. Our approach differs from them in that, 

first, human pose features are introduced as external complementary information for 

graph neural networks, and the updated graph nodes and edges are uniformly encoded 

with human posture features for the inference of interactivity. Second, human-centered 

graph neural networks are designed to learn about human–object interactions. 
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2.5. Transformer-Based HOI Methods 

Transformers have made great breakthroughs in vision, and in recent years, Trans-

formers have been widely used in HOI. Zou et al. [44] proposed the HOI Transformer, 

which effectively inferred object–human associations from the global image context and 

directly predicted HOI instances. This method improves accuracy and has a low concep-

tual threshold. Kim et al. [45] presented HOTR, a Transformer encoder–decoder architec-

ture that can immediately measure a collection of (person, object, interaction) triples and 

then effectively exploit the semantic connections in the pictures via ensemble prediction 

without requiring costly postprocessing. Zhang et al. [46] proposed Structure-aware 

Transformer over Interaction Proposals (STIP), designed to perform interaction proposal 

generation and structure-aware Transformers. HOI prediction is enhanced by encoding 

the overall semantic structure between interaction suggestions as well as the local spatial 

structure of people/objects in each interaction suggestion. Although Transformers enable 

end-to-end training to improve recognition speed, our approach is to determine the inter-

activity of human–object pairs, so the use of graph models can be sufficient. 

3. Methodology 

We refer to the proposed novel interactivity recognition graph neural network as IR-

GNN, and the overall architecture diagram is shown in Figure 2, which contains three 

modules that work together to achieve accurate human–object pair interactivity detection. 

IR-GNN is mainly divided into the human posture feature module, human–object pair 

graph module, and classification output module. 

 

Figure 2. Architecture of the IR-GNN (interactivity recognition graph neural network), where P, H, 

and T represent the instance features of a person and two objects, respectively, and Fp and Fo repre-

sent the node information after graph update. 
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3.1. Human Relative Posture Spatial Module 

In order to detect the human joint points (17 key points), we used the existing human 

key point pretraining detection model. In this study, the relative spatial posture feature 

was used, and the relative spatial posture feature is the relative distance feature to the 

center of the object, as shown in Figure 3. If the coordinates of the i th joint point of the 

human body are defined as ),( ii yx , then its relative spatial feature i
rpf  is as follows:  

),(),(: ''
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yy
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xx
yxf

o
ci

o
ci

ii
i
rp

−−
==  (1) 

Where ),( o
c

o
c yx  is the center coordinate of the object’s bounding box and ),( HW  is the 

image’s size. All nodes of relative spatial posture attributes are specified as 217rpf . 

 

Figure 3. Relative posture spatial features. 

Human relative posture spatial module is shown in Figure 4. The rpf  is mapped to 

higher dimensional features through two fully connected layers, and then the obtained 

features are processed to batch normalization and dropout procedures, where the activa-

tion function is ReLU, the process of which is described by the following equation: 

))((ReRe 10 WWfLULUh rppose =  (2) 

where 1282
0

W  and 64128
1

W  are trainable parameters.  

 

Figure 4. Human Relative Posture Spatial Module. 

3.2. Human–Object Pair Graph Module 

We suggest learning interaction knowledge in the connection graph [9], where nodes 

represent all people and objects, edges indicate the relationship between two nodes, and 

the spatial distance between persons and objects is constructed as the initial weight of the 

edges. Interactive inference is then performed under the supervision of the GNN. Thus, 
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interactivity recognition may be viewed as a binary categorization of pairs of nodes. 

Higher values, on the other hand, suggest a stronger pair interaction and greater confi-

dence in the edge weights between these two nodes. 

3.2.1. Instance Feature Extraction of Persons and Objects 

First, based on previous work, a pretrained model for object detection is taken to 

extract the original image features orgF  from the image. Then, according to the bounding 

boxes ),,,( hhhhh hwyxL =  and ),,,( ooooo hwyxL =  of the person and object obtained 

through the target detector detection and the confidence level hS  of the person and the 

confidence level oS  of the object, ),( hh yx  and ),( oo yx  are the center coordinates of the 

human body and the object bounding box, respectively; hw  and hh  are the width and 

height of the human body bounding box, respectively; and ow  and oh  are the width and 

height of the object bounding box, respectively. Next, the RoI pooling [3] operation is used 

to obtain the instance features h
instF  and o

instF  of the person and object, respectively, as 

shown in Equations (3) and (4). 

),( h
h

org
h

inst LFRoiPoolingF =  (3) 

),( o
o

org
o

inst LFRoiPoolingF =  (4) 

where the instance features h
instF  and o

instF  of persons and objects are denoted as iv , and 

i  denotes the entity feature of the i th person or object. 

3.2.2. Spatial Location Features 

Among the existing HOI relevant research work [7,11,13,16,17], spatial vision alone 

is not sufficient to determine the classes of interaction actions, but it has a strong relevance 

in the recognition of valid or invalid interactions. For example, a person may interact with 

a chair because they overlap spatially; if there is no person near the object, the probability 

of that object interacting with a person is low. Considering that the spatial relationship 

between individual nodes has an influence on whether they interact or not and is, there-

fore, centered on people [16], the distance space is modeled as the weight of the edges of 

the connectivity graph. The definition is as follows: 

 =

=
M

j
dist
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h
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),(

1
),(
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bbD
jiF =  (6) 

where ),( jiFdist  represents the spatial connection of two instances. ),( ji bbD  indicates the 

distance determined from the two instances’ box coordinates. 

3.2.3. Graph Model 

In order to identify which objects a person is validly interacting with, a connectivity 

graph is constructed of people and objects, which can be represented by an adjacency ma-

trix of physically stored node features: dn
v RX  . The edge feature adjacency matrix is 

represented by cm
e RX  , where n  is the number of feature instances of persons and ob-

jects, m is the number of edges, d is the length of the node feature, and c is the length of 

the edge feature. if  is the features of instances of persons and objects, and 𝑚 is the num-

ber of relationships constituted by persons and objects. The point set V  consists of person 

and object instances as nodes, and the edge set E  consists of individual person and object 
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instance relationships as edges. V  and E  consist of the graph ),( EVG = , where Vvi   

is the i th node and Evve jiij = ),(  is the directed edge from node iv  to node jv , where 

the identity of node iv  is denoted d
v Rh

i
  and the identity of edge ije  is 

c
e Rh

ij
 . The 

graph-based approach focuses mainly on designing various subgraphs, in which the 

nodes of persons connect only the nodes of objects. In fact, in the real world, persons and 

objects are often interconnected, and there is no interactivity of objects that exist separately 

from persons; therefore, the graph model is constructed with persons in the center. All the 

nodes in our graph are considered unions based on the same code space, and the relation-

ships among these nodes are also learned and contribute to the interactivity prediction. 

To infer the graph model as a GNN (graph neural network), first use the edge func-

tion )(edgef  to encode the features of the relationship between two connected nodes: 

]),,([
jiij vijfvedgee hhhfh =  (7) 

where ],[   denotes the concatenation operation. 

In the connection graph, which contains human–object connections with and without 

interactions, if Equation (7) is used directly when integrating the features of neighboring 

nodes, the number of connections with invalid interactions is greater than the number of 

connections with valid interactions [47], i.e., the number of noises is too large; thus, this 

algorithm introduces an attention mechanism to reduce the interference of invalid inter-

actions:  

 

==

io
io

ij

Nv
eattn

eattnj
eattnjij

hf

hf
Xfsofta

))(exp(

))(exp(
))((max  (8) 

where j
eX  denotes the feature matrix of all edges starting from node jv , function )(attnf  

is used to map the internode relationship features (Equation (7)) to another implicit space, 

and the ija  weight value indicates the importance or relevance of node jv  to node iv . 

Integrate the neighboring node features and the relationship features between the 

two nodes using the weight values weighted as described above, and update the features 

of each node using the update function )(updatef : 

)(
ioo

io

i ev

Nv

iov hhaz += 


 (9) 

]),([
~

ii vvupdatevi zhfh =  (10) 

After )(updatef , the updated visual graph of node features shown in Figure 2 is ob-

tained, where the edges with different thicknesses indicate the magnitude of the edge 

weights. This algorithm implements the above attention function )(attnf , edge function 

)(edgef , and node update function )(updatef  in experiments using a single fully connected 

layer with neuron nodes of 1, 1024, and 1024, respectively. 
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3.3. Classification Output Module 

With the graph neural network described above, each node feature already encodes 

rich information about the relationship of a scene (the relationship between a node and 

other nodes). In this study, we propose that all persons are paired with all objects one by 

one to form a specific “person-object pair” and then they are combined with features of 

the person’s pose to infer whether there is interaction between them.  

Following the pairing process, the paired person–object pair features are combined 

with the human posture features obtained from the human posture module to create the 

vector feature ],,[
ji vposevij hhhF =  which is used to determine if there is an interaction be-

tween that human and object pair. Finally, the probability of the existence of interaction 

is calculated after the fully connected layer FC  and the sigmoid activation function. The 

equation is as follows: 

))(( ij
a FFCsigmoidS =  (11) 

In calculating the probability of the existence of human–object pair interactions (tri-

ples (humans, predicates, objects)), as with some existing algorithms [6,7,10,15–17], to take 

into consideration the confidence hS  of humans from the object detector output as well 

as the confidence oS  of the object, the formula is calculated as follows: 

a
oh SSSS =  (12) 

This formula determines whether a human–object pair interacts falls under the cate-

gory of a binary classification issue; hence, in this technique, the interaction category of 

each human–object combination is determined using the binary cross-entropy loss func-

tion )(BCE , and the loss function is as follows: 


= =


=

N

i j

label
ijij ySBCE

N
Loss

1

2

1

1 ),(
2

1
 (13) 

where N  is the number of human–object pairs in the data, ijS  is the probability that a 

person–object pair interacts with each other, and label
ijy  is the corresponding true label. 

Because the set of all possible human–object pairs is denoted as 
}),({ OHohP == , the detection results of the pretrained target detection network are 

H  and O , representing the set of humans and the set of objects, respectively.   can be 

further divided into two subsets: 





= , where 


 and 


 denote the set of annotated 

and unannotated human–object pairs, respectively. Here, the ranking score of the set of 

annotated human–object pairs is higher than that of the unannotated human–object pairs, 

so )(


g  is much larger than )(


g . Therefore, the loss function is designed as follows: 

  
+−=

 
 


))()(,0max(2 ggLoss  (14) 

In summary, the loss function is integrated, and the formula is as follows: 

21 LossLossLoss +=  (15) 

4. Experiments 

4.1. Experimental Configuration 

4.1.1. Experimental Dataset 

Using the 80 object categories in MS COCO (humans as a class among objects) and 

the 116 frequently used verbs, Chao et al. created an image classification dataset of hu-

man–common object interactions, HICO [17]. This dataset was based on the MS COCO [5] 
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dataset, which is frequently used for target detection. Each object has a “no-interaction” 

action, with 600 human–object interactions, over 250,000 labeled individual human–object 

instances, and over 150,000 labeled instances of human interactions. The dataset contains 

more than 40,000 images, with at least six images per person–interaction category, and 

each category is represented by at least one image in the test set. HICO does not offer 

instance-level annotation for each person–interaction pair that appears in each image, and 

images with many people present are not fully labeled. Based on this, the authors of HICO 

created the HICO-Det dataset with detection [9], containing categories and bounding 

boxes for each human–object pairing and categories of human–object interactions. 

A common dataset for person–interaction detection is V-COCO (Verbs in COCO) [8]. 

Such as HICO, object categories are obtained from the COCO dataset; however, unlike 

HICO, V-COCO uses images from COCO and existing person–object categories and 

bounding box labels to design and label 26 common interaction categories. The V-COCO 

dataset is divided into a training validation set (trainval set) and a test set (test set). The 

training validation set contains 5400 images and 8431 human instances, and the test set 

contains 4946 images and 7768 human instances. Each image has an average of 1.57 indi-

viduals, and each individual has an average of 2.87 behaviors. 

4.1.2. Evaluation Metrics 

For V-COCO, this paper uses the mean average precision of roles (mAP role) to assess 

the accuracy. For HICO-DET, this paper uses a generic evaluation setting with three cate-

gories: full (full, 600 HOIs), rare (rare, 138 HOIs), and nonrare (nonrare, 462 HOIs), where 

the rare category is defined as the number of instances of a certain type of human–object 

interaction in the training set that is less than 10. It is also divided into unknown (default) 

and known object (known default) classes, where the unknown class means that for each 

interaction class, the entire test set is detected and evaluated, and the detection is per-

formed uniformly regardless of whether there are object instances of the corresponding 

class in the image, and the known object class means that only the images with object 

instances of the corresponding class are detected. The proposed method in this paper will 

be experimentally validated on the HICO-DET dataset and the V-COCO dataset.  

4.1.3. Experimental Setting Parameters 

This experiment was built based on the Pytorch deep learning library as well as the 

DGL library [48], where all network layers were built using fully connected layers. For the 

object detector, this algorithm directly selected the Faster R-CNN model with ResNet-50-

FPN as the backbone network that was trained on the COCO dataset in the Pytorch li-

brary, referring to previous work [15], and the detection results were composed of a set of 

human instances for targets identified as “human” with a confidence level greater than 

0.8, and a set of object instances for targets not identified as “human” with a confidence 

level greater than 0.4. For the human keypoint detector, the torchvision library of Pytorch 

was used with the model keypointrcnn_resnet50_fpn for keypoint detection, which can 

detect 17 human keypoints. During training, the object detector and the human keypoint 

detector were frozen (no parameter update). We used a minibatch that was size 32, and 

the dropout rate was set to 0.3. For the activation function, the ReLU activation function 

was used except for the LeakyReLU activation function (parameter set to 0.1) in the atten-

tion network layer, and the optimizer was chosen from Adam [49], with the initial learn-

ing rate set to 1 × 10−5 and other parameters defaulted. The activation function after each 

GNN layer in the graph model was ReLU, and the dropout rate was 0.5. The epoch of 

training was set to 200. 

In this experiment, the type of graphics card used in training and testing was NVIDIA 

RTX 3060, programmed in Python 3.6 under the Ubuntu 16.04 operating system platform, 

and the deep learning framework used was Pytorch 1.1.0. 
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5. Result and Discussion  

5.1. Comparison with Other Methods 

In this experiment, three representative models were selected, all of which shared the 

common inference feature of exhaustively enumerating all persons and object combina-

tions in the image before making inference judgments pair by pair, which affected the 

final model performance due to the extremely large negative samples. Changing the orig-

inal model in the object detection stage to the method IR-GNN in this paper made the 

model reason from the valid human–object pair information only, and we compared the 

new model with the original model. The selected representative models are presented as 

follows: 

1. ICAN [7]. Using an instance-centered attention module, in order to extract contextual 

features that are complementary to the appearance features of local regions (person 

and object frames) to improve HOI detection. 

2. DRG [19]. The contextual information of the aggregated scenes, one of which is hu-

man centric and one object centric, was used to refine the prediction by exploiting 

the relationship between different HOIs. The model effectively captured distinguish-

ing cues from the scenes to resolve ambiguities in local prediction. 

3. RPNN [20]. Detailed body part features were introduced, and the model incorpo-

rated a graph structure for feature refinement, and then the learnable graph model 

was extended from human and object appearance features to obtain a robust repre-

sentation. 

To verify the validity, we compared the model with three representative models on 

two datasets and three new models generated after adding our method of IR-GNN. The 

HOI detection results were evaluated according to the evaluation metrics of V-COCO and 

HICODET. For a fair comparison, object detectors for all methods were pretrained on the 

COCO dataset only. 

The results obtained by applying our method to an existing model were more com-

petitive than the original model. As can be seen in Figure 5, ICAN + IR-GNN achieved 

17.32%, 13.18%, and 20.59% on the HICO-DET dataset for mAP full, rare, and nonrare 

categories, which was a 2.48%, 2.73%, and 4.44% improvement over the original ICAN, 

respectively. In Figure 6, it can be seen that the application of our method on ICAN re-

sulted in the highest performance improvement because although ICAN uses a multi-

stream structure and adds attention mechanisms to visual and spatial information, it is 

not designed to specifically deal with human–object noninteraction judgments; in this 

case, ICAN combined with our method made up for the deficiencies of ICAN and im-

proved the inference performance of ICAN. Similarly, DRG and RPNN improved by 

0.91%, 1.21%, and 0.92% and 2.16%, 2.04%, and 1.08% for the mAP full, rare, and nonrare 

categories, respectively, on the HICO-DET dataset after applying the methods in this pa-

per. As can be seen in Figure 6, ICAN had the highest improvement on the V-COCO da-

taset with 3.61%, followed by RPNN and DRG with 1.59% and 2.64% increases, respec-

tively. RPNN focused on modeling the relationship between object–body part pairs and 

human–body part pairs. Although it helps in the determination of interactions, the fea-

tures of human–object pairs were not comprehensive enough, resulting in the inability to 

better model the subtle interactions between body parts and objects; therefore, the inclu-

sion of our method IR-GNN helped to improve the inference performance. DRG con-

structed two different graph models centered on the person and object to analyze this 

problem together and it had a good performance on the interactivity judgment, so DRG 

also had a performance improvement, but the improvement was not large. We found that 

the mAPs of rare categories were improved as seen from the data results, proving that our 

method is helpful in dealing with the long tail of HOI and providing clues for future re-

search. 
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Figure 5. Comparison of mAP with other state-of-the-art methods on the HICO-DET dataset. 

 

Figure 6. Comparison of mAP with other state-of-the-art methods on the V-COCO datasets. 
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Combining the above comparative analysis, removing the invalid interacting hu-

man–object pairs before HOI model inference, and inferring only the valid interacting hu-

man–object pairs for HOI helped to improve the HOI inference performance. 

5.2. Ablation Experiment 

We took the ICAN+IR-GNN with the highest improvement in each performance on 

the two datasets among the previously applied models and used it as the benchmark 

model, which is noted as Experiment 0. To examine the impact played by each component 

of our approach, in Table 1 we evaluate their performance on the V-COCO and HICO-

DET test sets where, in the HICO-DET dataset, we selected the full data. In Experiment 1, 

we removed the human posture information and the performance decreased by about 

1.08% and 0.78% on the two datasets, respectively; therefore, the human posture infor-

mation facilitated the inference of the whole model. In Experiment 2, after removing the 

attention mechanism, the model achieved 47.06% and 15.67% mAP detection results, 

which showed that the application of the attention mechanism can improve the detection 

accuracy of the model to a certain extent. In Experiment 3, we sought to determine if using 

the human-centered person-to-object distance as the initial edge weight contributes to the 

effectiveness of messaging between nodes, and to verify this, we set the initial weight of 

all edges to one. In this case, the model achieved 46.19% and 15.12% mAP and a decrease 

of 2.72% and 2.20%, which were significant decreases; additionally, the removal of the 

initial edge weight value caused the node relationship to lack the initiation direction, and 

this experiment again validated the conclusions of [16]. In Experiment 4, we only retained 

the single-layer graph convolution and removed the nodal feature update operation, and 

the experiments only achieved 45.89% and 15.08% of the detection results. Lacking the 

nodal update, the relationship between the nodal features could not be effectively trans-

mitted; therefore, the nodal update operation played an important role in the sparsity of 

graph relationships, which had a greater impact on the subsequent interaction inference. 

Table 1. Comparison of mAP for ablation experiments on V-COCO and HICO-DET (full) test sets. 

Experiment No. Methods V-COCO HICO-DET 

0 ICAN + IR-GNN 48.91% 17.32% 

1 w/o human pose stream 47.83% 16.54% 

2 w/o attention 47.06% 15.67% 

3 w/o distance space 46.19% 15.12% 

4 w/o updatef  in graph 45.89% 15.08% 

5.3. Comparison with TIN 

Li et al. [9] proposed an interaction recognition method TIN (Transferable Interac-

tiveness Knowledge Network) to explicitly distinguish noninteractive pairs and suppress 

them before HOI classification, thus reducing the interference caused by too many nonin-

teractive candidate pairs. In both datasets, our method and TIN were validated against 

each other in two ways, the recall of false positive samples (invalid human–object interac-

tion pairs) and the mAP of HOI classification. For a fair comparison with TIN, ResNet-50 

was uniformly selected as the backbone network of the target detector, with the aim that 

the object and combined human–object pairs detected by the two models were the same 

in the object detection phase. During the interaction detection experiments(as shown in 

Table 2), with the V-COCO and HICO-DET datasets, our method IR-GNN achieved a re-

call of 70.42% and 69.83%, respectively, for false positive samples, while the TIN method 

reached only 65.98% and 64.76%, respectively. Therefore, our method performed better in 

removing the false interaction pairs. For the human–object interaction test, we modified 

TIN to replace the Noninteraction Suppression (NIS) part with our method IR-GNN and 

left the rest of the structure unchanged. From Table 3, it can be seen that TIN’s accuracy 
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improved by 1.15% and 2.29% on both datasets after adapting our method. It was demon-

strated that the higher the rate of removing false positive samples, the higher the accuracy 

of human–object interaction detection. 

Table 2. Comparison of recall with TIN for false positive samples on both datasets. 

 V-COCO (Recall) HICO-DET (Recall) 

TIN[9] 65.98% 64.76% 

IR-GNN 70.42% 69.83% 

Table 3. Comparison of mAP with TIN for human–object interaction category identification on two 

datasets. 

 V-COCO (mAP) HICO-DET (mAP) 

TIN[9] 48.70% 17.22% 

TIN + IR-GNN 49.85% 19.51% 

5.4. Qualitative Results 

In Figure 7, we show the visualization results of the interactivity recognition. To test 

the results of our method for detecting human–object interactivity in images, we deliber-

ately chose humans and objects in complex scenes, which in general may have had non-

interactive pairs. In the image in Figure 7a, despite the same pose of the person and the 

same features of the bicycle, the spatial relationship between the instances as the edge 

relationship of the graph model made no interactive pairing of the person with other bi-

cycles, indicating the great stability of our method in highly correlated scenarios. The 

same principle was applied to the image in Figure 7b. When analyzing the Figure 7e im-

age, due to the interaction between the spatial relationship between the human pose fea-

tures and the instances as the edge relationship of the graph model, the model could cor-

rectly determine the existence of an interaction between two persons and the correspond-

ing bicycle and exclude the third person. In the Figure 7d image, a person is holding a cell 

phone and is talking on the phone; however, our method failed to recognize the interac-

tivity of the person and the phone, and this deficiency area can be solved from the aspect 

of object detection. 

 
 

(a) ride a bike (b) ride a motorbike 
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(c) stand on skis, hold snow stick (d) take a phone 

  
(e) hold a bike (f) hold a phone 

 

 

(g) sitting at a dining table (h) watch a laptop 

Figure 7. Shows the interaction recognition results on the test sets in the HICO-DET dataset and the 

V-COCO dataset. The object detection results use green rectangular boxes for persons and red rec-

tangular boxes for objects, with the green solid rectangle being the center coordinates of the person 

target box and the red rectangle being the center coordinates of the object target box. The interaction 

detection results use yellow connecting lines to connect the true positive predictions for the person 

corresponding to the interacting object and blue connecting lines to connect the noninteracting false 

positive predictions for the person and object. 

In addition to this, the visualization result graphs of DRG+IR-GNN and DRG [19] 

were compared, thus illustrating more clearly the advantages of our method. Figure 8 

shows the visualization results of the detection of DRG+IR-GNN and DRG on the V-

COCO dataset. As shown in Figure 8, the method in this paper utilized the human pose, 

the correlation between human–object pairs and scene information, and identified the hu-

man–object interaction in advance, which could effectively avoid the problem of false de-

tection and missed detection in DRG [19]. In Figure 8a, people are sitting around a dining 

table. Using the scene information and the correlation between human–object pairs, the 
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method in this paper could detect four people having an interaction with the table, ena-

bling DRG to detect <sit at, dining table> and avoiding the problem of missed detection. 

In Figure 8b, the body posture feature was used, and the hand position of the misidenti-

fied person was very far away from the umbrella. The method in this paper removed the 

misidentified person, which could avoid the <hold, umbrella> misidentification problem.  

  

(a) 

  
(b) 

Figure 8. (a) People are sitting around a dining table; (b) many people under umbrellas; in each 

subfigure, the left figure shows the DRG + IR-GNN method, the right figure uses the DRG method. 

6. Conclusion and Future Work 

In this paper, we propose a novel interactivity recognition graph neural network 

around a large number of noninteractive human–object pairs as negative samples that 

severely affect the performance of HOI detection and identify valid interactive human–

object pairs for increasing the detection accuracy of HOI. We designed the human posture 

feature module to enhance the fine spatial features of interactive actions, which helped to 

combine contextual information to predict interactivity. A human–object pair graph 

model is proposed to construct a graph model with human and object features as nodes 

and human–object relationships as edges, with the spatial relationship of human–object 

distances as the initialization weights of edges, and the graph is updated by combining 

the message passing of the attention mechanism so that the edges of nodes with interac-

tions obtain higher weights. Finally, the node and edge information of the human–object 

pairs are concatenated with the human posture features, and the score of the HOI or not 

is derived by the classification model. 

This paper draws the following conclusions:  
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1. Eliminating invalidly interacting human–object pairs before HOI model inference 

and subjecting only validly interacting human–object pairs to HOI inference helps to 

improve HOI inference performance. We used our method to improve on existing 

state-of-the-art methods and conducted comparative experiments on the state-of-the-

art methods. As can be seen from Figures 5 and 6, the improved method was signifi-

cantly better than the original method. 

2. The human posture information, attention mechanism, human-to-object distance 

spatial features as initial edge weights, and graph update operations in this paper’s 

approach all had an enhancing effect on the performance of the model. As can be 

seen from Table 1, significant results were obtained from ablation experiments in the 

HICO-DET and V-COCO datasets. 

3. The higher the rate of excluding false positive samples, the higher the accuracy of 

human–object interaction detection will be. As can be obtained from Tables 2 and 3, 

our method performed better on excluding false interaction pairs, and on subsequent 

interaction detection experiments, our method removed more invalid interaction 

pairs, resulting in better results on the accuracy of human–object interaction detec-

tion. 

Overall, we have made the following contributions in this study. 

We propose a novel neural network for interactivity recognition graphs to improve 

the accuracy of human–object interaction detection. Through experimental and compara-

tive validation, it was demonstrated that our proposed model performed superiorly on 

the V-COCO and HICO-DET datasets. 

In future work, we expect to design a two-stage human–object interaction recognition 

task based on this approach. 
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